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Abstract—Autonomous vehicle (AV) is progressing rapidly, but
there are still many shortcomings when interacting with humans.
To address this problem, it is necessary to study the human
behaviors in human-AV interactions, and build a predictive
model of human decision-making in the interaction. In turn,
modelling human behavior in human-AV interaction can help us
better understand human perception of AVs and human driving
strategies. In this work, we first train multi-level AV agents using
reinforcement learning (RL) models to imitate three mentalizing
levels (i.e., level-0, level-1, and level-2), and then design a human-
AV driving task that subjects interact with each level of AV agents
in a two-lane merging scenario. Both human and AV driving
behaviors are recorded. We found that conservative subjects
obtain more rewards because of the randomness of the RL agents.
Our results indicate that (i) human driving strategies are flexible
and changeable, which allows to quickly adjust the strategy to
maximize the reward when gaming against AV; (ii) human driving
strategies are related to mentalizing ability, and subjects with
higher mentalizing scores drive more conservatively. Our study
shed lights on the relationship between human driving policy
and mentalizing in human-AV interactions, and it can inspire
the next-generation AV.

Index Terms—Autonomous vehicle (AV), human-AV interac-
tion, reinforcement learning, human behavior, decision making
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I. INTRODUCTION

In recent years, autonomous driving has made great progress
in becoming safer, more efficient, and less time-consuming.
Many studies have been focused on designing algorithms for
autonomous vehicles (AVs) in terms of trajectory prediction,
planning and decision making, such as DIM [1], TNT [2],
LaneGCN [3], achieving impressive results. Few studies have
focused on AV-human interactions. Many Motion Prediction
and Planning methods are proposed for autonomous vehicles
Decision Making, for example, [4] [5]. However, traditional
rule-based methods usually suffer from unpredictable inter-
action. Reinforcement learning (RL) is a machine learning
method to enable agents learning for taking actions in an
environment in order to maximize the notion of cumulative
reward. RL, especially the rewards represented by deep neural
network (deep RL), has been largely used in AVs [6], [7]. In
this study, we train AV agents with deep RL to investigate the
interactions between humans and autonomous vehicles.

In traffic scenarios where humans and AVs coexist, merging
is a frequent but challenging task that is critical for safe and
efficient driving. Completing a merge requires understanding
the surrounding environment, modeling the driving strategy
of the opponent, and learning to make actions corresponding
to the driving behavior of opponents. Therefore, merging is a
commonly used task for training and testing AVs. [8] proposed
a probabilistic and interactive prediction approach on ramp
merging scenario. [9] analyses the significance of different



Fig. 1: The experimental design of human-AV interactive task and human-human interactive task. (a) PvE (i.e., Player versus
Environment) condition. The human subject is asked to interact with the AV agent to arrive the destination as quickly as
possible without collision. The human subjects can receive a training block before the formal experiment. We use the block
design, including three blocks corresponding to 3 levels of AV agents. A block begins with an introduction and then 40 trials
with a 1∼3-second jitter in inter-trial interval (ITI). Human subjects press the number buttons to imitate driving scenario and
interact with an AV in each block. The reward is informed in the end of each trial. (b) PvP (i.e., Player versus Player) condition.
Two human subjects are asked to interact with each other with the goal to arrive the destination as quickly as possible without
collision. In PvP condition, The monitor is divided into two windows separated with a black screen. We instruct the human
subjects to only focus on the window on their own side. The bottom panel of (a) and (b) are examples of real driving moments.
The color of car is black when maintaining a constant speed, red when accelerating, and blue when slowing down. The gray
shadowed area is the position to arrive in the next 1 second, indicating the speed of the car. Note that both human and AV
can only see the color and the gray area of the car controlled by themselves and cannot see the the accelerating and speed
information of the opponent.

variables for driving style classification when merging. [10]
defined merging behavior as a multi-agent dynamic game, and
proposed an iterative algorithm to learn the interactive costs.

It is unclear whether AV can deal with humans with different
personality, and in return, whether humans can learn to safely
and efficiently interact with AV agents with different driving
styles in a short period of time.

To operate safely, drivers need to observe the other vehicles
and infer the mental state or driving style of the opponents
in the traffic flow, which inevitably needs mentalizing. Men-
talizing is a fundamental process in which we infer the inner
thoughts and intentions of others. Wu et al proposed interactive
mentalizing theory (IMT) [11] and its related interactive
mentalizing questionnaire (IMQ) [12] to measure different
mentalizing abilities in social interaction. Specifically, it mea-
sures self-self mentalization (SS), self-other(SO) and other-
self mentalization (OS). The SO score quantifies the ability
to assess the mental state of others from the perspective of
the self. The SS score quantifies the ability to assess self-
generated mental states from the perspective of the self. The
OS score quantifies the ability to evaluate mentalization of
self-generated mental states from the perspective of others.
Meanwhile, a k-ToM model (e.g., level-0, level-1, level-2)
is proposed, which predicts that the performance of agents
engaged in competitive repeated interactions [13]. In the social
interaction like merging, mentalizing other drivers requires
both prediction of other’s operations (SO), and also inference

of how the others think about oneself’s intention (OS). Unpre-
dictable reactions during driving (e.g., speeding, slowing down
and right-/left-turn in the merging) may cause catastrophic
accidents. Although large amounts of efforts have been made
on human’s mentalizing process in the in-lab experiments in
the psychology community [14]–[16], and the decision-making
algorithms in the merging task in AV community [17]–[19],
few studies have combined the two to investigate mentalizing
on AVs and human subjects, and the trade-off in time-saving
and safety considerations.

Recent work has integrated the social value orientation
(SVO) of drivers into AV algorithms to quantify an agent’s
degree of selfishness or altruism, resulting in reduced errors
in predictions for algorithms incorporated with SVO [20]. It
brings a potential direction to AV algorithms, that is, taking
personality traits and mentalized predictions into account in
the model. In the current work, we designed a task under
the framework of mentalizing level, with the incorporation of
mentalizing in the human-human and human-AV interactions
(see Fig. 1). That is, with consideration of mentalizing in AV
and humans, we trained AV agents with different mentalizing
levels and measure the first (SO) and higher-order mentalizing
(OS) abilities in human drivers. Here, we aimed to test the
following two hypotheses: (i) humans have more diverse
driving policy compared with the RL-based AV, and can
flexibly adjust driving policy to maximize rewards (Hypo 1);
(ii) in human-AV game, human subjects with higher IMQ



scores can earn more rewards than the lower ones since
subjects with higher IMQ scores can better predict the policy
of the opponent AV resulting in more rewards (Hypo 2).
Testing these two hypotheses would help us understand the
relationship between human driving policy and mentalizing in
human-AV interactions.

II. METHOD

A. Simulator Design

The environment is designed as shown in Figure 1. Two cars
start in two lanes and end up merging in one lane. The oppo-
nent car in the left is controlled by the trained RL agents while
the ego car in the right is controlled by subjects. Different
colors on the cars indicate acceleration (red), constant speed
(black) and deceleration (blue) respectively. Shadow indicates
the future trajectory of the ego car. The State Space for each
agent is defined as S = {dx, dy, dv, x, v}, where dx, dy are
the relative longitude and latitude distances of opponent, dv
means the velocity difference, and x, v are the global position
and velocity of ego car.

There are five discrete actions in the Action Space A to
keep the speed of the vehicle at 0, 10, 20, 30 and 40. To avoid
discontinuous state change, instead of setting constant accel-
eration values directly, we use Model Predictive Controller to
Control the speed change of the cars in the next 3 seconds.
The one-step control input is optimized with a minimum jerk.

In our study, four reward terms are considered: R1 =
2/R2 = 1, the reward for the first/second car that reaches
the merge point; Rcol = −10, the punishment for both cars
if a collision happens; and Rspd = α|v − vstandard|, the
punishment for speed deviation that We set a standard speed 20
and the car receives punishments proportional to the deviation
of the current speed from the standard speed. The weights are
carefully designed so that the strategy to keep full speed for
R1 would gain lower reward than those who keep standard
speed and get R2. As a result, the best strategy is to stay at
standard speed for most time, while overtake a little bit if the
opponent takes no aggressive actions.

B. Three levels of Agents trained with Deep Q-Learning

In our study, we design the deep Q-learning network for
training the multi-level intelligent autonomous vehicles with
mentality. To overcome the requirement of the huge memory
storage in the traditional Q-function table of model-free rein-
forcement learning, the introduced deep Q-learning network
includes the neural network module (three fully connected
layers followed with the Rectified Linear Unit activation func-
tion) for learning a function that characterizes the relationship
between the state of the vehicle and its Q-value with different
actions. The main objective of the deep Q-Learning Network
tries to minimize the mean square error of the predicted Q-
value and the target Q-value Q∗ (the optimal action-value
function) [21], [22]. In other words, the autonomous agent
tries to maximize the cumulative future reward with the action
selection. In our study, we iteratively train three mentalizing
levels (level-0, level-1, level-2) of autonomous vehicles by

Fig. 2: Examples of 3 types of interactions in merging task and
record results. Each car starts driving in its own line (a), then
merges in the merging points (b) and eventually drive in the
straight line (c). (d) Payoff matrix. The recorded behavioral
data include the trajectory (e) and the driving speed (f) of
individual human subject and AV.

setting the opponent vehicle with the lower mentalizing level.
The trained autonomous agents have iterative driving policies.

C. Experiment

We recruited 40 human participants to take part in the
experiment, 30 (8 females) for the PvE condition and 10 (2
females) for the PvP condition(aged 19-33 years (22.75±2.99).
There are no significant difference between age and genders
of the participants in two conditions (Age: F=6.280, p=0.017;
Gender: F=0.1696, p=0.683). The experiment was divided into
two parts: in the first part, the participants needed to complete
the Interactive Mentalizing Questionnaire (IMQ) [12] which
evaluates the mentalizing ability of the participants; the second
part was the interactive experiment. In our study, we randomly
assigned participants to two conditions (PvE or PvP). All
participants signed the informed consent before the formal
experiment, and the experimental protocol was approved by
the Institutional Review Board of the Southern University of
Science and Technology.

In PvE condition, the human participants are informed to
play with self-play AV agents. They can have a training block
with 20 trials before the formal interactive experiment to
ensure understanding the whole experiment. The formal exper-
iment consists of three blocks, corresponding to the AV agents
with 3 different mentalizing levels (i.e., level-0, level-1, level-
2). The blocks are randomized across subjects, and each block
consists of 40 trials. The participant is instructed to maximize
the reward by controlling his/her own car. Participants can
press buttons 0, 1, 2, 3, and 4 to reach the desired speed. The
larger the number of keys, the faster of the speed. The speed
of car is indicated by the gray area in front of the car in the
monitor (Fig. 1(a)). The ego car controlled by the human driver
is in the right lane, while the op car controlled by AV is in the
left lane. Each trial started with a 1-3s jittered ITI, and then
the participant can control the car by pressing buttons. The



speed of the ego car and the current reward are displayed on
the right-side, as described in II-A. The trial is ended when
the ego car reached the end, and the reward of the current
trial is shown for 3 seconds (Fig. 1 (a)). In the end of each
block, the total rewards of the participant is presented. The
participant’s final payment is proportional to the total rewards
in three blocks.

In PvP condition, we designed 4 blocks with 30 trials in
each block (the first 10 trials for training, and the rest 20
trials for the formal experiment) and a 30s break after each
block (Fig. 1 (b)). Two human participants are involved in
the task. In the training trials, participant 1 is asked to free
driving for 5 trials and participant 2 has to drive his/her car at
a constant speed. The free driving car alternates after 5 trials.
The formal experiment in PvP condition is similar to that in
PvE condition. The only difference is the monitor is split into
two windows with a black screen in the centre. Subjects are
instructed to only look at his/her own side of the window.

III. RESULTS

In the PvE condition, the three agents which control the
opponent car had very different driving policy that level-0
agent and level-2 agent drove aggressively and level-1 agent
drove conservatively. The participants needed to learn the
driving policy of the agent and change their own driving policy
correspondingly to maximize rewards. The best driving policy
for level-0 agent and level-2 agent is to press 2 the whole
time and the best driving policy for level-1 agent is to press
3 or 4 to stay a safe distance in front of the opponent car and
then press 2 till the end. In the PvP condition, two participants
drove against each other in their own policy to maximize their
rewards. Different from the PvE condition, subjects’ driving
policy could change much across trials and one participant
could consider what would the other participant do to max-
imize their rewards. The PvP condition was similar to the
Chicken Game and the best policy for the two participants was
taking turns showing weakness maximizing group rewards.

A. Changes in the ego car speed and the op car speed

We computed the standard deviation of the car speed to
capture the change in speed within a single trial. The results
are illustrated in Figure 3. We found that the speed of ego car
varied in a larger range than that of the opponent car, suggest-
ing human flexibly utilizes a diversity of driving policies. The
comparisons between PvP and PvE conditions show great sim-
ilarity (Pearson Correlation: R = 0.7563, p = 2.45 × 10−75)
between the behavior in person-to-person interactions and
the game behavior when the policy of AV agent maintains
while the policy of human flexibly varies. The cross shows
the change of the driving policy that location of the cross
converges to a region within 20 trials in the PvE condition
and do not converge after 40 trials in the PvP condition.

B. Relationship between rewards and mentalizing ability

We investigate the relationship between the policy in the
game (e.g., total rewards) and the mentalizing ability of

Fig. 3: The behavioral results of the game. (a-c) In PvE
condition, games between the human subject (i.e., ego car)
and the 3 levels of AV opponent (op car), i.e., level-0 (a),
level-1 (b) and level-2 (c), respectively. (d) In PvP condition,
the game between two human subjects. The x-axis and y-axis
are the variance of the speed of the ego car and op car in
a single trial, with each dot representing a trial. The four
gradient colors represent the 1-10, 11-20, 21-30, 31- 40 trials
respectively, and the symbol × represents the average of speed
variance across 10 trials.

human subjects (e.g., IMQ scores) in PvE condition. We first
applied the regression analysis with all IMQ scores and further
breakdown with correlation analysis on the total rewards and
the IMQ scores. For multiple linear regression, the result
shows different predictive effect to average final results from
IMQ scores. The fitted equations are as below :

R(level-0) = −0.0003SS − 0.0533SO + 0.0269OS + 0.7844
(1)

R(level-1) = 0.0011SS−0.0213SO+0.0069OS+1.7818 (2)

R(level-2) = −0.0373SS − 0.0852SO + 0.0344OS + 2.1183
(3)

The R2 are 0.079, 0.068, 0.451, respectively. For the OS
score, it is with regression coefficient 0.0269/0.0069/0.0344
for three different levels of AV, and a significant negative
correlation between the averaged final rewards and SO score
(with regression coefficient −0.0533/− 0.0213/− 0.0852).

C. Relationship between policy switching and mentalizing
ability

We perform a linear regression on the state variable of each
trial in the Level-2 agent block and the subject’s action:

ACTION =
∑

ai ∗ STATEi + b (4)

State: δx, the longitudinal distance between the two cars;
δy, the lateral distance between the two cars; δv, the speed
difference between the two cars; s, the distance traveled by
the ego car; v1, the speed of the ego car; v2, the speed of the
opponent car.



Fig. 4: Double regression parameters α and IMQ scores.
ACTION =

∑
ai ∗ STATEi + b, ain = αi ∗ Trialn + b‘

The fitted parameter a can describe the importance of
different state variables to the subject’s decision-making in
each trial. In the experiment, the subjects will learn the
driving policy of the opponent car in order to maximize the
reward, and then change their own driving strategy according
to the driving strategy of the opponent car. We perform linear
regression on the parameter a and the number of trials to
further characterize the strategy switching between subjects:

ain = αi ∗ Trialn + b‘ (5)

The absolute value of the fitted parameter |α| can depict how
fast the participant’s policy changes between trials. In Figure 4,
we can see that the SO and OS scores are negatively correlated
with the |α| corresponding to almost every state. Under the
assumption that subjects adopt near-optimal driving strategies
at the end of the Level-2 agent block, the subjects with higher
OS and SO scores can better predict the driving policy of the
opponent car, and the driving policies of the subjects in the
early trials are closer to the optimal driving policy.

IV. DISCUSSION AND CONCLUSION

Although early AV models of decision-making largely ig-
nored mentalizing, the last few decades have detailed the
central role mentalizing play in guiding social interaction
choices. Take the humans’ and AV’s mentalizing level into
account, the current work investigate the driving patterns in
both the human-av interaction with different mentalizing level
AVs, and human-human interaction with mentalizing ability
measures. Our findings first confirm the diverse strategy of
humans in human-human interactions, compared to human-AV
interactions (Hypo 1). Meanwhile, we observe the interesting
prediction effect of human mentalizing ability in policy of the
opponent AV or human (Hypo 2).

A. Different driving policies in human-human interactions and
human-AV interactions

Through experimental study [23], it indicated a difference
between human-human and human-AV interactions on the
road. For example, human drivers felt more comfortable
following the AV than human driver [24].AV that can predict
risk level (Driver’s Risk Field (DRF) model [25]) can be more
reliable and human-like.Under an aggressive driving scenario
that using a professional racing simulator [26],they found
different features are more important between human drivers
and AV. Echos to previous study indicate the human-human
interaction is more complex than human-AV interaction [27],
our findings show similar pattern in the policy or strategy
of merge. Figure 3 showed the speed of human-driving car
varied within a larger range in the PvE condition, indicating
that human subjects’ driving strategies were more diverse and
flexible. By comparing PvE and PvP conditions, we uncover
the differences in human-human interactions and human-AV
interactions. We found that the variance of the speed of the two
subjects in PvP condition has a linear correlation, indicating
that human subjects will adjust their strategies according to
each other’s strategies, while in the PvE condition the strategy
of AV agent was relatively monotonous and did not rely on
the change of the subject’s strategy. More specifically, in the
PvE condition, when the human subject adopt the no-press
strategy, the velocity variance of the AV agent continued
varying, indicating that the AV agent has greater randomness.
We found that the averaged variance converged within the
first 20 trials in PvE condition, indicating that human subjects
can quickly learn the AV agent’s strategy and adjust their
own strategies to maximize rewards. In the PvP condition,
the averaged variance did not converge even after 40 trials,
implying the high complexity of human-human interactions.
The constant adjustment of the driving strategy during human-
human game leads to the instability of the environment, which
requires more learning to achieve the optimal strategy.

B. From mentalizing to driving policy: impacts of mentalizing
abilities

As we predicted, beliefs about our own mentalizing and
other’s intention is critical in social interaction, including
human-human and human-AV scenarios [28]. We investigate
the relationship between the human driving policy and link
it to one’s mentalizing ability. Our study provide evidence to
confirm that the mentalizing ability affect the driving policy
both when one interacts with AV or interacts with another
human subject. Our results show that subjects with higher
mentalizing scores drive more conservatively and thereby
resulting in more total rewards (Fig. 5). According to these
findings, an initial summary is that all three sub-components
play role in predicting human interaction with other agents
from level-0 to level-2. However, it shows that the higher-
order ability (OS score) [12] may be with stronger influence
in this prediction effect to both the optimal strategy and the
gained reward.



Fig. 5: Reward as a function of mentalizing score. From left
to right, the relationship between the accumulated rewards in
the block and the SS score (left), SO score (middle) and OS
score (right). From top to bottom, it present the results with
level-0 agent (top), level-1 agent (middle), and level-2 agent
(bottom).

C. Future work

The three agents in PvE condition were not very ’smart’.
We may expect an uncertainty module to regular the agents’
actions and train more high-level agents with different initial
conditions and construct a recurrent neural network to capture
temporal information of each trial. In addition to behavioral
experiments, we may do some ERP experiments in the same
driving environment. Future work with brain signal recording
can further provide evidence of which brain regions will be
engaged in different interactions during driving scenarios.
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[4] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. A survey
on motion prediction and risk assessment for intelligent vehicles.
ROBOMECH journal, 1(1):1–14, 2014.
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