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Abstract—Pathogenic Social Media (PSM) accounts such as
terrorist supporter accounts and fake news writers have the
capability of spreading disinformation to viral proportions. Early
detection of PSM accounts is crucial as they are likely to be key
users to make malicious information “viral”. In this paper, we
adopt the causal inference framework along with graph-based
metrics in order to distinguish PSMs from normal users within
a short time of their activities. We propose both supervised
and semi-supervised approaches without taking the network
information and content into account. Results on a real-world
dataset from Twitter accentuates the advantage of our proposed
frameworks. We show our approach achieves 0.28 improvement
in F1 score over existing approaches with the precision of 0.90
and F1 score of 0.63.

I. INTRODUCTION

“Pathogenic Social Media” (PSM) accounts have the capa-
bility of spreading disinformation to viral proportions. These
accounts including terrorist supporter accounts, water armies,
and fake news writers seek to promote or degrade certain ideas
through social media in order to reach their goals. In this
regard, identifying PSM accounts has found growing important
applications to countering extremism [1], [2], detection of
water armies [3], [4] and fake news campaigns [5], [2]. In
Twitter, many of these accounts are social bots.

TABLE I: Label propagation selection approach - number of
selected users

Method False Pos True Pos Precision
All features 164,012 31,131 0.16
No content 357,027 63,025 0.15
εK&M 9,305 14,176 0.60
εrel 561 498 0.47
εnb 1,101 1,768 0.62
εwnb 1,318 4,000 0.75

Early detection of PSM accounts are crucial as they are
likely to be the key users to malicious information cam-
paign and detecting them is thus critical to understanding
and stopping such campaigns. However, this task is difficult
in practice. Existing methods rely on message content [6],
network structure [7] or a combination of both [8], [9], [10].
However, the network structure is not always available. For
example, the Facebook API does not make this information
available without the permission of the users. Moreover, the
use of content often necessitates the training of a new model
for the previously unobserved topics. For example, PSM

accounts taking part in elections in the U.S. and Europe will
likely leverage different types of content. To deal with these
issues, causal inference is tailored to detect PSM accounts
in [11] based on an unsupervised learning method. The authors
identified PSM users in the viral cascades, where “viral” is
defined as an order-of-magnitude increase. As viral cascades
are so rare, users that cause them are suspicious accounts. This
work is continued by considering a time-decay causal and
proposing a causal community detection-based classification
method [12].

In this paper, we expand on the previous work in [11]
and propose graph-based metrics to distinguish PSMs from
normal users within a short time around their activities. Our
new metrics combined with our causal ones can achieve high
precision 0.90, while increasing the recall from 0.22 to 0.49.
We propose supervised and semi-supervised approaches and
then show our proposed methods outperform the ones in the
literature. In summary, the major contributions of this paper
are itemized as follows:
• We propose supervised and semi-supervised PSM detec-

tion frameworks that do not leverage network structure,
cascade path information, content and user’s information.

• We introduce graph-based framework using the cascades
and propose a series of scalable metrics to identify PSM
users. We apply this framework to more than 722K users
and 35K cascades.

• We propose a deep neural network framework which
achieves AUC of 0.82. We show that our framework
significantly outperforms Sentimetrix [8] (0.74),
causality [11] (0.73), time-decay causality [12]
(0.66), and causal community detection-based
classification [12] (0.6).

• We introduce a self-training semi-supervised framework
that can capture more than 29K PSM users with the
precision of 0.81. We only used 600 labeled data for
training and development sets. Moreover, if a supervisor
is involved in the training loop, the proposed algorithm
is able to capture more than 80K PSM users.

The rest of the paper is organized as follows. In Section II,
we describe our framework that leverages causal metrics,
graph-based metrics. We present the algorithms in Section III.
This is followed by a description of our dataset in Section IV.
Then we describe our implementation and discuss our results
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in Section V. Finally, related work is reviewed in Section VI.

II. TECHNICAL APPROACH

A. Technical Preliminaries

Throughout this paper we shall represent cascades as an
“action log” (Actions) of tuples where each tuple (u,m, t) ∈
Actions corresponds with a user u ∈ U posting message m ∈
M at time t ∈ T , following the convention of [13], [11]. We
assume that set M includes posts/repost of a certain original
tweet or message. For a given message, we only consider the
first occurrence of each user. We define Actionsm as a subset
of Actions for a specific message m. Formally, we define it
as Actionsm = {(u′,m′, t′) ∈ Actions s.t. m′ = m}.

Definition 1. (m-participant). For a given m ∈ M , user u
is an m-participant if there exists t such that (u,m, t) ∈
Actions.

Note that the users posting tweet/retweet in the early stage
of cascades are the most important ones since they play a
significant role in advertising the message and making it viral.
For a given m ∈ M , we say m-participant i “precedes” m-
participant j if there exists t < t′ where (i,m, t), (j,m, t′) ∈
Actions. Thus, we define key users as a set of users adopting a
message in the early stage of its life span. We formally define
key user as follows:

Definition 2. (Key User). For a given message m, m-
participant i, and Actionsm, we say user i is a key user iff
user i precedes at least φ fraction of m-participants (formally:
|Actionsm|×φ ≤ |{j|∃t′ : (j,m, t′) ∈ Actionsm ∧ t′ > t}|,
(i,m, t) ∈ Actionsm), where φ ∈ (0, 1).

The notation | · | denotes the cardinality of a set. All
messages are not equally important. That is, only a small
portion of them gets popular. We define viral messages as:

Definition 3. (Viral Messages). For a given threshold θ, we
say that a message m ∈ M is viral iff |Actionsm| ≥ θ. We
use Mvir to denote the set of viral messages.

The Definition 3 allows us to compute the prior probability
of a message (cascade) going viral as follows:

ρ =
|Mvir|
|M |

(1)

We also define the probability of a cascade m going viral
given some user i was involved as:

pm|i =
|{m ∈Mvir s.t. i is a key user}|
|{m ∈M s.t. i is a key user}|

(2)

We are also concerned with two other measures. First, the
probability that two users i and j tweet or retweet viral post m
chronologically, and both are key users. In other words, these
two users are making post m viral.

pi,j =

|{m ∈Mvir|∃t, t′ where t < t′ and
(i,m, t), (j,m, t′) ∈ Actions}|

|{m ∈M |∃t, t′ where t < t′ and
(i,m, t), (j,m, t′) ∈ Actions}|

(3)

Second, the probability that key user j tweets/retweets viral
post m and user i does not tweet/retweet earlier than j. In
other words, only user j is making post m viral.

p¬i,j =

|{m ∈Mvir|∃t′ s.t. (j,m, t′) ∈ Actions and
6 ∃t where t < t′, (i,m, t) ∈ Actions}|

|{m ∈M |∃t′ s.t. (j,m, t′) ∈ Actions and
6 ∃t where t < t′, (i,m, t) ∈ Actions}|

(4)
Knowing the action log, we aim to find a set of pathogenic

social media (PSM) accounts. These users are associated
with the early stages of large information cascades and, once
detected, are often deactivated by a social media firm. In
the causal framework, a series of causality-based metrics for
identifying PSM users is introduced.

B. Causal Framework

We adopt the causal inference framework previously in-
troduced in [14], [15]. We expand upon that work in two
ways [11]: (1.) we adopt it to the problem of identifying PSM
accounts and (2.) we extend their single causal metric to a set
of metrics. Multiple causality measurements provide a stronger
determination of significant causality relationships.

For a given viral cascade, we seek to identify potential users
who likely cause the cascade viral. We first require an initial
set of criteria for such a causal user. We do this by instantiating
the notion of Prima Facie causes to our particular use case
below:

Definition 4. (Prima Facie Causal User). A user u is a prima
facie causal user of cascade m iff: User u is a key user of m,
m ∈Mvir, and pm|u > ρ.

For a given cascade m, we will often use the language prima
facie causal user to describe user i is a prima facie cause for
m to be viral. In determining if a given prima facie causal
user is causal, we must consider other “related” users. We say
i and j are m-related if (1.) i and j are both prima facie causal
users for m, (2.) i and j are both key users for m, and (3.)
i precedes j. Hence, we will define the set of “related users”
for user i (denoted R(i)) as follows:

R(i) = {j s.t. j 6= i , ∃m ∈M s.t. i, j are m−related} (5)

Therefore, pi,j in (3) is the probability that cascade m goes
viral given both users i and j, and p¬i,j in (4) is the probability
that cascade m goes viral given key user j tweets/retweets it
while key user i does not tweet/retweet m or precedes j. The
idea is that if pi,j − p¬i,j > 0, then user i is more likely a
cause than j for m to become viral. We measure Kleinberg-
Mishra causality (εK&M ) as the average of this quantity to
determine how causal a given user i is as follows:

εK&M (i) =

∑
j∈R(i)(pi,j − p¬i,j)

|R(i)|
(6)

Intuitively, εK&M measures the degree of causality exhibited
by user i. Additionally, we find it useful to include a few other



measures. We introduce relative likelihood causality (εrel) as
follows:

εrel(i) =

∑
j∈R(i) S(i, j)

|R(i)|
(7)

S(i, j) =


(

pi,j

p¬i,j+ω )− 1, pi,j > p¬i,j

0, pi,j = p¬i,j′

1− (
p¬i,j

pi,j
), otherwise

(8)

where ω is infinitesimal. Relative likelihood causality metric
assesses the relative difference between pi,j and p¬i,j . This
helps us to find new users that may not be prioritized by
εK&M . We also find that if a user is mostly appearing after
those with the high value of εK&M , then it is likely to be
a PSM account. One can consider all possible combinations
of events to capture this situation. However, this approach is
computationally expensive. Therefore, we define Q(j) as:

Q(j) = {i s.t. j ∈ R(i)} (9)

Accordingly, we define neighborhood-based causality (εnb)
as the average εK&M (i) for all i ∈ Q(j) as follows:

εnb(j) =

∑
i∈Q(j) εK&M (i)

|Q(j)|
(10)

The intuition behind this metric is that accounts who are
retweeting a message that was tweeted/retweeted by several
causal users are potential for PSM accounts. We also define
the weighted neighborhood-based causality (εwnb) as follows:

εwnb(j) =

∑
i∈Q(j) wi × εK&M (i)∑

i∈Q(j) wi
(11)

The intuition behind the metric εwnb is that the users in Q
may not have the same impact on user j and thus different
weights wi are assigned to each user i with εK&M (i). In our
previous work [11], we provided more details of these metrics.

C. Graph-based Framework

User-Message Bipartite Graph. Here, we denote Actions
as a bipartite graph Gu−m(U,M,E), where users U and
messages M are disjoint sets of vertices. There is an annotated
link from user u to message m if u has tweeted/retweeted m
and is annotated by occurrence time t (see Fig. 1). In other
words, every edge in graph Gu−m is associated with one tuple
(u,m, t) ∈ Actions. For a given node u ∈ U(m ∈ M),
the set Nu = {m′ ∈ M s.t. (u,m′) ∈ E}(Nm = {u′ ∈
U s.t. (u′,m) ∈ E}) is the set of immediate neighbors of
u (m). We also define Uv ⊂ U which is the set of verified
users (often celebrities). We indicate Uv

m = {u|(u,m, t) ∈
Actions, u ∈ Uv} as a set of verified users that have
re/tweeted message m.

As for the edges, we examine different metrics such as
Jaccard similarity between users, and rank of a user in a
message which is defined as Rank(u,m) = |{(u′,m, t′) ∈
Actions|(u,m, t) ∈ Actions, t′ < t}|. We also define nor-
malized rank as:

NR(u,m) = 1−
Rank(u,m)

Nm
(12)

Fig. 1: User-message bipartite graph and user graph. Red
and purple nodes represent users and messages respectively.
Messages are labeled with the length of the cascade (degree).
Blue and Green edges represent user-message and user-user
relationships.

Our intuition behind rank metric Rank(u,m) is that the
earlier a user has participated in spreading a message, the more
important the user is. In this regard, we can also define the
exponential decay of the time as:

T m
u = exp(−γ∆tmu ) (13)

where ∆tmu = {t|(u,m, t) ∈ Actions} −
min({t′|(u′,m, t′) ∈ Actions}), and γ is a constant.
This metric prioritizes based on the retweeting time of the
message. In other words, this metric assigns different weights
to different time points of a given time interval, inversely
proportional to their duration from start of the cascade, i.e.,
smaller duration is associated with higher weight.

Using all these information, we then annotated users U
based on their local and network characteristics such as
degree, and PageRank. We also consider function F ∈
{sum,max,min, avg,med, std} to calculate statistics such
as minimum, mean, median, maximum, and standard deviation
based on their one-hop or two-hops neighbors. For example,
for a given user u, mean of re/tweeted message’s PageRank of
user u proved to be among top predictive metrics according
to our experiments. Using these intuitions, we explored the
space of variants features and list those we found to be best-
performing in Table II.
User Graph. We represent a directed weighted user graph
G(V ′, E′) where the set of nodes V ′ corresponds with key
users. There is a link between two users if they are both
key users of at least a message. There is a link from i
(j) to j (i) if the number of times that “i appears before
j and both are key users” is equal to or larger (smaller)
than the case when “j appears before i”, see Fig. 1. For a
given node i, the set Nout

i = {i′ ∈ V ′ s.t. (i, i′) ∈ E′}
(N in

i = {i′ ∈ V ′ s.t. (i′, i) ∈ E′})- the set of outgoing
(incoming) immediate neighbors of i. The weight of edges is



TABLE II: User-Message Bipartite Graph-Based Metrics

Name Definition

Degree Dv =
|{v′|(v, v′) ∈ E ∨ (v′, v) ∈ E}|

Cascade size statistics CSu,F = Fm∈NuDm

PageRank PR(v) =
1−d
N

+ d
∑

v′∈Nv

PR(v′)
L(v′)

Message’s PageRank statistics PSu,F = Fm∈NuPR(m)

Number of verified users V rm =
|{u|(u,m) ∈ E, u ∈ Uv}|

Jaccard similarity statistics
JSu,F = Fu′∈U

|Nu ∩Nu′ |
|Nu ∪Nu′ |

Intersection statistics ISu,F = Fu′∈U |Nu ∩Nu′ |

Normalized rank statistics NRSu,F = Fm∈NuNR(u,m)

T statistics T Su,F = Fm∈NuT
m
u

Verified users in the cascades
statistics UvSu,F = Fm∈Nu |U

v
m|

determined as a variant of co-occurences of the key user pairs:

COi,j =

|{m|i, j are key users, ∃t, t′ where t < t′,

(i,m, t), (j,m, t′) ∈ Actions}|
min(|{m|i is a key user}|, |{m|j is a key user}|)

(14)
Using COi,j , we then propose a weighted co-occurrence

score for user i as:

COw
i,Ni

=

∑
j∈Ni

(abs(δi,j) + 1)× COi,j∑
j∈Ni

(abs(δi,j) + 1)
(15)

where abs(·) denotes the absolute value of the input. The
differences between ordered joint occurrences δi,j is also
defined as:

δi,j =

|{m|∃t, t′ s.t. t < t′, (i,m, t), (j,m, t′) ∈ Actions}|
− |{m|∃t, t′ s.t. t > t′, (i,m, t), (j,m, t′) ∈ Actions}|

(16)
The list of user graph-based metrics extracted from graph G
is shown in Table III. We further calculate the probability of
“user j appears after user i” as:

P(j,i) =

|{m ∈Mvir|∃t, t′ where t < t′ and
(i,m, t), (j,m, t′) ∈ Actions}|
|{m|(j,m, t) ∈ Actions}|

(17)

The average probability that user i appears before its related
users R(i) is also a good indicator for identifying PSM
accounts:

CMi =

∑
R(i) P(j,i)

|R(i)|
(18)

TABLE III: User Graph-Based Metrics

Description Definition

Degree |Nout
i |

Outgoing co-occurrence score
statistics

COSout
i,F = Fj∈Nout

i
COi,j

Incoming co-occurrence score
statistics

COSin
i,F = Fj∈N in

i
COi,j

Weighted co-occurrence score COw
i,Nout

i

Number of outgoing verified
users |{j|j ∈ Nout

i , j ∈ Uv}|

Number of incoming verified |{j|j ∈ N in
i , j ∈ Uv}|

Triangles Number of triangles

Clustering coefficient CCi =
|{(j,k)|j,k∈Ni,(j,k)∈E′}|

|Ni|×(|Ni|−1)

We aim to evaluate users from different perspectives and these
metrics have shown to be helpful for evaluating users and
detecting PSM accounts.

D. Problem Statement

Our goal is to find the potential PSM accounts from the
cascades. In the previous section, we discussed causality
metrics, and defined diverse set of features using both user-
message bipartite and user graphs where these metrics can
discriminate the users of interest.
Problem. (Early PSM Account Detection). Given Action log
Actions, causality and structural metrics, we wish to identify
set of key users that are PSM accounts.

III. PSM ACCOUNT DETECTION ALGORITHM

We employ supervised, and semi-supervised approaches for
detecting PSM accounts. Proposed metrics are scalable and
can be calculated efficiently using map-reduce programming
model and storing data in a graph-based database. To such
aim, we used Neo4j to store data and calculated most of the
structural metrics using Cypher query language [16].

A. Supervised Learning Approach

We evaluate several supervised learning approaches in-
cluding logistic regression (LR), naive bayes (NB), k-nearest
neighbors (KNN) and random forest (RF) on the same set
of features. We also develop a dense deep neural network
structure using Keras. As for the deep neural network and
in order to find the best architecture and hyperparamters, we
utilize the random search method. Many model structures were
tested and Fig. 2 illustrates the best architecture.

As we can see from Fig. 2, the proposed deep neural net,
in fact, consists of three dense deep neural net structures.
The first two structures are of the same, but the activation
functions of their layers are different. The intuition is that
we aimed to capture the most useful information from the
input data and our experiments show the ReLU and Sigmoid



Fig. 2: The proposed deep neural net structure

activation functions can contribute to this. Specifically, these
two structures are aimed to filter the noises in the input data
and prepare clean inputs to feed into the third structure. In this
regard, the outputs of these two structures along with the input
data are concatenated into one vector and this vector is fed
into another dense deep neural net. Finally, the output of this
structure is fed into a regular output layer. To avoid overfitting,
we used dropout method. In the proposed framework, the
binary cross entropy loss function is minimized and the best
optimizers are reported as Adam and Adagrad.

B. Self-Training Semi-Supervised Learning Approach

Semi-supervised algorithms [8], [17] use unlabeled data
along with the labeled data to better capture the shape of
the underlying data distribution and generalize better to new
samples. Here, we propose a Weighted Self-Training Algorithm
(WSET) shown in Algorithm 1 to address such problem. We
start with small amount of labeled training data and iteratively
add users with high confidence scores from unlabeled data
to the training set. Lets denote labeled data L = {ui, li}
and unlabeled data U = {uj}. Labeled data is split to
training set Lt and development set Ld. We then iteratively
train a classifier using training set and predict the confidence
scores for development set and unlabeled data. Based on the
confidence score obtained from development set, a threshold is
determined. We then select all samples from unlabaled data
that satisfy the threshold. Next, those samples are removed
from unlabeled set and are added to the training set. The
termination condition is determined based on at most θtr drop
in accuracy on the development set or minimum number of
selected users by algorithm.

There are still two main questions that need to be answered:
Q1. Should all training samples be weighted equally?
Q2. How should a threshold be determined for adding

unlabeled data to the labeled set?
Since the prediction mistake reinforces itself, and the predic-

tion error increases by number of iterations, the way we choose
samples is of importance. According to our experiments, all
training samples should not be weighted equally. We found the

Algorithm 1 Weighted Self-Training Algorithm (WSET)

1: procedure WSET(L = {ui, li}, U = {uj}, α, β, θpr, θtr)
2: Split L to training set Lt and development set Ld

3: Lt.wc = 1
4: it = 1
5: m = Train a classification model using Lt

6: Ld.p = confidence score p using m of Ld

7: c = accuracy of model m on Ld

8: c′ = c
9: while c′ >= c− θtr do

10: U.p = confidence score p using m of U
11: Update Lt and U by Algorithm 2

(Lt, Ld, U, α, β, θpr, it)
12: m = Train a classification model using Lt

13: Ld.p = confidence score p using m of Ld

14: c′ = accuracy of model m on Ld

15: it = it+ 1

16: return Lt

exponential decay weighting approach as the most efficient one
(see Q1). Considering a sample with confidence pl associated
to a specific label l in iteration it, the exponential decay
weighting approach is defined as:

exp(−β × it× (
1

1− pl
)) (19)

where β is a parameter. To answer the second question, we
pick the threshold to have the minimum precision of θpr
on development set in each iteration. Since the precision
decreases as the algorithm iterates, the threshold is required to
be adjusted in order to make sure the top ranked and qualified
samples are picked up. Mathematically, the updated threshold
in each iteration is defined as follows:

θpr − α× (it− 1) (20)

where α is a parameter, α ∈ [0, 1
it−1 ], it > 0. We pick 0.005

for the experiments. If it = 1, the threshold is equal to θpr.
As the number of iteration increases the threshold is updated
according to the product of α and iteration number it. This
approach can make sure that we are picking samples with
acceptable confidence. Algorithm 2 presents our approach for
updating labeled and unlabaled datasets.

IV. ISIS DATASET

Our dataset consists of ISIS related tweets/retweets in
Arabic gathered from Feb. 2016 to May 2016. This dataset
is discussed in details in [11]. The dataset includes tweets
and the associated information such as user ID, re-tweet ID,
hashtags, number of followers, number of followee, content,
date and time. About 53M tweets are collected based on
the 290 hashtags such as State of the Islamic-Caliphate, and
Islamic State. In this paper, we only use tweets (more than
9M) associated with viral cascades.



Algorithm 2 Update Weighted Self-Training Datasets Algorithm
(UPDWSET)

1: procedure UPDWSET(Lt, Ld, U, α, β, θpr, it)
2: S = ∅
3: for l ∈ [True, False] do
4: thr = FindPrecisionThreshold(Ld, θpr − α ×

(it− 1), label = l)
5: S = S ∪ {u ∈ U |u.p ≥ thr}
6: U = U − S
7: S.wc = exp(−β × it× ( 1

1−p ))
8: Lt = Lt ∪ S
9: return Lt, U

Fig. 3: Distribution of cascades vs cascade size

Cascades. We aim to identify PSM accounts. For this dataset,
they are mainly social bots or terrorism-supporting accounts
that participate in viral cascades. The tweets have been
retweeted from 102 to 18,892 times. This leads to more than
35K cascades which are tweeted or retweeted by more than 1M
users. The distribution of the number of cascades vs cascade
size is illustrated in Fig. 3.
User’s Current Status. We select key users that have tweeted
or retweeted a post in its early life span - among first half of
the users (according to Definition 2, φ = 0.5), and check
whether they are active or not. Accounts are not active if
they are suspended or deleted. Less than 24% of the users
are inactive. Inactive users are representative of automatic and
terrorism accounts aiming to disseminate their propaganda and
manipulate the statistics of the hashtags of their interest.

V. RESULTS AND DISCUSSION

We implement part of our code in Scala Spark and Python
2.7x and run it on a machine equipped with an Intel Xeon
CPU (2 processors of 2.4 GHz) with 256 GB of RAM running
Windows 7. We also implement most of structural metrics in
Cypher query language. We create the graphs using Neo4j [16]
on a machine equipped with an Intel Xeon CPU (2 processors
of 2.4 GHz) with 520 GB of RAM. We set the parameter φ as
0.5 to label key users (Definition 2). That is, we are looking
for the users that participate in the action before the number
of participants gets twice.

In the following sections, first we look at the baseline
methods. Then we address the performance of two proposed
approaches (see Section III): (1) Supervised Learning Ap-
proach: applying different supervised learning methods on

proposed metrics, (2) Self-Training Semi-Supervised Learning
Approach: selecting users by applying Algorithm 1. The
intuition behind this approach is to select users with the high
probability of being either PSM or non-PSM (normal user)
from unlabeled data and then adding them to the training set
in order to improve the performance. We evaluate methods
based on both Precision-Recall and Receiver Operating Char-
acteristics (ROC) curves. Note that in all experiments, the
training, development, and test sets are imbalanced with more
normal users than PSM users. The statistics of the datasets are
presented in Table IV. Dataset A is randomly selected from
dataset B using sklearn library [18]. Note that, all random
selections of data in the experiments have been done using
sklearn library. We repeated the experiments 3 times and
picked the median output. It is worth to mention that the
variance among the results was negligible. In this problem,
our goal is to achieve high precision while maximizing the
recall. The main reason is labeling an account as PSM means it
should be deleted. However, removing a normal user is costly.
Therefore, it is important to have a high precision to prevent
removing the normal users.

TABLE IV: Statistics of the datasets used in experiments.

Name PSM accounts Normal accounts Total
A 19,859 65,417 85,276
B 137,248 585,396 722,644

A. Baseline Methods

We have compared our results with existing work for
detecting PSM accounts [11], [12] or bots [8].
Causality. This paper presents a set of causality metrics
and unsupervised label propagation model to identify PSM
accounts [11]. However, since our approach is supervised, we
only use the causality metrics and evaluate its performance in
a supervised framework.
C2DC. This approach uses time decay causal community
detection-based classification to detect PSM accounts [12]. We
also considered time decay causal metrics with random forest
as another baseline method (TDCausality).
Sentimetrix. This approach is proposed by the top-ranked
team in the DARPA Twitter Bot Challenge [8]. We consider all
features that we could extract from our dataset. Our features
include tweet syntax (average number of hashtags, average
number of user mentions, average number of links, average
number of special characters), tweet semantics (LDA topics),
and user behaviour (tweet spread, tweet frequency, tweet
repeats). The proposed method starts with a small seed set and
propagate the labels. As we have enough labeled dataset for
the training set, we use random forest as the learning approach.

We use dataset A to evaluate different approaches. Fig. 4a
shows the precision-recall curve for these methods. As it is
shown, in the supervised framework, Sentimetrix outperforms
all approaches in general. Also, Causality is a comparable ap-
proach with Sentimetrix with the constraint that the precision
is no less than 0.9 as illustrated in Fig. 4b. Note that, most



(a) ROC curve (b) Precision-Recall curve

Fig. 4: Performance of the baseline methods on dataset A

(a) ROC curve (b) Precision-Recall curve

Fig. 5: Performance of different supervised approaches using
proposed metrics on dataset A

of the features used in the previous bot detection work take
advantage of content and network structure of users. However,
this is not the case in our proposed metrics and approach.

B. Supervised Learning Approach

In this section, we describe the classification results using
proposed metrics with different learning approaches. We used
both datasets for this experiment. First, we use the same
dataset as we used in baseline experiments (A). Then, we use
dataset B for comparing top methods which is 8.5 times larger
than dataset A.

Fig. 5a shows the ROC curve for different approaches. As it
is shown, deep neural network achieved the highest area under
the curve. Note that, the deep neural network is comparable
with random forest as it is shown in Fig. 5b on Dataset A.
The proposed approaches could improve the recall from 0.22
to 0.49 with the precision of 0.9. According to the random
forest, top features are from all categories including causality
metrics: εnb, εwnb, user-message graph-based metrics: user’s
PageRank PR(u), median of retweeted message’s PageRank
PSu,med, degree Du, mean of verified users in his messages
UvSu,mean, T Su,med, T Su,mean, median of length of the
cascades CSu,med, user graph-based metrics: weighted co-
occurrence score COw

u,Nu
.

In Fig. 6b, we probe the performance of the top two super-
vised approaches on larger dataset B. Deep neural network is
able to achieve the recall of 0.48 with the precision of 0.9. It
is also able to achieve AUC of 0.83 on this dataset (Fig. 6a). It
is worth to mention that we assigned higher weights to PSM
accounts to deal with data imbalance problem.

(a) ROC curve (b) Precision-Recall curve

Fig. 6: Performance of the top two supervised approaches
using proposed metrics on dataset B

(a) PSM users (b) Normal users

Fig. 7: Cumulative number of selected users using WSET
Algorithm on dataset B

C. Self-Training Semi-Supervised Learning Approach

In this experiment, we randomly select 300 PSM and 300
normal users from dataset B for training and development sets
and the rest of the dataset was considered as unlabeled data.
We conduct two types of experiments:
WSET Algorithm. In this experiment, we evaluate the self-
training semi-supervised approach using Algorithm 1. In this
approach, we iteratively update the training set and the termi-
nation condition is accuracy of the model on the development
set. We set the parameters as θpr = 1, α = 0.05, θtr = 0.03.
We use a random forest classifier to train the model. The
cumulative number of true positive and false positive is shown
in Fig. 7a. With using 300 PSM accounts as seed set, WSET
can find 29,440 PSM accounts with the precision of 0.81. Note
that, we can stop the algorithm earlier.

In this case, precision varies from 0.97 to 0.81. Fig. 7b
illustrates cumulative number of selected users as normal users
by WSET. As shown, the number of true negatives (selected
normal accounts as normal users) is 18,343 with precision of
0.93.
Supervised WSET Algorithm. In previous experiment, we
assume that the supervisor checks accounts labeled as PSM
by WSET at the end. However, this process can be done
iteratively. Here, we assume that the supervisor evaluates the
PSM labeled accounts by WSET in each iteration and verify
if they are either true or false positive. Therefore, these labels
along with the non-PSM labeled accounts by WSET are fed
into WSET. According to our results, the number of true
positive increases to 80,652 with the precision of more than
0.8. That is, using this approach we can increase the number
of true positive PSM accounts 2.7 times.



Fig. 8: Cumulative number of selected users as PSM accounts
using supervised WSET Algorithm on dataset B

VI. RELATED WORK

In summary, majority of previous work was based on three
fundamental assumptions which make them different from our
work. First, the information of the network is known [8], [13],
[19], [20]. This assumption may not hold in reality. Second,
they are language-dependent [8], [6]. Third, the majority of
botnet detection algorithms focused on bots in general. That is,
they did only consider the bots equally [6], [10] while here, we
identify PSM accounts that spread harmful viral information.
Identifying PSM accounts. Compared to previous PSM ac-
count detection work in [11], [12], we propose graph-based
features and unlike the unsupervised learning approach in [11],
we expand out both the supervised and semi-supervised learn-
ing methods. We also develop a deep neural network and show
how our proposed approaches improve them significantly.
Identifying Automatic Accounts.

DARPA conducted the Twitter bot detection challenge to
identify and eliminate influential bots [8]. Most of the previous
work extracted different sets of features (tweet syntax, tweet
semantics, temporal behavior, user profile, friends and net-
work features) and conducted supervised or semi-supervised
approaches [8], [9], [10]. However, without using content, and
network structure, they perform poorly. Also, some of the
features such as tweet semantics depend on the language. It
is yet a challenge to apply these features to other languages
such as Arabic.
Analysis of Terrorist Groups and Detection of Water
Armies. Terrorist groups use social media for propaganda dis-
semination [21]. Benigni et al. [19] conducted vertex clustering
and classification to find Islamic Jihad Supporting Community
on Twitter. Abdokhodair et al. [20] studied the behaviors and
characteristics of Syrian social botnet. Chen et al. [3] found
that within the context of news report comments, user-specific
measurements can distinguish water army from normal users.
Our work is different from them since these methods used
features related to the accounts and network.

VII. CONCLUSION

In this paper, we conducted a data-driven study on the
pathogenic social media accounts. We proposed supervised
and semi-supervised frameworks to detect these users. We
achieved the precision of 0.9 with F1 score of 0.63 using

supervised framework. In semi-supervised framework, we are
able to detect more than 29K PSM users by using only
600 labeled data for training and development sets with the
precision of 0.81. Our approaches identify these users without
using network structure, cascade path information, content and
users’ information. We believe our technique can be applied
in the areas such as detection of water armies and fake news
campaigns. Our future plan is to combine the proposed semi-
supervised approach with unsupervised one in [11] in order to
find the initial seed set for the semi-supervised approach.
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