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Abstract—How do cognitive agents decide which is the rele-
vant information to learn and how goals are selected to gain this
knowledge? Cognitive agents need to be motivated to perform
any action. We discuss that emotions arise when differences
between expected and actual rates of progress toward a goal
are experienced. Therefore, the tracking of prediction error
dynamics has a tight relationship with emotions. Here, we
suggest that the tracking of prediction error dynamics allows
an artificial agent to be intrinsically motivated to seek new
experiences but constrained to those that generate reducible
prediction error. We present an intrinsic motivation architecture
that generates behaviors towards self-generated and dynamic
goals and that regulates goal selection and the balance between
exploitation and exploration through multi-level monitoring of
prediction error dynamics. This new architecture modulates
exploration noise and leverages computational resources ac-
cording to the dynamics of the overall performance of the
learning system. Additionally, it establishes a possible solution
to the temporal dynamics of goal selection. The results of
the experiments presented here suggest that this architecture
outperforms intrinsic motivation approaches where exploratory
noise and goals are fixed and a greedy strategy is applied.

Index Terms—Prediction error dynamics, intrinsic motiva-
tion, emotions, internal models, goal generation.

I. INTRODUCTION

A cognitive system can be conceived as one which fulfills
its goals anticipating the causes of its sensations by contain-
ing a predictive model of itself and its environment to select
and guide action. In Cognitive Robotics, a relevant question
is how artificial agents should learn their internal models in
order to interact efficiently with the world. Additionally, how
can an artificial agent autonomously select a goal to pursue
and decide what is the relevant information to learn during its
interactions with the world? Here, the main research interest
is the study of prediction error dynamics as the key element
of an intrinsic motivation mechanism. Prediction error is the
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difference between the predicted sensory input an agent does
and the sensory input from the world. Special interest lays on
the impact these dynamics bring into the learning capabilities
and interaction with the world of an artificial agent. Taking
inspiration on the relevance of predictions on behavior and
the relevance of the prediction error dynamics on learning,
we suggest a new intrinsic motivation architecture.

Internal models are acquired through the interaction of the
agent with the world by learning the regularities present in the
environment and on its internal states. This learning implies
acquiring a sensorimotor schema which maps specific actions
to its sensory consequences. Traditionally, internal models
are composed by coupled inverse and forward models. The
inverse model is a controller, which generates the motor
command required to achieve a desired sensory state given
a current sensory state. The forward model generates a
predicted sensory state given a current state and the motor
command provided by the inverse model. These models allow
the prediction of the incoming sensory information and are
constantly improved by monitoring unexpected states which
are further processed.

In developmental robotics, motor-babbling and goal-
babbling are two commonly used approaches that allow
artificial agents to autonomously and progressively learn a
sensorimotor schema [1]–[4]. Learning the sensorimotor con-
sequences of self-generated actions during active interactions
with the environment should progressively lead to a better
model of itself. An agent that constantly improves the model
of itself in the world should be better in avoiding surprising
states. Minimizing prediction error leads to a better model
of itself due to more accurate predictions about its future
states. However, cognitive agents continuously search for
novelty and unpredictable states. Paradoxically, predicting
future states accurately while seeking unanticipated novel
states are competing pressures within an agent. Here, it is
suggested that these competing pressures should be resolved
by tracking the dynamics of prediction error over time. In this
line of thought, agents seek novelty but that which appears
constrained to situations that generate reducible prediction
errors. To do so, agents rely on their capacity to understand
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the unexpected information given the current internal models
knowledge and the actions it can rely on [5]. Control theories
of self-regulation highlight the role of discrepancies and its
velocities, and the affective response to this discrepancies in
goal-directed behavior (e.g., [6], [7]). We believe that the
tracking of prediction error dynamics could be considered
as a self-regulation mechanism that allows an agent to be
intrinsically motivated to increase the complexity of behavior
but constrained to seeking new knowledge that generates
reducible prediction error.

Motivation can be operationalized in terms of goals, which
are distributed and multifactorial, including biologically and
affectively salient outcomes, sensory-motor plans, and inte-
grated utility representations [8, p.1]. Motivation is neces-
sary to perform an action and to promote development [9].
Different computational models have been proposed inspired
on intrinsic motivation to generate spontaneous exploratory
behaviors and curiosity [10]. Approaches using intrinsic
motivation are crucial for the self-generation of goals, leading
to an empirical process of exploration and the progressive
acquisition of increasingly complex skills in a continual
fashion [11, p.2]. Existing computational approaches for task-
independent learning and artificial curiosity are typically
based on artificial agents that learn to anticipate the con-
sequences of their actions and which actively can choose
actions according to some internal measures related to the
novelty or predictability of the anticipated situation (e.g. [12],
[13]).

Here, we contribute to this line of research by proposing
an intrinsic motivation architecture that generates exploratory
behaviors towards self-generated goals, and that regulates
goal selection and the balance between exploitation and
exploration through a multi-level monitoring of prediction
error dynamics. The proposed architecture implements a
multi-level monitoring mechanism, which keeps track of the
dynamics of the prediction errors at the goal level and of the
dynamics of the overall error of the system at a general level.
Moreover, the trend of the overall error at a general level
drives the balance between exploitation and exploration. An
agent sensitive to prediction error dynamics will be curious
and motivated to explore its environment [14]. Similarly to
other intrinsic motivation architectures, our approach drives
behavior towards minimizing prediction error, i.e. towards
goals associated with a steep descent in the prediction error
dynamics.

There are two main differences between the intrinsic
motivation architectures we are suggesting here and previous
works in this field. First, it is based on the tracking of
prediction error dynamics and its tight relationship with
emotions. As [8, p.5] suggests: The importance of these goal-
oriented states for our everyday lives again points to the
centrality of motivation for understanding human cognition,
and a key computational modeling challenge is to construct
the necessary metacognitive monitoring and motivationally
significant grounding to enable a model to capture the cor-
responding goal dynamics. Emotions represent the constant
monitoring of how things are going with respect to the

expected progress by tracking the changes on prediction error
during behavior [6]. An emotional artificial agent should be
able to learn and autonomously select the proper prediction
error reduction for any given situation. This capability allows
an agent to valence an experience as positive or negative to
itself, motivating the selection of the most suitable behavior
for learning. Second, it establishes a possible solution to the
temporal dynamics of goal selection. A relevant question for
computational models is related to the temporal dynamics of
when a goal is selected, for how long this goal is maintained,
and how to know when a goal has been achieved in order to
select another one [8].

Emotions can be conceived as a set of valuating mech-
anisms that organize behavior [15] prioritizing actions by
the potential costs and benefits for an agent [16]. This self-
regulation mechanism, based on emotions, is intrinsically
related to the needs of an agent and could be considered as
the main performance regulator. Emotions are intrinsically
related to goals, and they arise when differences between ex-
pected and actual rates of progress toward or away from those
goals [6]. Therefore, it has been suggested that prediction
error dynamics are the fundamental cause of emotions [5].
Taking the assumption that biological agents have an innate
system of positive and negative emotional valences, artifi-
cial emotions could be implemented by assigning emotional
valences to specific characteristics of the prediction error
dynamics. Thus, for an emotional experience, monitoring
prediction error dynamics becomes equally relevant as the
monitoring of predictive errors per se.

There are various hypotheses of how emotional valence
could be determined by the amount of change in prediction
errors over time (e.g., [5], [6], [14], [17], [18]). For example,
it has been suggested that a positive valence is linked to an
active reduction of prediction errors, and a negative valence to
a continuous increase of prediction errors [5], [18]. Another
hypothesis is that the emotional valence depends on the
expected rate of reduction of prediction error [6]. In this
view, changes in the reduction rate of prediction error leads
to a change on the emotional experience. This hypothesis
implies that the reduction rate has to be learned in order to
have a reference value that should be in an acceptable rate
of behavioral discrepancy reduction. The rate of change, in
relation to prediction error, is analogous to velocity because it
refers to how fast or slow is being reduced relative to a frame
of reference over time [6], [17]. Each agents performance
in reducing error can be plotted as a slope that depicts the
speed at which errors are being accommodated relative to
their expectations. The steepness of the slope indicates that
error is being reduced over a shorter period of time and so
faster than the agent expected: the steeper the slope, the faster
the rate of reduction [14, p.2857].

How does an emotional experience based on the tracking of
prediction error dynamics enhance learning? Prediction error
and its reduction rates might signal the expectations on the
learnability of particular situations [5], and could potentially
guide attention to prioritize learning of the most informative
input domain. In the rise of affect, the discrepancy that



matters is a discrepancy in sensed progress towards ideals
[6, p.32]. This information means that the progress of an
action toward its goal is high. If the speed of reduction
increases relative to what was expected, or even faster, a
positive emotional experience should emerge. Contrary, when
the prediction error does not decrease in an expected way, the
task becomes “uncomfortable” or “frustrating”. This “contin-
uous unpleasant surprise” should induce the disengagement
from the activity in order to seek another goal that enhances
learning. These ideas are related to the dynamic approach
to outcome-satisfaction relations suggested by [19]. They
proposed that what motivates an engagement in a behavior is
not just the final outcome, but the satisfaction that emerges
from the pattern and the velocity of an outcome over time.

Regarding the open questions and issues in the compu-
tational modeling frameworks about the temporal dynamics
of goals [8], we believe that tracking the prediction error
dynamics over time could provide useful answers. First,
concerning the question about when a goal is selected,
we have suggested that the drive to minimize prediction
error should motivate behavior and thus a goal-selection
just when a previous goal has been achieved or abandoned.
Minimizing prediction errors evokes a positive emotional
experience, motivating the system to constantly move into a
goal-selection phase in order to initiate a goal-engaged state.
Second, tracking the prediction error dynamics during the
execution of a goal allows a direct monitoring of the progress
towards its achievement. Here, we propose that a goal is
accomplished when the steepness of the slope indicates that
error is being continuously reduced until reaching the desired
outcome.

A relevant question here is which is the optimal size of
the time window that prediction errors should be monitored.
Progress towards, and maintenance of a goal result in an
affective reaction and influence the way available resources
are used [20]. Taking inspiration of the control theory of
human motivation proposed by [7], large prediction errors
should elicit a more careful evaluation of feedback to verify
if prediction errors are actually increasing. This careful
evaluation should permit a fast correction of behavior or
induce a disengagement of the goal to avoid frustration. On
the other hand, we believe that when a goal is well performed
the necessity of tracking the prediction errors can be reduced,
liberating processing resources, which can give a potential
explanation of how habits and automatic behaviors emerge.
Therefore, we suggest that the size of the time window of
where prediction errors are tracked should not be monotonic
or fixed. The intrinsic motivation architecture proposed here
dynamically adjust the size of the time window in response of
how things are going with respect to the expected progress.

II. METHODOLOGY

We propose a learning architecture that generates ex-
ploratory behaviours towards self-generated goals, and that
regulates goal selection and the balance between exploitation
and exploration through a multi-level monitoring of predic-
tion error dynamics. The proposed architecture implements a

multi-level monitoring mechanism, which keeps track of the
dynamics of the prediction errors at the goal level and of the
dynamics of the overall error of the system at a general level.
The multi-level monitoring process is described in section
II-D. The trends of the prediction error dynamics at the goal
level drive the goal selection strategy, as described in section
II-F. Moreover, the trend of the overall error at a general level
drives the balance between exploitation and exploration. This
is implemented by modulating the amount of noise added to
goal-directed movements (see section II-E).

The proposed architecture is tested on a simulated exper-
iment where a robot has to learn visuo-motor coordination.
The system is characterised by high-dimensional visual in-
puts captured by a camera whose movements are controlled
by a two degrees-of-freedom actuator (see section III).

The architecture, depicted in Figure 1, is composed by
four neural networks: (1) a deep convolutional autoencoder
(CAE) which is in charge of reducing the dimensionality of
the visual input (see section II-A); (2) a self-organising map
[21] for unsupervised learning of visual goals, hereon named
goal SOM (see section II-B); (3) a deep neural network
representing the controller, or inverse model, of the system,
which learns the motor commands required to reach the
generated goals; (4) a deep neural network representing the
predictor, or forward model, of the system, which learns
to anticipate the visual input that would be captured after
the execution of a specific motor command. Section II-C
describes the inverse and forward models in more detail.

A. Unsupervised learning of features from visual inputs

In the experiments presented here, visual inputs con-
sist of 64 × 64 pixels grayscale images captured from a
robot camera. A convolutional autoencoder (CAE) is used
for unsupervised learning of low-dimensional features from
such high-dimensional data, typically images [22]. Typically,
CAEs are characterised by a hidden layer, the latent layer,
of considerably lower dimensionality than their input. The
information propagated from the input layer to the latent
layer of a trained CAE can be interpreted as an encoded, or
compressed, version of the input [22]. Here, a CAE is trained
to reduce the dimensionality of the 64 × 64 visual inputs
onto 32-dimensional codes, hereon named sensory states, or
simply S. That is, visual inputs – as well as visual goals –
will be encoded as 32D vectors.

The dimensionality of the visual inputs is reduced to ease
prediction error calculations. Calculating the dissimilarity
between a predicted image and an observed one is not
trivial. In computer vision, dissimilarity between images is
typically not estimated using pixelwise difference, but rather
by comparing a set of features extracted from them. [23].

In this work, the CAE is pre-trained during a learning
session preceding the series of experiments, as presented in
section III. Once trained, the weights of the CAE model are
not updated anymore during the experiments.



Fig. 1. The learning architecture. Numbers indicates the order at which information is processed.

B. Unsupervised learning of visual goals

The behaviours generated by our system are goal-directed1.
A self-organizing map (SOM) is used to autonomously
generate goals for the goal-directed exploration behaviour.
The goal SOM is updated with the sensory states – i.e. the
32D codes resulting from visual inputs compressed by the
CAE – that are observed by the artificial system throughout
its lifetime.

The goal SOM is characterised by a set of neurons that
self-organise around the observed sensory states. Each region
of the sensory space is represented by a goal SOM neuron.
We consider goals as the 32D position of the neurons in
the SOM’s feature space. Visual goals are therefore not pre-
coded, rather learned using a self-organising map training
algorithm2.

C. Online learning of inverse and forward models

Inverse and forward models are acquired through the
interaction of the agent with the world. The inverse model
is in charge of generating the necessary motor commands to
achieve a goal passed as input. On the contrary, the forward
model is in charge of predicting the sensory outcome of
a given motor command that is passed as input. It has to
be noted that, in the experiments presented here, the motor
commands are absolute target motor positions, therefore no
initial sensory state is needed as input in both internal
models3.

The inverse and forward models are implemented as deep
neural networks and updated in an online fashion with the
data that is generated throughout the exploration behaviour

1However, as it will be described in section II-E a mechanism that
monitors the error dynamics at a general level is modulating the amount
of exploratory noise that is added to the motor commands. Eventually, this
can make a goal-directed movement becoming, in fact, a random movement.

2The Minisom library (https://github.com/JustGlowing/minisom) has been
re-adapted in the experiment presented here.

3This diverges from the classical view of internal models. We believe
however that this has a limited conceptual impact on the architecture.

of the artificial agent. In particular, the inverse model is a
neural network that takes as input a 32D code (the goal).
The input layer is followed by a series of dense and dropout
layers4. The output layer is characterised by two neurons,
representing the motor command of the two DoF robot.

The forward model takes as input a two-dimensional
tensor, i.e. (the motor command. The input layer is followed
by a series of dense and ReLU activation layers. Finally, a
sense layer of 32 neurons with sigmoidal activation represents
the output of the model – i.e. the 32D sensory state. Both
inverse and forward models are optimised on a mean squared
error loss function using an AdaDelta optimiser.

Moreover, an episodic memory system has been adopted to
prevent catastrophic forgetting issues, typically experienced
when updating neural networks in an online fashion. A
system utilised in a previous work [13] has been adopted.

D. Multi-level monitoring of prediction error dynamics

The proposed architecture regulates goal selection and
the balance between exploration and exploitation based on
a multi-level monitoring of prediction error dynamics. In
particular, the framework monitors two types of error: (1) a
high-level, general error of the system, which consists of the
mean squared error (MSE) of the forward model calculated
on a pre-recorded test dataset; (2) low-level goal errors, which
consist of the prediction errors that are estimated by the
system when trying to reach each specific goal.

At the lower level, the framework maintains, for each goal,
a buffer of prediction errors that have been estimated in the
past. Every time a goal is selected, a movement directed to
this goal is performed and a prediction error, calculated as
the distance between the goal and the predicted sensory state
S∗(t + 1) estimated using the forward model, is appended
to this buffer. Each goal buffer has a variable size, which is
dependent on the dynamics of the upper-level general error.

4Dropout layers are used for reducing overfitting and improving the
generalization of the network. A drop out rate of 10% is used.



At the upper level, the system monitors the dynamics of the
mean squared error of the forward model calculated on a test
dataset5. The system maintains a buffer of MSE observed
during a specific time window. This buffer is updated at
a lower pace than that of the lower-level goal buffers. An
update of the MSE buffer consists of the following steps: for
each sample in the test dataset, the system takes the values of
the motor command and feeds them as input into the forward
model; the predicted output is compared to the compressed
visual input stored in the test sample. The resulting error is
squared. The mean of the squared errors over all the test
samples is calculated and appended to the MSE buffer.

After every update of the MSE buffer, a linear regression
is calculated on the stored values over time. The slope of the
linear regression indicates the trend of the general error of
the system. This trend is used to modulate: (1) the size of the
goal error buffers; (2) the standard deviation of a Gaussian
noise that is added to each motor command executed during
the exploration (see section II-E for more details).

When the trend of the MSE error is positive – i.e. the linear
regression has a positive slope, indicating that performance
of the system is worsening – the size of the lower-level
goal error buffers is increased by one, until a maximum size
is reached. On the contrary, when the trend of the general
error is negative – i.e. the linear regression has a negative
slope, indicating an improvement of the overall performance
– the size of the lower-level goal error buffers is decreased
by one, until a minimum size is reached. In other words,
when the system is experiencing a general improvement of
the overall performances, the necessity of tracking the goal
error dynamics is reduced. Therefore, the goal error dynamics
are monitored over shorter time windows, driving exploration
towards goals that bring instantaneous reduction of the
prediction error. On the contrary, when a deterioration of
the overall performances is experienced, the system increases
the tracking of the goal error dynamics by widening the time
window on which errors are monitored.

Figure 2 shows an illustration of the multi-level monitoring
process. Both the MSE and goal error buffers are fed with
first-in-first-out (FIFO) strategy.

E. Exploration vs. exploitation

The trend of the overall performance of the system controls
also the amount of noise that is added to the exploration
behaviours. In fact, a random value sampled from a normal
distribution with zero mean is added to the commands that
are sent to the motors of the robot. The standard deviation of
the normal distribution is set to be proportional to the slope
of the linear regression of the MSE over time. The steepest
the descent of the MSE, the smaller the standard deviation
of the normal distribution and thus the noise. The smaller
the noise, the closer the system explores the target goal

5Test dataset contains 200 visuo-motor samples randomly picked up from
the simulator visuo-motor dataset, described in section III. Each sample
represents a camera position, i.e. (x,y) motor position, and the corresponding
image captured from the camera. The same test dataset is used for all the
experiments presented in Section III.

Fig. 2. Multi-level monitoring of prediction error dynamics.

(higher exploitation). On the contrary, the steepest the ascent
of the MSE, the higher the standard deviation of the normal
distribution and thus the noise. When overall performances
are deteriorating, the systems autonomously tends towards
performing random exploration behaviours. Section III will
illustrate some example of these behaviours and their impact
on the overall learning progress.

F. Goal selection strategy

Each goal is associated with an error buffer. At every
iteration of the exploratory behaviour, the system selects a
goal and generates a goal-directed movement. Initially, a
random goal is selected, i.e. a random neuron of the goal
SOM is selected and the corresponding position in the 32D
sensory space is fed into the inverse model. The controller
generates the best known motor command to achieve the
selected goal.

After the execution of the movement, a prediction error is
estimated as described in the previous sections, and appended
to the error buffer of the currently selected goal. When the
buffer contains more than four estimated prediction errors, a
linear regression is calculated on the stored values. The slope
of the linear regression indicates the trend of the learning
progress for the specific goal. A negative slope suggests
that the activity directed at the current goal is bringing
useful information that improves the learning progress. On
the contrary, a positive slope suggests that the current activity
is worsening the learning progress on the current goal.

The goal selection strategy chooses, at every iteration, the
goal that is associated with the steepest descending trend
of the prediction error dynamics. When the slope of the
linear regression of the current goal becomes positive, or its
absolute value smaller than a threshold, indicating that the
current activity does not bring much improvement in terms
of learning progress, then the system switches to a different
goal. Again, the system gives priority to those goal that are
associated with the steepest descent in the prediction error
dynamics. To prevent that the system jumps between goals
very quickly, when a goal is selected and the prediction error
trend is not decreasing, the system maintains the goal for
a minimum number of iterations (in the experiments, set to



50). A greedy goal selection strategy6 is also applied, i.e. the
system chooses a random goal with a probability of 1.0%.

III. RESULTS

The architecture is tested on a simulated experimental
setup, in which an artificial system has to learn visuo-motor
coordination – i.e. its inverse and forward models – through
a goal-directed exploration behaviour. A simulated platform
developed in a previous work has been adopted [13]. The
simulator consists of a script that generates trajectories of a
camera of a micro-farming robot using a pre-recorded visuo-
motor dataset [24]. The robot consists of two motors, moving
an RGB camera along a horizontal plane. The camera is
facing top-down on a desk where some objects are located.
The visuo-motor dataset has been generated by performing a
full scan of the horizontal plane within the limits of the robot
movements using a step of 5mm. This resulted in 24.964
images, each mapped to an (x,y) position of the motors.
The simulator allows generating trajectories from a starting
motor position to a target one, and returning the motor and
visual samples observed along these trajectories. The dataset
is freely available [24], as well as the source code behind
this work7.

The convolutional autoencoder described in section II-A
has been trained on the 24964 images stored in the visuo-
motor dataset over 40 epochs. Once having trained the CAE,
we carried out a set of experiments in which the system gen-
erated goal-directed behaviours using self-generated and self-
regulated goals as described above. During the exploration
behaviours, the system learned its inverse and forward models
in an online fashion. We carried out experiments varying the
following parameters:

1. Whether the goal SOM is pre-trained or is being trained
during the experiments, resulting in either fixed or
moving goals, respectively.

2. Whether the exploration noise is adaptive to the trend
of the MSE dynamics (see section II-E) or fixed.

3. Whether a greedy exploration strategy is applied (with
a probability of 3%) or not.

Table I illustrates the series of experiments resulting from
the combination of these configurations. Every experiment
has been run five times, each consisting of 5000 iterations.

Design of experiments
Exp. ID Fixed goal SOM Fixed expl. noise Greedy expl. prob.
0 False False 0%
1 True False 0%
2 False True 0%
3 True True 0%
4 False False 3%
5 True False 3%
6 False True 3%
7 True True 3%

TABLE I

6Note: this is not the greedy strategy generating random motor commands,
as described in section III.

7Repository: https://github.com/guidoschillaci/prediction error dynamics

In each iteration, movements generate visuo-motor sam-
ples consisting of paired (x,y) motor positions and 64 × 64
pixels grayscale images. Images are compressed into 32D
sensory states using the CAE. A SOM with 3 × 3 neurons
is adopted, thus encoding nine goals. The SOM has a 32D
feature space, as the sensory space. Inverse and forward
models are updated in an online fashion, whenever a batch
of 16 visuo-motor samples is observed. When a batch is
available, it is used together with the current content of the
episodic memory as training data for the models update8.
Maximum memory size is set to 1000 visuo-motor samples,
with an update probability of 1%. When full memory size is
reached, only one random sample in the memory is replaced
with the current observation.

MSE dynamics are updated at a lower frequency than
to the lower-level goal error dynamics. In particular, mean
squared errors of both the forward and inverse models are
computed and logged every 40 iterations. The MSE of the
inverse model is logged for performance analysis, whereas
the MSE of the forward model is buffered and monitored,
as discussed in the previous sections. The size of the MSE
buffer is set to 10. A linear regression over the values stored
in the buffer is computed at every update, so as to estimate
the trend of the overall system performances. The size of
the lower-level goal error buffers is initialised to 10 and,
as described in section II-D, is modulated according to the
trend of the MSE dynamics. The minimum and maximum
sizes of the goal error buffer are set to 10 and 50 time steps,
respectively.

Figures 3 and 4 show the MSE of the forward and
inverse models for each experiment, as in Table I. Each
curve represents the average MSE over 5 runs of the same
experiment. We expect experiment #3 to be the worst in terms
of adaptivity and performances, considered that exploratory
noise and goal SOM are both fixed, and no greedy strategy
is applied. Results confirm our expectations. In both Figures
3 and 4, experiment #3 has the slower descending learning
progress. As for the forward model, performance is even
deteriorating from the initial state as it can be seen from the
ascending MSE red curve in Figure 3. Similar performance,
although slightly better, can be observed for experiment #2
(light green curve), which differs from #3 only in the online
training of the goal SOM. Fixing the exploratory noise to an
initial small value and not adopting any greedy exploration
strategy is likely not preventing the system to stuck in local
minima.

The most interesting experiments are #0 and #4, in which
goal locations are being learned over time and exploration
noise is adaptive and dependent on the MSE dynamics.
Experiment #4, as it can be noted in Figures 3 and 4,
outperforms all the other experiments. This confirms the well-

8 Keras deep learning library on TensorFlow backend have been used
to build and train all the models presented here (except for the SOM).
Simulations have been run using cloud services for GPU accelerated
computing. In particular, Amazon Web Services (g4dn and p3) and Exoscale
(GPU2) instances have been used, gently supported by the Marie Curie
Alumni Association (MCAA) and the EU-H2020 Open Clouds for Research
Environment projects.

https://github.com/guidoschillaci/prediction_error_dynamics


known positive contribution of greedy strategies in intrinsic
motivation systems. Experiment #0 (light blue curve) presents
also descending MSE trends for both inverse and forward
models. Although not performing as well as experiment
#4, experiment #0 indicates that the self-regulatory mech-
anisms that modulate exploration noise and dynamic goals
can compensate for the absence of a greedy exploration
strategy. Both the experiments outperform standard intrinsic
motivation approaches, where exploratory noise and goals are
fixed, and greedy strategy is applied – i.e. experiment #7.

Fig. 3. Mean squared error of the forward model for each experiment.
Curves show MSE averaged over 5 runs per experiment.

Fig. 4. Mean squared error of the inverse model for each experiment. Curves
show MSE averaged over 5 runs per experiment.

Figure 5 shows a more detailed view of the dynamics of
the system in two sample runs of – the worst performing –
experiment #3 (plots on the left) and – the best performing –
experiment #4 (plots on the right). The diagrams show, from
top to bottom: 1) the amplitude of the executed movements of
the robot over time; 2) the standard deviation of the normal
distribution where the exploration noise is sampled from;
3) the slope of the linear regression calculated on the MSE
buffer of the forward model; 4) the maximum size of the goal
error buffers. In experiment #3, the standard deviation of the
exploration noise is fixed, as it can be seen from the constant
value in the second plot and the seemingly constant amplitude

of the movements. The size of the goal error buffer starts
increasing when the slope of the MSE dynamics becomes
positive. Different trends can be observed in experiment #4,
where the exploration noise (second diagram) is adaptive
and proportional to the slope of the MSE dynamics (third
plot). The amplitude of the movements of the robot is also
proportional to the added noise. Interestingly, around the
beginning of the second half of the experiment, the MSE
dynamics show an ascending trend (positive value of the
slope of the MSE dynamics), likely due to an exploration
of a local minimum. This makes the goal error buffer size
increase, as well as the exploration noise. Eventually, the
system manages to get out of the minimum, as suggested by
the MSE trend, which starts decreasing again (negative value
of the slope of the MSE dynamics). The general improvement
of the performance makes the system liberate processing
resources, reducing the size of the goal error buffers. Finally,
Figure 6 shows the slopes of the goal error buffers for the
same run of experiment #4. The plot on the top shows which
goal is being selected over time, while the other plots show
the slope of the error buffers for each goal. Most of the goals
show initial descending trends when selected. The system
maintains the goal until the slope is positive or its absolute
value is below a certain threshold, or a minimum number of
iterations is reached.

Fig. 5. Detailed dynamics of two specific runs for experiment #3 (left) and
experiment #4. Top plots show the amplitude of the robot movements. The
second plots show the standard deviation of the normal distribution where
the exploration noise is sampled from. The third plots show the slope of the
linear regression calculated on the MSE buffer. The bottom plots show the
dynamics of the maximum size of the goal error buffers.

IV. CONCLUSIONS

We have presented a learning architecture that generates
exploratory behaviours towards self-generated goals, and that
regulates goal selection and the balance between exploitation
and exploration through a multi-level monitoring of predic-
tion error dynamics. The framework monitors two types of
error: (1) a high-level, general error of the system, which
consists of the mean squared error (MSE) of the forward
model calculated on a pre-recorded test dataset; (2) low-level
goal errors, which consist of the prediction errors that are
estimated by the system when trying to reach each specific



Fig. 6. A sample run (experiment #4) showing the prediction error dynamics
at the goal level. The top plot shows which of the nine goals has been
selected over time. The other plots show the values of the slope of the
linear regression calculated on each goal buffer.

goal. Our architecture modulates exploration noise and lever-
ages computational resources according to the dynamics of
the overall performance of the learning system. Our results
suggest that such an approach, together with dynamic goals
that are learned over time, outperforms standard intrinsic
motivation approaches, where exploratory noise and goals are
fixed and greedy strategy is applied. More experimentation,
especially in the context of more complex robotic actuators,
is however required to provide further support to this claim.

In [12], the authors present an algorithm showing Intelli-
gent Adaptive Curiosity (ICA). This algorithm is capable of
learning its sensorimotor space and performing goals based
on the minimization of the prediction error. The algorithm
divides the space in regions and attaches an expert for each
region. In [10] the authors present a topology of computa-
tional approaches to model intrinsic motivation. They present
very interesting distinctions between the different existing
models. We believe that the approach presented here, as
a proof of concept, can be used to function as several
of the examples mentioned by the authors. To mention a
couple, under the competence-based models: the monitoring
of the prediction error dynamics can serve for maximizing
competence by staying in goals where the error is low. At
the same time, it can serve for maximizing incompetence
by practicing goals where performance is at the lowest.
Within the predictive models, likewise the system can choose
whether to look to stay in goals where prediction error is
being minimized, or search for instances where the error is
high but can be lowered.

The intrinsic motivation architecture grounded on multi-
level prediction error dynamics provides new insights towards
the understanding of the underlying mechanisms of motiva-
tion and the emergence of emotions that drive behaviors and

goal selection to promote learning. Tracking our emotions
may be a necessary condition for development and cognition.
The architecture presented here sets a baseline for further
experimentation to shed light on the relevance of prediction
error dynamics for the computational modeling and under-
standing of intrinsic motivation and emotion.
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