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Abstract— Humans manage to communicate action intentions
in a non-verbal way, through body posture and movement. We
start from this observation to investigate how a robot can decode
a human’s non-verbal cues during the manipulation of an
object, with specific physical properties, to learn the adequate
level of “carefulness” to use when handling that object. We
construct dynamical models of the human behaviour using a
human-to-human handover dataset consisting of 3 different
cups with different levels of fillings. We then included these
models into the design of an online classifier that identifies the
type of action, based on the human wrist movement. We close
the loop from action understanding to robot action execution
with an adaptive and robust controller based on the learned
classifier, and evaluate the entire pipeline on a collaborative
task with a 7-DOF manipulator. Our results show that it is
possible to correctly understand the ‘“‘carefulness’ behaviour of
humans during object manipulation, even in the pick and place
scenario, that was not part of the training set.

I. INTRODUCTION

Humans are capable of expressing their actions and in-
tentions, resorting to verbal and/or non-verbal communi-
cation. In verbal communication, humans use language to
express, in structured linguistic terms, the desired action they
wish to perform. Non-verbal communication refers to the
expressiveness of the human body movements during the
interaction with other humans, while manipulating objects,
or simply navigating in the world. In a sense, all actions
that require moving our musculoskeletal system contribute
to expressing the intention concerning the completion of
that action. Moreover, considering that all humans share a
common motor-repertoire, i.e. the degrees of freedom and
joint limits, excluding cultural or society-based influences,
all humans express action intentions using a common non-
verbal language. From walking along a corridor, to pointing
to a painting on a wall, or handing over a cup to someone,
communication is provided in the form of non-verbal “cues”,
that express action intentions [1].

Endowing robots with the ability to understand human

action intentions from non-verbal cues will broaden the
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robots’ use-case scenarios. This ability is especially useful in
scenarios where humans and robots need to collaboratively
manipulate objects. For example, imagine that a robot and
a human are performing hand-overs of different types of
objects. A few questions arise: does the type of object (e.g.,
fragile vs non-fragile) change the motion of the handover?
does the amount of filling (e.g., full vs empty) when hand-
ing over a container change the type of behaviour? We
hypothesize that non-verbal cues extracted from the human
body movement can reveal relevant information regarding
the manipulation of the object. In other words, the ob-
ject’s intrinsic physical properties will influence the action
execution and, therefore, the non-verbal cues. In human-
robot interaction (HRI), the interpretation of non-verbal cues
provides the robot with relevant information concerning the
object to grasp, which can be adapted during the interaction,
to comply with the object’s physical properties. Mayer and
Krechetnikov [2] studied the impact on human walking when
preventing a cup of coffee from spilling, and noticed that in
the scenario where participants were focused on not spilling,
the overall average speed was reduced compared to the group
of participants who walked without caring about spilling the
coffee. This fits in line with our hypothesis that cups full of
coffee or water will invoke a different arm-hand manipulation
approach, i.e. carefulness level, into the manipulation.

Our hypothesis hence formulates three questions: How
does the human motion profile change depending on the
object’s properties? Can the motion be modelled to reliably
classify human “carefulness” during object manipulation?
Can it be integrated in a HRI scenario for online robot adap-
tation to object properties decoded from human movement?

To test the hypothesis, we collected a dataset of humans
handing over cups. To evaluate the effect of the perceived
fragility of the object, different materials were used (hard
plastic vs soft plastic). We used two conditions related to
the object properties, the cups were either full of water, or
empty. Our results show that the velocity of the movement is
a distinctive factor for “carefulness” (careful vs not-careful)
in handovers. Subjects were significantly slower when the
object was fragile or the carrying full-cups. Using these
observations, we built two models of the dynamics of motion:
one characterizing the velocity of the careful motion, and
another one for the not-careful motion. Then, we introduced
a classifier to identify, in real-time, whether the human
wrist motion corresponds to careful or not-careful dynamics.
Finally, we implemented an adaptive controller for a robot
to adjust the movement’s “carefulness” during the handover
and manipulation of the cup.



II. RELATED WORK

Neuroscientists have investigated the hypothesis that some
human brain circuits, the mirror-neurons, may be involved
in both the execution and observation of goal-oriented,
physical actions. It has been suggested that mirror-neurons
could result from evolutionary pressure, and greatly facilitate
action understanding [3]. Alaerts et al. [4] note that mirror-
neurons in the primary motor cortex (M1) are activated
when observing people lifting objects and heavier objects
induced higher M1 excitability. This corroborates the ability
for humans to extract knowledge of objects’ weight, fragility,
or contents, from human motion. Studies on human non-
verbal cues found that joint kinematics and dynamics of hand
manipulation are crucial features for object weight estimation
[5], action duration [6], and absolute velocities [7].

Sciutti et al. [8], [9] devise social interactions to analyse
human reaction to diverse robot behaviours. Work from [10]
points that human non-verbal cues from eyes, head, and arm
movements decode action intention, and when incorporating
onto a robot, it provides similar information to read the
robot’s intention. In the case of object manipulation, object
affordances was popularized in robotics [11], [12], relating
to (i) the action associated with the object, (ii) a physical
property, or (iii) the type of behaviour required to manipulate
the object. Kjellstrom et al. [13] inferred object affordances
from human demonstrations to classify cups and glasses
as drinkable and pourable. Work on affordance reasoning
[14], [15], [16], which reasons with the object’s properties,
e.g. inferring the water level in cups [17], although water
levels are only possible in transparent cups and glasses. Our
approach explores the human kinematic motion to infer the
impact of cups water content on human motion behaviour, ir-
respective of cup’s transparency. Additionally, depending on
the type of cup, these behaviours may be more predominant
or less, which may indicate that the difficulty of manipulation
impacts the human motion [18]. Therefore, we complement
previous works and focus on the arm motion when varying
object type and its content.

In robotics our work falls within the domain of learn-
ing from human demonstrations, with a particular focus
on manipulation. Several works on grasping and handover
motion by studying the visuomotor coordination in humans
and robots during interactions [10], [19], taking inspiration
on human grasping for adaptive robot grasps [20], [21], or
learning how to grasp and release during handovers from
humans [22], [23]. Learning robot dynamics model from
human motion improves human-robot collaboration making
it more predictable. As such, we intend to explore human-
human interactions (HHI) to extract non-verbal cues that
express “carefulness” during manipulation and handover of
cups. This human non-verbal cues applied in robotics provide
information for adaptive motion dynamics in accordance with
the object’s properties. To our knowledge there is no previous
research on human “carefulness” identification from non-
verbal cues during manipulation of cups or other objects,
with distinct physical properties, and its applications to HRI.

III. HUMAN MOTION STUDY
A. Dataset Description

A total of 6 participants (male, 25-35 years old, academic
employees) took part in the experiments. The experimental
task involves grasping a cup from a table and hand it over
to a subject on the opposite side that places it back in the
table (Figure [I). The experiment is performed under two
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Fig. 1: Representation of handover actions. (a) the 3 types
of cups: champagne cup, red cup, and plastic cup, in that
order; (b) ¢y frame of hand-over action; (c) t; frame is the
final frame of a not careful motion (bottom) and a careful
motion (top); (d) the duration of each type of motion.

conditions: (i) empty cup, and (ii) cup 90% filled with water.
For each condition the experiment is repeated a minimum
of 4 times per participant for each cup manipulated. There
are 3 cups: red cup, plastic cup, and champagne cup. Each
participant had to grasp the cups with their preferred hand
(right hand for all) and there were no restriction on the type
of grasp. Motion capture system (OptiTrack) recorded right-
hand wrist’s location for each participants as well as the
cup’s location. A total of 30 right-hand wrist trajectories were
collected for either of the two conditions. This HHI dataset
was gathered in collaboration with the High Performance
Humanoid Technologies Lab (H2T) of the Karlsruher Institut
fiir Technologie (KIT) || [24].

B. Motion Analysis

Fig. 2] shows that the duration and maximum velocity are
affected by change in the object properties as mentioned
in [6], [7]. The difference is detected between the two
conditions: empty, referred as not careful motion, and full, as
a careful motion. Following our hypothesis that for the same
action the human wrist motion of the object manipulation
changes depending on the human intention: whether the
human wants to be careful or not careful in their motion. As
stated in Section [lI} the object weight impacts the maximum
speed of the lifting motion [6], in our human study it is
observed that the human motion during handovers of cups
full of water causes similar effects on the velocity and
consequently the action’s duration. It is then our decision

Ittp://h2t.anthropomatik.kit.edu/english/index.
php
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to pick as input of our pipeline the human wrist position
with respect to the handover meeting.
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Fig. 2: Average and standard deviation for duration and
maximum velocities of careful and not careful handovers.

IV. METHOD
A. “Carefulness” Detection Pipeline

The control loop of our pipeline shown in Fig. [3] is
composed of three (3) distinct parts: (i) the model, (ii) the
classifier, and (iii) the controller. The model refers to the two
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Fig. 3: Pipeline for “carefulness” detection in a HRI.

learned dynamical systems (DS) from human demonstrations
of the HHI dataset: the first model represents the not careful
behaviour of humans for handover of cups, and the second
model represents the careful behaviours. From the human
demonstrations we extract the important cues © (velocity
profile, etc) which are used to build the DS. The model is
explained in greater detail in Section [[V-B] the classifier in
Section and the controller in Section [[V-D

The input of the pipeline is the human wrist position
and during the manipulation of the cup the velocities are
computed. The position of the human wrist is used by the
two learned models in order to compute the desired velocity
for the two “carefulness” conditions, careful and not careful.
The real velocity of the human is then evaluated against
the generated velocities of the models to provide a belief
of the “carefulness” behaviour of the human. The pipeline

runs at every time step and the belief system is updated
with new information from the human motion to classify
whether the human is manipulating the cup in a careful or not
careful motion. The output of the classifier is an instruction
command to the controller that, depending on whether the
human is performing a careful or not careful behaviour, the
robot acts accordingly. This means that it will adapt the
robot’s behaviour to either grasp and move the cup in a
careful or not careful manner. This distinction refers to the
stiffness and smoothness of the robot’s controller.

B. Model Learning from Human Demonstrations

Let x € D C R denote the distance of the human wrist
towards the handover meeting point. Consider a behavior
encoded as a state-dependent dynamical system (DS)

i =f(z) M

where f : RT — R* is a continuous and continuously
differentiable function, with a single equilibrium point &}, =
f(x*). «* is set at the origin and it is globally asymptotic
stable such that #* = f(2*) = 0 which is guaranteed under
a Lyapunov function V(z) : RT — R*.

Our approach defines each “carefulness” condition, care-
ful and not careful, as two distinct DS. Each DS is
encoded using Gaussian Mixture Models (GMM) which
defines a joint distribution function P(zt,,7%]|0) =
S TN (aty, @t uF $F) over the data as mixture of
K Gaussian distributions [25], where 7%, ©*, and X* are,
respectively, the prior component, mean, and covariance
matrix of the kth Gaussian. x! is nth trajectory of x at
time ¢, and %, is its derivative. Fig. E| illustrates the position
(z) and velocity (&) relations for careful and not careful
motions. To compute the DS from Eq. (I the posterior mean
of P(&f|x',) is estimated which approximates it to:

g=y @) ELEL) @) +uf) @
where 1*(z) = TN (@ E wt Sk () > 0, and
ZIKZI TrkN(wtn>d:$1)Mirzl)’ ’

Zf;l h*(x) = 1. The GMMs are computed using the stable
estimator of dynamical systems (SEDS) approach [25].
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Fig. 4: Human handover trajectories from careful and not
careful behaviours.



Fig. [ shows that the distinction between careful and
not careful is more noticeable in the beginning of the
handover than at the end. Based on this observation, we
propose a classifier to predict the type of behaviour during
the movement instead of recognizing the action only after
its completion. By doing so, we intrinsically embed an
anticipatory capability to the overall pipeline.

C. Classification

For the purpose of classifying human motions, when
interacting with either humans or robots, a belief system was
implemented. The objective is to compare the human wrist
motion of the handover against the learned careful vs not
careful motions. The classification method uses as input the
human wrist data (position, velocity) and, at each time step,
it computes the desired velocities for the two DS models,
the error metric to compare the velocities, and then outputs
a belief system of the “carefulness” level. The expression for
the classification follows [26] and is:

b = e(é™Ei(x) + (b — 0.5)[fi(2)[2) 3)

where ¢ = @ — @4, ¢ € RT is the adaptation rate, 25 =
Z?Zl bif; (z), f;(x) is the desired velocity for each DS given
the current z. b; is the belief, at step s, for each DS in
i={1,2}, and 7, b = 1. ) o

Eq. 3| provides a vector of belief-updates B5 = [b%, bS]
which are updated following a winner-take-all process. The
winner-take-all aims at favoring the DS model which is
considered most similar to the real human motion. The final
step is reserved to update the belief B = [by, bo], where
bt by 4 b3At, fori=1,2. The belief system B
converges to by = 1 or b, = 1 depending on whether the
human motion resembles a not careful behavior, or a careful
behavior, respectively. Fig. [5] shows the output of B at each
time step s for various human trajectories.

D. Robot Control

The robot is represented as a fixed rigid-body chain with
n degrees of freedom. Since the desired end-effector’s accel-
erations are known, we use an inverse dynamics formulation
in order to compute the required joint-level torques needed
to achieve the target accelerations. We formulate the problem
as a quadratic programming problem (QP):

min — 05XTGX +gTx
s.t. ApX = bg
A X > by €]
We will define the optimization variables, &X', and all the
matrices and vectors (for the objective and the constraints)

shortly. The equations of motion and constraint equations for
a robot with rigid bodies can be described ag’}

M(q)qg +Cy(q,q) =T
J(@)g+J(q.qq=2 (5)

2We ignore the possible contact points for brevity/clarity as we are not
using them in this work.

where q is the full state of the system , M (q) is the inertia
matrix, Cy(q, ¢) is the sum of the gravitational, centrifugal
and Coriolis forces, J is the concatenation of the Jacobians
of all the contact points, and @ is the concatenation of the
poses (containing position and orientation) in Cartesian space
of all the contacts. x is the end effector pose of the robot.
We re-write the equations of motion as:

[M(q) -S] m +Cy(g,4) =0 (6)

where S is a selection matrix where the first 6 rows are all
zeros and the rest is the identity matrix. Given this formu-
lation, the state (g, q) give rise to linear equations for the

. . . T . .. T
motion with respect to [¢ 7| . By defining X = [¢ 7|
it is now possible to formulate the inverse dynamics as a QP
problem. In particular, we turn the equations of motion to
equality constraints (Ag and bg), and we turn joint limits
and other constraints into inequality constraints (A; and by).
Finally, we define desired accelerations of some end-effector
by filling G and g appropriately. In this paper, we compute
the desired end-effector accelerations by:

i

Tt = Kp(acz — iL‘) + Kd(iL‘Z — ibd) + iL‘; 7

where x¥, &, & are specified by a higher-level controller,
can change over time, and define the current task. Depending
on the output of the classifier, different gains (K, K4) are
chosen to perform the high-level tasks.

V. RESULTS

In this section we first test the learned DS models with
unknown subjects and cups present in the HHI dataset,
and then we evaluate the “carefulness” pipeline in a HRI
scenario.

A. HHI dataset

The DS models were learned with a training set composed
of 3 subjects (identified as #1, #2, and #3). Fig. E] illustrates
the belief system B at each s step and Fig. [f] (a) represents
the predicted output of B as a confusion matrix. The DS
models distinguished correctly the careful and not careful
motions for the training set. The testing set has 3 new
subjects (#4, #5, and #6) and 2 new cups (champagne and
plastic cup). Fig. [5] shows the classifier output of the training
and testing set of human motion trajectories over time, while
Fig. [6] (b) represents the final predicted believed/understood
action for each subject and each cup.

The results presented from the HHI dataset indicate that
our method can generalize and distinguish most situations
of careful and not careful manipulations of cups, where
the not careful situation is considered a normal human
handover motion. As Fig. [5] demonstrates, it is only required
around 20-40 time steps in the human handover motion to
accurately predict the ‘“carefulness” behaviour. We expect
good generalization of the classification to new subjects and
cups (not seen during training), as humans follow similar
dynamics of reach motion in normal circumstances [27]. This
would allow us to consider the manipulation of empty cups
as not careful behaviours, and full cups as careful behaviours.
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B. HRI scenario of Pick and Place

1) Setup: We used a KUKA LBR iiwa 7-DoF manipulator
(14 kg payloadﬂ and the Robotiq 2F-85 2-finger grippeﬂ
is attached to robot’s end-effector to perform grasping and
manipulation. The HRI scenario is as follows: a human picks
a cup from a table and places it on a shelf, as shown in
Fig. [ The cup’s position is provided to the pipeline as
the input during human manipulation. The cup’s position
is set as reference, instead of the human wrist, to simplify
the experiments with different participants. The human mo-
tion is extracted from the cup’s motion and the classifier
predicts whether we are in the presence of a careful or
not careful motion. Afterwards, the controller from Section

3https://www.kuka.com/en-ch/products/robotics-systems/industrial-
robots/lbr-1iwa/

Yhttps://robotiq.com/products/2f85-140-adaptive-robot-gripper/

[[V-D] adapts the robot’s motion and gripper to the desired
behaviour. Depending on the output of belief system, the
robot controller manipulates the cup keeping the gripper’s
orientation fixed, to prevent spilling (careful), or allows for
an unrestricted movement (not careful). The supplementary
material provides video demonstrations.

2) Experimental Results: The HRI experiments involved
4 participants picking and placing the same cup onto the
shelf under two conditions: (i) empty, and (ii) full cup. Each
participant performed 10 trials for each condition. The cup
used was not present in the HHI dataset. The results of the
classification In Table [I] for new subjects, with a new cup,
proves that our pipeline can correctly distinguish careful
and not careful manipulation of cups by only varying one
underlying condition: empty vs full of water.

Fig. 7: Setup outside perspective for the Pick and Place task.

The pipeline invokes the robot to behave according to the
desired “carefulness” (i.e. the type of object and filling con-
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TABLE I: “Carefulness” level predicted on unknown people.

T Predicted | ¢ Careful ‘ Careful
rue

Empty 0.80 0.20
Full 0.07 0.93

dition), taking longer in the careful case. In the not-careful
behaviour, the robot grasps the cup and places it a manner
that is simpler for the robot’s configuration, taking less time
to complete the action. The downside is that the robot spills
its content. The approach developed allows for real-time HRI
where the robot can adapt the behaviour of manipulating a
cup according to the human motion behaviour.

VI. CONCLUSION

We hypothesise that human motion behaviour is dependent
on object properties, specifically on object’s weight, liquid
fillings, or their overall structural integrity. In this paper we
collected and analyzed a human-to-human handover dataset
in an attempt to identify the crucial features that affect the
motion of the manipulation given the “carefulness” required.
We identified that the velocity is one of the main factors
and that for cups filled with water the human motion got
slower. Moreover, the differences were clearer in the start of
the human motion which allowed us to construct a model-
based classifier that is capable of predicting whether the
human is careful when manipulating a cup or not careful.
Furthermore, our results enabled us to develop a pipeline ca-
pable of utilizing these knowledge to adapt the robot’s grasp
and manipulation controller during cup manipulation. This
gave a successful collaboration where action understanding
from non-verbal cues in human motion object manipulation
translated into an adaptive controller for action execution
of robot object manipulation. As future work we intend to
explore features, such as the cup’s orientation, and extend
our pipeline to other HRI scenarios.
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