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Abstract—Over the past few years, we have observed different
media outlets’ attempts to shift public opinion by framing
information to support a narrative that facilitate their goals.
Malicious users referred to as “pathogenic social media” (PSM)
accounts are more likely to amplify this phenomena by spreading
misinformation to viral proportions. Understanding the spread of
misinformation from account-level perspective is thus a pressing
problem. In this work, we aim to present a feature-driven
approach to detect PSM accounts in social media. Inspired by
the literature, we set out to assess PSMs from three broad
perspectives: (1) user-related information (e.g., user activity,
profile characteristics), (2) source-related information (i.e., infor-
mation linked via URLs shared by users) and (3) content-related
information (e.g., tweets characteristics). For the user-related
information, we investigate malicious signals using causality
analysis (i.e., if user is frequently a cause of viral cascades)
and profile characteristics (e.g., number of followers, etc.). For
the source-related information, we explore various malicious
properties linked to URLs (e.g., URL address, content of the
associated website, etc.). Finally, for the content-related informa-
tion, we examine attributes (e.g., number of hashtags, suspicious
hashtags, etc.) from tweets posted by users. Experiments on
real-world Twitter data from different countries demonstrate the
effectiveness of the proposed approach in identifying PSM users.

Index Terms—Pathogenic Users, Malicious behavior, Misinfor-
mation, Feature-Driven

I. INTRODUCTION

Recent years have witnessed a surge of manipulation of
public opinion and political events by different media outlets
and malicious social media actors referred to as “Pathogenic
Social Media” (PSM) accounts [5]. The manipulation of
opinion can take many forms from fake news [38] to more
subtle ones such as reinforcing specific aspects of text over
others [8]. It has been observed that media aggressively exert
bias in the way they report the news to sway their reader’s
knowledge. On the other hand, PSM accounts are responsible
for “agenda setting” and massive spread of misinformation [4].
Understanding misinformation from account-level perspective
is thus a pressing problem.

PSM accounts (1) are usually owned by either normal users
or automated bots, (2) seek to promote or degrade certain
ideas; and (3) can appear in many forms such as terrorist
supporters (e.g., ISIS supporters), water armies or fake news
writers. Understanding the behavior of PSMs will allow social
media to take countermeasures against their propaganda at

the early stage and reduce their threat to the public. Early
detection of PSMs in social media is crucial as they are likely
to be key users to forming malicious campaigns [43]. This is a
challenging task for several reasons. First, these platforms are
primarily based on reports they receive from their own users1

to manually shut down PSMs which is not a timely approach.
Despite efforts to suspend these accounts, many of them
simply return to social media with different accounts. Second,
the available data is often imbalanced and social network
structure, which is at the core of many techniques [44], [29],
[11], [45], is not readily available. Third, PSMs often seek to
utilize and cultivate large number of online communities of
passive supporters to spread as much harmful information as
they can.

Present Work. In this work, we aim to present an automatic
feature-driven approach for detecting PSM accounts in social
media. Inspired by the literature, we set out to assess PSMs
from three broad perspectives: (1) user-related information
(e.g., user activity metrics, profile characteristics), (2) source-
related information (e.g., information linked via URLs) and (3)
content-related information (e.g., tweets characteristics). For
the user-related information, we investigate malicious signals
using 1) causality analysis (i.e., if user is frequently a cause of
viral cascades) [5] and 2) profile characteristics (e.g., number
of followers, etc.) [31] aspects of view. For the source-related
information, we explore various properties that characterize
the type of information being linked to URLs (e.g., URL
address, content of the associated website, etc.) [7], [35],
[22], [34], [30]. Finally, for the content-related information,
we examine attributes from tweets (e.g., number of hashtags,
certain hashtags, etc.) posted by users [31]. This paper de-
scribes the results of research conducted by Arizona State
Universitys Global Security Initiative and Center for Strategic
Communication. Research support funding was provided by
the US State Department Global Engagement Center.

Our corpus comprises three different real-world Twitter
datasets, from Sweden, Latvia and United Kingdom (UK).
These countries were selected to cover a range of population
size and political history (former Soviet republic, neutral,
founding member of NATO). In this study, we pose the
following research questions and seek answers for them:

1https://bit.ly/2Dq5i4M
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RQ1: Does incorporating information from user activities and
profile characteristics help in identifying PSM accounts
in social media?

RQ2: What attributes could be exploited from URLs shared by
users to determine whether or not they are PSMs?

RQ3: Could deploying tweet-level information enhance the per-
formance of the PSM detection approach?

To answer RQ1, we investigate whether or not users who
make inauthentic information go viral, are more likely to
be among PSM users. By exploring RQ2, we figure out
which characteristics of URLs and their associated websites
are useful in detecting PSM users in social media. By inves-
tigating RQ3, we aim to examine if adding a few content-
related information on tweet-level could come in handy while
identifying PSMs. Our answers to the above questions lead to
a feature-driven approach that uses as little as three groups
of user, source and content-related attributes to detect PSM
accounts.

Key Ideas and Highlights. To summarize, this paper makes
the following main contributions:
• We present a feature-driven approach for detecting PSM

accounts in social media. More specifically, we assess
maliciousness from user-level, source-level and content-
level aspects. Our user-related information include signals
in causal users (i.e., if user is frequently a cause of viral
cascades) along with their profile characteristics (e.g.,
number of followers, etc.). For the source-related infor-
mation, we explore different characteristics in URLs that
users share and their associated websites (e.g., underlying
themes, complexity of content, etc.). For the content-
related information, we examine attributes from tweets
(e.g., number of hashtags, certain hashtags, etc.) posted
by users.

• We conduct a suite of experiments on three real-world
Twitter datasets from different countries, using several
classifiers. Using all of the attributes, we achieve average
F1 scores of 0.81, 0.76 and 0.74 for Sweden, Latvian
and U.K. datasets, respectively. Our observations suggest
the effectiveness of the proposed method in identifying
PSM accounts who are more likely to manipulate public
opinion in social media.

II. RELATED WORK

The explosive growth of the Web has raised numerous
security and privacy issues. Mitigating these concerns has been
studied from several aspects [15], [6], [18], [20], [10], [17],
[9], [3], [12], [14], [13]. Our work is related to a number of
research directions. Below, we will summarize some of the
state-of-the-art methods in each category while highlighting
their differences with our work.
Identifying pathogenic social media accounts. Pathogenic
social media (PSM) accounts are believed to be those who are
likely to spread malicious messages to viral proportions [5].
For example, the work of [37] uses causal inference to detect
PSM accounts. Other works of [5], [2] utilize time-decay
causal inference (using sliding-time window) which allows

for early detection of PSMs. Also, [4] proposes a semi-
supervised causal inference algorithm that achieves reasonable
performance using less labeled data by utilizing unlabeled
data.
Social Spam/Bot Detection. DARPA organized a Twitter bot
challenge to detect “influence bots” [40]. Among the partici-
pants, the work of [18], used similarity to cluster accounts and
uncover groups of malicious users. The work of [42] presented
a supervised framework for bot detection which uses more than
thousands features. In a different attempt, the work of [26]
studied the problem of spam detection in Wikipedia using
different spammers behavioral features. There also exist some
studies in the literature that have addressed (1) differences be-
tween humans and bots [19], (2) different natures of bots [42]
or (3) differences between bots and human trolls [17]. For
example the work of [19] conducted a series of measurements
in order to distinguish humans from bots and cyborgs, in term
of tweeting behavior, content, and account properties. To do
so, they used more than 40 million tweets posted by over 500
K users. Then, they performed analysis and find groups of
features that are useful for classifying users into human, bots
and cyborgs. They concluded that entropy and certain account
properties can be very helpful in differentiating between those
accounts. In a different attempt, some other studies have tried
to differentiate between several natures of bots. For instance,
in the work of [42], authors performed clustering analysis and
revealed specific behavioral groups of accounts. Specifically,
they identified different types of bots such as spammers, self
promoters, and accounts that post content from connected
applications, using manual investigation of samples extracted
from clusters. Their cluster analysis emphasized that Twitter
hosts a variety of users with diverse behaviors; that is in some
cases the boundary between human and bot users is not sharp,
i.e. some account exhibit characteristics of both.
Fake News Identification. A growing body of research is
addressing the impact of bots in manipulating political dis-
cussion, including the 2016 U.S. presidential election [38]
and the 2017 French election [23]. For example, [38] analyzes
tweets following recent U.S. presidential election and found
evidences that bots played key roles in spreading fake news.

III. EXPERIMENTAL DATA

We collect three real-world Twitter datasets with different
number of users and tweets/retweets from three countries,
Sweden, Latvia and United Kingdom (UK). These countries
were selected to cover a range of population size and political
history (former Soviet republic, neutral, founding member of
NATO). Description of the data is demonstrated in the Table I.
We use subsets of datasets from Nov 2017 to Nov 2018.
Each dataset has different fields including user ID, retweet ID,
hashtags, content, posting time as well as user profile informa-
tion such as Twitter handles, number of followers/followees,
description, location, protected, verified, etc. The tweets were
collected using a predefined set of keywords and hashtags, and
if they were geo-tagged in the country or user profile includes



Fig. 1: From left to right: Frequency plots of cascade size for Sweden, Latvia and UK datasets.

Fig. 2: The proposed framework for identifying PSM users.
It incorporates three groups of attributes into a classification
algorithm.

the country. We use subsets of the datasets with different
number of cascades of different sizes and duration.

In our datasets, users may or may not have participated in
viral cascades. We chose to use threshold θ = 20 and take
different number of viral cascades for each dataset with at
least 20 tweets/retweets. We depict frequency plots of different
cascade size for all datasets in Figure 1. For brevity, we only
depict cascades size greater than 100 tweets/retweets.

IV. IDENTIFYING PSM USERS

In this work, we take a machine learning approach (Fig-
ure 2) to answer the research questions posed earlier in the
Introduction. More specifically, we incorporate different sets
of malicious behavior indicators on user-level, source-level
and content-level to detect PSM users. In what follows, we
describe each group of the attributes that will be ultimately
utilized in a supervised setting to detect PSMs in social media.

A. User-Level Attributes

We first set out to answer RQ1 and understand attributes
on the user level that could be exploited in order to identify
PSMs in social media. In particular, we investigate two broad
categories of attributes: causality-related and profile character-
istics.

1) Malicious Signals in Causal Users: Research has shown
that user activity metrics are causally linked to viral cascades
to the extent that malicious users who make harmful messages
go viral are those with higher causality scores [5]. Accord-
ingly, we set out to investigate if incorporating causality scores
in the form of attributes in a machine learning approach, can

help identify users with higher malicious behavior in social
media. More specifically, We leverage the causal inference
introduced in [5] to compute a vector of causality attributes for
each user in our dataset. Later, these causal-based attributes
will be incorporated to our final vector of attributes that will
be fed into a classifier. The causal inference takes as input
cascades of tweets/retweets built from the dataset. We follow
the convention of [25] and assume an action log A of the form
Actions(User,Action,Time), which contains tuples (i, ai, ti) in-
dicating that user i has performed action ai at time ti. For ease
of exposition, we slightly abuse the notation and use the tuple
(i,m, t) to indicate that user i has posted (tweeted/retweeted)
message m at time t. For a given message m we define a
cascade of actions as Am = {(i,m′, t) ∈ A|m′ = m}.
User i is called m-participant if there exists ti such that
(i,m, ti) ∈ A. Users who have adopted a message in the
early stage of its life span are called key users [5].

In this work we adopt the notion of prima facie causes
which is at the core of Suppes’ theory of probabilistic cau-
sation [41] and utilize the causality metrics that are built on
this theory. According to this theory, a certain event to be
recognized as a cause, must occur before the effect and must
lead to an increase of the likelihood of observing the effect.
Accordingly, prima facie causal users for a given viral cascade,
are key users who help make the cascade go viral. Finally,
according to [5], we define 4 causal-based attributes for each
user and add them to the final representative feature vector for
the given user.

2) Malicious Signals in Profile Characteristics: Having
defined our causality-based attributes, we now describe our
next set of user-based features. Specifically, for each user,
we collect account-level features and add them to the final
feature vector for that user. We follow the work of [31]
and compute the following 10 features from users’ profiles:
Statuses Count, Followers Count, Friends Count, Favorites
Count, Listed Count, Default Profile, Geo Enables, Profile
Uses Background Image, Verified, Protected. Prior research
has shown promising results using this small set of features
[24] with far less number of features than the established
bot detection approach, namely, Botometer which uses over
1,500 features. Accordingly, we extend the final feature vector
representation of each user by adding these 10 features.



TABLE I: Description of the datasets used in this paper.

Dataset # Tweets/Retweets # Labeled Users # Viral Cascades # URLs
Suspended Active

Sweden 780,250 16,010 48,030 12,174 160,702
Latvia 323,305 10,862 32,586 1,957 76,032
UK 254,915 4,553 13,659 21,429 41,332

B. Source-Level Attributes

Here, we seek an answer to RQ2 and examine malicious
behavior from the source-level perspective. Previous research
has demonstrated the differences between normal and PSM
users in terms of their shared URLs [1]. Accordingly, we take
URLs posted by users as source-related information that could
be used in our PSM user detection approach. Specifically,
we set out to understand several characteristics of each URL
from two broad perspectives: (1) URL address and (2) content
collected from the website it has referenced.

1) URL Address:
a) Far-right and pro-Russian URLs: Here, we examine

if the given URL refers to any of the following far-right
websites: https://voiceofeurope.com/, https://newsvoice.se/,
https://nyadagbladet.se/, https://www.friatider.se/ or the
pro-russian website https://ok.ru/. We further note that each
user may have posted multiple URLs posted in our data. To
account for that, we compute the average of these attribute
values for each user. Ultimately, this list leads to a vector of
5 values for each URL shared by each user in our dataset.
We leave examining other malicious websites to future work.

b) Domain Extensions: Previous research on assessing
news articles credibility suggests looking at their URLs [7]
to examine if they contain features such as whether a website
contains the http or https prefixes, or .gov, .co and .com domain
extensions. Likewise, we investigate if the URLs in our dataset
contain any of these 5 features by counting the number of
times each URL triggers one of these attributes and taking
the average if user has shared multiple of such URLs. This
additional attribute vector will be added to the final attribute
vector for each user.

2) Referenced Website Content:
a) Topics: We further investigate whether or not incorpo-

rating the underlying topics or themes learned from the text of
the websites, could help us to build a more accurate approach
to identify malicious activity. More specifically, we first set out
to extract the content from each URL shared by users. To learn
the topics, We follow the procedure described in [35] and train
Latent Drichlet Allocation (LDA) [16] on the crawled contents
of the websites associated with each URL in the training set.
This way, we obtain a fine-grained categorization of the URLs
by identifying their most representative topics as opposed to a
coarser-grained approach that uses predefined categories (e.g.,
sports, etc.). Using LDA also allows for uncovering the hidden
thematic structure in the training data. Furthermore, we rely on
the document-topic distribution given by the LDA (here each
document is seen as a mixture of topics) to distinguish normal
users from highly biased users. After training LDA, We treat

each new document and measure their association with each
of the K topics discovered by LDA. We empirically found
K = 25 to work well in our dataset. Thus, each document is
now treated as a vector of 25 probabilistic values provided by
LDA’s document-topic distribution- this feature space will be
added to the final set of the features built so far. Finally, note
that for users with more than one URL, we take the average
of different probabilistic feature vectors.

b) Has Quote: Social science research has shown that
news agencies seek to make a piece of information more
noticeable, meaningful, and memorable to the audience [22].
This increases the chance of shifting believes and perceptions.
One way to increase salience of a piece of information is
emphasizing it by selecting particular facts, concepts and
quotes that match the targeted goals [22], [36], [21]. We thus
check the existence of quotes within the referenced website
content as an indicator of malicious behavior– this results in a
single binary feature. Each user may post more than one URL.
To account for this, We take the average values of this feature
for each user. We observe that the PSM users’ mean scores
for this feature are 0.04 (Sweden), 0.05 (Latvia) and 0.04
(UK). Normal users have mean scores of 0.05 (Sweden), 0.05
(Latvia), and 0.03 (UK). We also deploy two-tailed two-sample
t-test with the null hypothesis that value of this feature is
not significantly different between normal and PSM accounts.
Table. II summarizes the p-values for this test with significance
level α = 0.01. Results show that the null hypothesis could
not be rejected. However, we still include this feature to see
whether or not it helps in identifying PSMs in practice.

c) Complexity: Research has shown that complexity of
the given text could be different for malicious and normal
users [34]. We thus use complexity feature to see whether or
not it aids the classifier in finding users who create and share
malicious content. We follow the same approach as in [34]
and approximate the complexity of reference website content
as follows:

complexity =
number of unique part-of-speech tags

number of words in the text
(1)

The higher this score is, the more complex the given context
is. Surprisingly, our initial analysis show that mean of com-
plexity score of website content by PSMs are 0.53 (Sweden),
0.54 (Latvia) and 0.51 (UK) while mean of complexity score
of website contents shared by normal users are 0.46 (Sweden),
0.51 (Latvia), and 0.48 (UK). This shows contents shared by
PSMs have higher complexity than those shared by normal
users. We also deploy one-tail two-sample t-test with the null
hypothesis that content of URLs shared by normal are more
complex than those shared by PSMs. Table. II summarizes



TABLE II: Results of p-values at significance level α = 0.01.
The null hypotheses for complexity and readability tests are
refuted.

Feature Sweden Latvia UK
Has Quote 0.29 0.36 0.32
Complexity 4.95e-50 3.23e-07 6.12e-08
Readability 5.56e-27 4.2e-03 1.9e-14

the p-values showing that the null hypothesis was rejected
at significance level α = 0.01. This indicates that content
of websites referenced by PSM users are more complex than
those shared by normal users.

d) Readability: According to [28], readability of a given
context can affect engagement of the individuals with the given
piece of information. Therefore, readability of the referenced
website content is another important feature which could be
useful in distinguishing PSMs and normal users. We hypothe-
size that PSM users may share information with higher read-
ability to increase the chance of transferring the concept and
creating malicious content. We use Flesch-Kincaid reading-
ease test [30] on the text of the provided URLs. The mean
readability scores are 61.16 (Sweden), 62.98 (Latvia), 59.08
(UK) for PSMs and 55.44 (Sweden), 56.79 (Latvia), 55.35
(UK) for other normal users. The higher the score is, the more
readable the text is. We also deploy one-tail two-sample t-
test with the null hypothesis that content of URLs shared by
normal users are more readable than those shared by PSMs.
Table. II summarizes the p-values indicating that the null
hypothesis was rejected at significance level α = 0.01.

These results show that the content of URLs shared by
PSM accounts are more complex yet more readable than
those shared by normal users. Therefore, these two features,
complexity and readability, could be a good indicator to
distinguish between normal and PSMs.

e) Unigrams/Bigrams: We use TF-IDF weighting for
extracted word-level unigrams and bigrams. This feature gives
us both importance of a term in the given context (i.e.,
term frequency) and term’s importance considering the whole
corpus. We remove stop words and select top 20 frequent
unigrams/bigrams as the final set of features for this group.
Using TF-IDF weighting helps to identify piece of information
that is focusing on aspects not emphasized by others. For
brevity, we only demonstrate top bigrams in Table III.

f) Domain Expertise: The presence of signal words
(e.g., specific frames or keywords) could be indicator of
existence of malicious behavior in the text. In this work,
we hired human coders and trained them based on our
codebook2 in order to provide signal words that can help
identify suspicious behavior. We use the following framing
categories: Anti-immigrant, Crime rampant, Government, Anti-
EU/NATO, Russia-ally, Crimea, Discrimination, Fascism. For
each country and each category, we have a list of correspond-

2A codebook is survey research approach to provide a guide for framing
categories and coding responses to the the categories definitions.

TABLE III: Top selected bigrams for each country.

Data Bigrams
Sweden asylum seeker, birthright citizenship, court justice,

European commission, European Union (EU), Eu-
ropean parliament, kill people, migrant caravan,
national security, Russian military, school shooting,
sexually assault, united nations, white supremacist,
police officer

Latvia Baltic exchange, Baltic security, battlefield revo-
lution, cyber security, depository Estonia, Estonia
Latvia, European parliament, European commis-
sion, European Union (EU), human rights, Lat-
vian government, nasdaq Baltic, national security,
Saeima election, Vladimir Putin

UK court appeal, cosmic diplomacy, defence police,
depression anxiety, diplomacy ambiguity, Euro-
pean Union (EU), human rights, Jewish com-
munity, police officer, police federation, political
party, rebel medium, sexually liberate, support
group, would attacker

TABLE IV: Examples of the keywords used in this paper.

Data Keywords
Sweden no-go zones, violence overwhelmed, police neg-

ligence, Nato obsolete, bilateral cooperation,
blighted areas, increase reported rapes, close police
station, EU hypocrisy, anti-immigrant, fatal shoot-
ings, badly Sweden, Nato airstrikes

Latvia Brussels silent, norms international law, bureau-
crats, lack trust EU, based universal principles,
Russia borders, anti Nato, purely political, Eu-
ropean bureaucrats, silence Brussels Washington,
rampant, harsh statements concerning, values Brus-
sels silent

UK Brexit, Theresa May, stop Brexit, hard Brexit, post
Brexit, leave, referendum, Brexitshambles

ing keywords. We have illustrated examples of the keywords
used in this study in Table IV.

C. Content-Level Attributes

In this section, we aim to understand RQ3 by incorporating
a few more attributes from the content-level information that
could be used to enhance the performance of the PSM user
detection. For the content-level information, we only rely on
the tweets posted by each user in our dataset.

1) Malicious Signals in Tweet-Level Information: We use
the following 6 attributes extracted from each tweet [31]:
retweet count, reply count, favorite count, number of hashtags,
number of URLs, number of mentions. If the user has tweeted
more than once, we take the average of these features.

2) Malicious Signals in suspicious Hashtags: We further
investigate if the given tweet uses any of the known ma-
licious hashtags identified by our human coders. For Swe-
den, we use the following list of hashtags: #Swedistan,
#Swexit, #sd (far right group), #SoldiersofOdin, #NOGO-
Zones. For Latvia, we use #RussiaCountryFake, #BrexitChaos,
#BrexitVote, #Soviet, #RussiaAttacksUkraine. For UK data,
we use #StopBrexit, #BrexitBetrayal, #StopBrexitSaveBritain,
#StandUp4Brexit, #LeaveEU. Similar to the previous at-



tributes, for the users who have posted more than one tweet
with these hashtags, we compute the average of the corre-
sponding values. We leave examining other malicious hashtags
to future work.

D. Feature-Driven Approach

Having described the attributes (Table V) used in this work,
we now feed them into a supervised classification algorithm
to detect PSM users (Figure 2). In more details, we feed the
profile information and tweets into the different components
of the proposed approach. For the user-related information,
we require both of the profile characteristics and tweets. We
need tweets to build viral cascades and finally compute causal-
ity scores for different users. Each cascade contains tuples
(i,m, t) indicating that user i has posted (tweeted/retweeted)
the corresponding message m at time t. Given the cascades,
causality features are computed for each user i based on her
activity log in our dataset. For the source-level information,
we only need to extract URLs from tweets. These URLs are
either directly used to compute attributes or to collect the
content from the websites to which they have referenced. For
the content-related information, we only need tweets in order
to compute the content-level attributes. Finally, for each user,
we fuse all attributes into a feature vector representation and
feed them into a classifier.

V. EXPERIMENTS

In this section, we conduct experiments on three real-world
Twitter datasets to gauge the effectiveness of the proposed
approach. In particular, we compare the results of several
classifiers and baseline methods. Note for all methods, we
only report results when their best settings are used.
• Ensemble Classifiers

– Gradient Boosting Decision Tree (GBDT) We train
a Gradient Boosting Decision Tree classifier using the
described features. We set the number of estimators as
200. Learning rate was set to the default value of 0.1.

– Random Forest (RF) We train a Random Forest
classifier using the features described. We use 200
estimators and entropy as the criterion.

– AdaBoost We train an AdaBoost classifier using the
described features. The number of estimators was set
to 200 and we also set the learning rate to 0.01.

• Discriminative Classifiers
– Logistic Regression (LR) We train a Logistic Regres-

sion using l2 penalty. We also set the parameter C = 1
(the inverse of regularization strength) and tolerance for
stopping criteria to 0.01.

– Decision Tree (DT) We train a Decision Tree classi-
fier using the features. We did not tune any specific
parameter.

– Support Vector Machines (SVM) We use a linear
SVM using the attributes described in the previous
section. We set the tolerance for stopping criteria to
0.001 and the penalty parameter C = 1.

• Generative Classifiers
– Naive Bayes (NB) We train a Multinomial Naive Bayes

which has shown promising results for text classifi-
cation problems [32]. We did not tune any specific
parameter for this classifier

• Baselines
– Long Short-Term Memory (LSTM) [31] The word-

level LSTM approach here is similar to the deep neural
network models used for sequential word predictions.
We adapt the neural network to a sequence classifica-
tion problem where the inputs are the vector of words
in each tweet and the output is the predicted label of
the tweet. We first use the word2vec [33] embeddings
which are trained jointly with the classification model.
We use a single LSTM layer of 50 units on the textual
content, followed by the loss layer which computes the
cross entropy loss used to optimize the model.N

– Account-Level (AL) + Random Forest [31] This
approach uses the following features of the user pro-
files: Statuses Count, Followers Count, Friends Count,
Favorites Count, Listed Count, Default Profile, Geo
Enables, Profile Uses Background Image, Verified, Pro-
tected. We chose this method over Botometer [42] as
it achieved comparable results with far less number of
features ([42] uses over 1,500 features)(see also [24]).
According to [31], we report the best results when
Random Forest (RF) is used.

– Tweet-Level (TL) + Random Forest [31]. Similar to
the previous baseline, this method uses only a handful
of features extracted from tweets: retweet count, reply
count, favorite count, number of hashtags, number of
URLs, number of mentions. Likewise, we use RF as
the classification algorithm.

A. Results and Discussion

All experiments were implemented in Python 2.7x and run
on a machine equipped with an Intel(R) Xeon(R) CPU of
3.50 GHz with 200 GB of RAM running Linux. We use
tenfold cross-validation follows. We first divide the entire set
of training instances into 10 different sets of equal sizes. Each
time, we hold one set out for validation. This procedure is
performed for all approaches and all datasets for the sake of
fair comparison. Finally, we report the average of 10 different
runs, using F1-macro and F1-score (only for PSM users)
evaluation metrics and all features in Table VI.

1) Performance Evaluation: For any approach that requires
special tuning of parameters, we conducted grid search to
choose the best set of parameters. Also, for LSTM, we pre-
process the individual tweets in line with the steps mentioned
in [39]. We use word vectors of dimensions 100 and deploy
the skip-gram technique for obtaining the word vectors where
the input is the target word, while the outputs are the words
surrounding the target words. To model the tweet content in a
manner that uses it to predict whether an account is biased or
not, we used LSTM models [27]. For the LSTM architecture,



TABLE V: Different groups of features used in this work. Final feature vector representation for each user contains 111
features.

Feature Definition # Features

U
se

r
L

ev
el Causal-based Attributes computed using causality based metrics 4

Profile-based Profile-related features including: Statuses Count, Followers Count, Friends
Count, Favorites Count, Listed Count, Default Profile, Geo Enables, Profile
Uses Background Image, Verified, Protected

10

So
ur

ce
L

ev
el

Websites Presence of far-right and pro-Russian websites 5
Domains Existence of http or https prefixes, or .gov, .co and .com domain extensions 5
Topics Features computed by comparing the listing against the learned topic distri-

bution
25

Has Quote Single binary feature that shows whether the content of shared URLs contains
quote or not.

1

Complexity Complexity of content of shared URLs by users. 1
Readability Readability of content of shared URLs by users. 1

Unigram TF-IDF scores of highly frequent word-level unigrams extracted from content
of URLs shared by users.

20

Bigram TF-IDF scores of highly frequent word-level bigrams extracted from content
of URLs shared by users.

20

Expertise Presence of signal keywords provided by our coders 8

C
on

te
nt

L
ev

el Tweet-based Tweet-related features including: retweet count, reply count, favorite count,
number of hashtags, number of URLs, number of mentions

6

Hashtags Presence of malicious hashtags 5

TABLE VI: Performance comparison on different datasets using all features.

Classifier Sweden Latvia UK
F1-macro F1-score F1-macro F1-score F1-macro F1-score

GBDT 0.80 0.81 0.76 0.76 0.73 0.74
RF 0.79 0.79 0.75 0.75 0.70 0.71
AdaBoost 0.78 0.79 0.73 0.74 0.69 0.70
LR 0.75 0.75 0.74 0.74 0.71 0.72
DT 0.69 0.69 0.71 0.71 0.69 0.69
SVM 0.73 0.74 0.73 0.70 0.72 0.70
NB 0.71 0.71 0.65 0.67 0.66 0.67
LSTM 0.60 0.62 0.58 0.65 0.36 0.43
AL (RF) 0.64 0.64 0.63 0.64 0.64 0.65
TL (RF) 0.50 0.51 0.50 0.51 0.49 0.50

we use the first 20 words in the tokenized text of each tweet
and use padding in situations where the number of tokens
in a tweet are less than 20. We use 30 units in the LSTM
architecture (many to one). The output of the LSTM layer is
fed to a dense layer of 32 units with ReLU activations. We add
dropout regularization following this layer to avoid overfitting
and the output is then fed to a dense layer which outputs the
category of the tweets.

Observations. Overall, we make the following observa-
tions:

• In general, results from different classifiers compared
to the baselines demonstrate the effectiveness of the
described attributes in identifying PSM users in social

media. Thus, the answers to the research questions RQ1–
RQ3 are all positive, i.e., we could exploit user, source
and content-related attributes for identifying PSM users
in social media.

• Ensemble classifiers using the described features, out-
perform all other classifiers and baselines. Amongst the
ensemble classifiers, Gradient Boosting Decision Trees
classifier achieves the best results in terms of both F1-
macro and F1-score metrics.

• Amongst the discriminative classifiers, linear Support
Vector Machines classifier marginally beats Logistic Re-
gression. Decision Tree classifier achieves the worst re-
sults in this category.



TABLE VII: Feature importance on different datasets.

Feature Sweden Latvia UK
User 0.65 0.61 0.59
Source 0.73 0.70 0.68
Content 0.45 0.43 0.40

• Overall, Decision Tree and Naive Bayes classifiers
achieve the worst performance among all classifiers.

• For LSTM, we achieve slightly poor performance than
the logistic regression classifier. One reason behind the
poor performance of the classifier is the lack of trained
word embeddings suited to our dataset. Also, the poor
performance might suggest that the sequential nature of
the texts might not be very helpful for the task of PSM
users detection.

• Overall, results on Sweden data demonstrate better per-
formances achieved using the attributes. One reason be-
hind this might be the size of data and higher number
of PSMs in Sweden data compared to others. This could
also indicate that PSMs in Latvia and UK data are more
sophisticated.

2) Feature Importance Analysis: We further conduct fea-
ture import analysis to investigate what feature group con-
tributes the most to the performance of the proposed approach.
More specifically, we use GBDT and perform different 10-
fold cross validations using each feature group. We report the
F1-score results in Table VII. According to our observations,
we conclude that the most significant and less significant fea-
ture groups are source-related and content-related attributes,
respectively.

VI. CONCLUSION

In this work, we presented an automatic feature-driven
approach for identifying PSM accounts in social media. In
particular, we assess the malicious behavior from three broad
perspectives: (1) user, (2) source and (2) content-related infor-
mation. Experiments on real-word data from three countries
demonstrate the effectiveness of the proposed feature-driven
approach for detecting PSM accounts in social media.

In future, we would like to replicate the study by examining
other attributes such as Granger causality-based attributes.
Another potential avenue for future work is to investigate if
PSM accounts can form some form of an ecosystem where
their activities on social media are linked to their activities on
news media.

REFERENCES

[1] H. Alvari and P. Shakarian, “Hawkes process for understanding the in-
fluence of pathogenic social media accounts,” in 2019 2nd International
Conference on Data Intelligence and Security (ICDIS), June 2019, pp.
36–42.

[2] H. Alvari, “Causal inference for early detection of pathogenic social
media accounts.”

[3] H. Alvari, S. Sarkar, and P. Shakarian, “Detection of violent extremists
in social media,” IEEE Conference on Data Intelligence and Security,
2019.

[4] H. Alvari, E. Shaabani, S. Sarkar, G. Beigi, and P. Shakarian, “Less is
more: Semi-supervised causal inference for detecting pathogenic users
in social media,” in Companion Proceedings of The 2019 World Wide
Web Conference. ACM, 2019, pp. 154–161.

[5] H. Alvari, E. Shaabani, and P. Shakarian, “Early identification of
pathogenic social media accounts,” IEEE Intelligent and Security In-
formatics, 2018.

[6] H. Alvari, P. Shakarian, and J. K. Snyder, “A non-parametric learning
approach to identify online human trafficking,” in 2016 IEEE Conference
on Intelligence and Security Informatics (ISI). IEEE, 2016, pp. 133–
138.

[7] R. Baly, G. Karadzhov, D. Alexandrov, J. Glass, and P. Nakov, “Pre-
dicting factuality of reporting and bias of news media sources,” arXiv
preprint arXiv:1810.01765, 2018.

[8] D. P. Baron, “Persistent media bias,” Journal of Public Economics,
vol. 90, no. 1-2, pp. 1–36, 2006.

[9] G. Beigi, R. Guo, A. Nou, Y. Zhang, and H. Liu, “Protecting user
privacy: An approach for untraceable web browsing history and unam-
biguous user profiles,” in Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining. ACM, 2019, pp. 213–221.

[10] G. Beigi, M. Jalili, H. Alvari, and G. Sukthankar, “Leveraging commu-
nity detection for accurate trust prediction,” 2014.

[11] G. Beigi and H. Liu, “Similar but different: Exploiting users’ congruity
for recommendation systems,” in International Conference on Social
Computing, Behavioral-Cultural Modeling, and Prediction. Springer,
2018.

[12] G. Beigi, A. Mosallanezhad, R. Guo, H. Alvari, A. Nou, and H. Liu,
“Privacy-aware recommendation with private-attribute protection using
adversarial learning,” in Proceedings of the Thirteenth ACM Interna-
tional Conference on Web Search and Data Mining. ACM, 2020.

[13] G. Beigi, S. Ranganath, and H. Liu, “Signed link prediction with sparse
data: The role of personality information,” in Companion Proceedings
of The 2019 World Wide Web Conference. ACM, 2019, pp. 1270–1278.

[14] G. Beigi, K. Shu, R. Guo, S. Wang, and H. Liu, “Privacy preserving text
representation learning,” in Proceedings of the 30th ACM Conference on
Hypertext and Social Media, 2019, pp. 275–276.

[15] G. Beigi, K. Shu, Y. Zhang, and H. Liu, “Securing social media user
data-an adversarial approach,” Proceedings of the 29th on Hypertext and
Social Media, pp. 156–173, 2018.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[17] D. A. Broniatowski, A. M. Jamison, S. Qi, L. AlKulaib, T. Chen, A. Ben-
ton, S. C. Quinn, and M. Dredze, “Weaponized health communication:
Twitter bots and russian trolls amplify the vaccine debate,” American
journal of public health, vol. 108, no. 10, pp. 1378–1384, 2018.

[18] Q. Cao, X. Yang, J. Yu, and C. Palow, “Uncovering large groups of
active malicious accounts in online social networks,” in CCS, 2014.

[19] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, “Detecting automation
of twitter accounts: Are you a human, bot, or cyborg?” IEEE Transac-
tions on Dependable and Secure Computing, vol. 9, no. 6, pp. 811–824,
2012.

[20] P. Cui, S. Jin, L. Yu, F. Wang, W. Zhu, and S. Yang, “Cascading outbreak
prediction in networks: A data-driven approach,” in KDD, 2013.

[21] S. DellaVigna and E. Kaplan, “The fox news effect: Media bias and
voting,” The Quarterly Journal of Economics, vol. 122, no. 3, pp. 1187–
1234, 2007.

[22] R. M. Entman, “Framing: Toward clarification of a fractured paradigm,”
Journal of communication, vol. 43, no. 4, pp. 51–58, 1993.

[23] E. Ferrara, “Disinformation and social bot operations in the run up to
the 2017 french presidential election,” 2017.

[24] E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini, “The rise
of social bots,” Communications of the ACM, 2016.

[25] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” in WSDM, 2010.

[26] T. Green and F. Spezzano, “Spam users identification in wikipedia via
editing behavior,” ICWSM, 2017.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[28] B. D. Horne and S. Adali, “This just in: Fake news packs a lot in
title, uses simpler, repetitive content in text body, more similar to satire
than real news,” in Eleventh International AAAI Conference on Web and
Social Media, 2017.



[29] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in KDD, 2003.

[30] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom,
“Derivation of new readability formulas (automated readability index,
fog count and flesch reading ease formula) for navy enlisted personnel,”
1975.

[31] S. Kudugunta and E. Ferrara, “Deep neural networks for bot detection,”
arXiv preprint arXiv:1802.04289, 2018.

[32] C. Manning, R. PRABHAKAR, and S. HINRICH, “Introduction to
information retrieval, volume 1 cambridge university press,” Cambridge,
UK, 2008.

[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[34] F. Morstatter, L. Wu, U. Yavanoglu, S. R. Corman, and H. Liu,
“Identifying framing bias in online news,” ACM Transactions on Social
Computing, vol. 1, no. 2, p. 5, 2018.

[35] T. M. Phuong et al., “Gender prediction using browsing history,” in
Knowledge and Systems Engineering. Springer, 2014, pp. 271–283.

[36] D. A. Scheufele and D. Tewksbury, “Framing, agenda setting, and
priming: The evolution of three media effects models,” Journal of
communication, vol. 57, no. 1, pp. 9–20, 2006.

[37] E. Shaabani, R. Guo, and P. Shakarian, “Detecting pathogenic social me-
dia accounts without content or network structure,” in IEEE Conference
on Data Intelligence and Security, 2018.

[38] C. Shao, G. L. Ciampaglia, O. Varol, A. Flammini, and F. Menczer,
“The spread of fake news by social bots,” 2017.

[39] A. B. Soliman, K. Eissa, and S. R. El-Beltagy, “Aravec: A set of arabic
word embedding models for use in arabic nlp,” Procedia Computer
Science, vol. 117, pp. 256–265, 2017.

[40] V. S. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan,
K. Lerman, L. Zhu, E. Ferrara, A. Flammini, and F. Menczer, “The
darpa twitter bot challenge,” 2016.

[41] P. Suppes, “A probabilistic theory of causality,” 1970.
[42] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini, “Online

human-bot interactions: Detection, estimation, and characterization,”
ICWSM, 2017.

[43] O. Varol, E. Ferrara, F. Menczer, and A. Flammini, “Early detection of
promoted campaigns on social media,” EPJ Data Science, 2017.

[44] L. Weng, F. Menczer, and Y.-Y. Ahn, “Predicting successful memes
using network and community structure.” in ICWSM, 2014.

[45] X. Zhang, J. Zhu, Q. Wang, and H. Zhao, “Identifying influential nodes
in complex networks with community structure,” Know.-Based Syst.,
vol. 42, 2013.


	I Introduction
	II Related Work
	III Experimental Data
	IV Identifying PSM Users
	IV-A User-Level Attributes
	IV-A1 Malicious Signals in Causal Users
	IV-A2 Malicious Signals in Profile Characteristics

	IV-B Source-Level Attributes
	IV-B1 URL Address
	IV-B2 Referenced Website Content

	IV-C Content-Level Attributes
	IV-C1 Malicious Signals in Tweet-Level Information
	IV-C2 Malicious Signals in suspicious Hashtags

	IV-D Feature-Driven Approach

	V Experiments
	V-A Results and Discussion
	V-A1 Performance Evaluation
	V-A2 Feature Importance Analysis


	VI Conclusion
	References

