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Abstract—This paper presents a next-generation human-robot
interface that can infer and realize the user’s manipulation
intention via sight only. Our system integrates near-eye-tracking
with robotic manipulation to enable user-specified actions, such
as grasping or pick-and-place operations. We develop a head-
mounted near-eye-tracking device that tracks the user’s eyeball
movements in real-time to identify the user’s visual attention
and enable sight-guided manipulation. To improve grasping
performance, we introduce a transformer-based grasp model that
uses stacked attention blocks to extract hierarchical features,
expanding channel volumes while squeezing feature map resolu-
tions. Experimental validation demonstrates that our system can
effectively assist users to complete manipulation tasks through
their eyes, which holds great potential for an assistive robot that
leverages gaze interaction to aid individuals with upper limb
disabilities or the elderly in their daily lives.

I. INTRODUCTION

Robotic systems [1], [2], powered by recent advances in
artificial intelligence, have become increasingly prevalent in
both industrial and daily life. To provide more daily assistance,
robots are no longer limited to performing simple and repeti-
tive tasks but are designed to understand human intention for
better helping users. In particular, it is essential to build bridges
between humans and machines to transfer human intentions to
robots.

Traditional manipulation methods [3] often involves using
a joystick to deliver user-specified actions. Unfortunately, this
can be challenging for elderly individuals, particularly those
with upper limb disabilities. Recent advancements in wear-
able technology have demonstrated the potential in robotic
assistance systems such as brain-computer interface (BCI)
[4]. However, invasive BCI devices require microelectrodes
to be surgically implanted into the human cerebral cortex,
which can be risky. Furthermore, non-invasive BCI devices
are susceptible to noise interference and are often expensive.
Therefore, there is a pressing need to develop a new human-
robot interface that is both safe and user-friendly.

The majority of human sensory input is acquired through
the eyes. In fact, over 80% of human information is ob-
tained through vision [5], which motivates the development
of eye-based robotic assistive systems to enable manipulation
using sight. Robotic assistive systems that incorporate eye-
tracking technology have the potential to revolutionize various
applications, including surgical diagnosis, rehabilitation, and
academic research. For individuals with physical disabilities,

* Contribute equally
The authors are with the School of Information Science, University of

Science and Technology of China, Hefei, 230026, China.

eye-tracking offers a natural interface that can bridge the gap
between humans and robots, since the user’s vision is typically
not affected by their disability. However, despite its potential
benefits, eye-tracking has not been widely adopted in practice,
largely due to the difficulty of accurately modeling the motion
of the eye to capture the gaze point. Currently, many eye-
tracking robotic assistive systems [6] rely on fixed cameras
and are primarily built for desktop use only.

This paper introduces a next-generation human-robot inter-
face that can infer and execute user’s manipulation intention
using only sight. We have developed a system that integrates
near-eye-tracking and robotic manipulation to enable user-
specified actions, including grasping and pick-and-place tasks.
To achieve sight-guided manipulation, we have designed a
head-mounted near-eye-tracking device that tracks eyeball
movements in real-time, enabling us to identify the user’s vi-
sual attention. Additionally, we have developed a transformer-
based global grasp detection framework that enhances the
robot’s sensing capabilities, facilitating successful execution
of user-specified manipulations. Our framework utilizes self-
attention to model the long-term spatial dependencies among
pixels, and a feature fusion pyramid to merge multi-scale fea-
tures from each stage, thereby determining the final grasping
pose. Experimental validation has demonstrated that the eye-
tracking system has low gaze estimation error, and the grasping
system performs well on multiple grasping datasets.

The contribution of this paper can be summarized as fol-
lows:
• We build a sight-based robotic assistive system for user-

specified manipulations. Our system includes a head-
mounted device that enables real-time intention infer-
ence and a grasping subsystem that utilizes self-attention
mechanisms for improved visual grasping.

• We propose a novel human-robot interface that enables
more natural and instinctive manipulation by utilizing
eye-tracking only.

• Extensive experiments demonstrate the effectiveness of
the developed robotic assistive system for manipulation
tasks.

II. RELATED WORK

Robotic manipulation [7], [8], [9] is a fundamental skill that
has found widespread applications in manufacturing, industry,
and medical operations. Vision-based grasping techniques have
been extensively investigated by researchers. Lenz et al. [10]
were the first to utilize deep learning to detect grasping
rectangles. Redmon et al. [11] employed a convolutional
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neural network (CNN) to regress the grasping pose that the
robot can execute. Additionally, Morrison et al. [12] designed
a generative grasping CNN (GG-CNN) that uses depth input to
generate antipodal grasp candidates. With the recent advances
in artificial intelligence, the new generation of robots is
expected to understand human intention through interactions
with users, rather than being limited to low-level tasks such
as grasping.

Assistive robotic arms have become increasingly popular
among users with upper limb impairments in their daily lives,
such as grasping objects and pouring water. While joysticks are
often used to control these robots, they can be difficult to use,
especially for elderly or upper limb disabled users. In contrast,
sight is a natural way for people with physical disabilities
or mobility and speech impairments to interact with robotic
systems. Eye-tracking technology, which has been used for
almost a century, has advanced significantly in recent years and
can now be used to manipulate robotic devices by following
human gaze.

Note that the attention mechanism mimics the way how
human vision works. Since sight can indicate human atten-
tion, Hollenstein et al. [13] enhanced the performance of the
annotation model by using human sight, and demonstrated that
the semantic information embedded in the sight can be well
utilized by the entity model. In computer vision tasks, Karessli
et al. [14] improved the classification accuracy of zero-shot
tasks by introducing human sight as an auxiliary task. In
vision-language tasks, Sugano et al. [15] assisted the image
caption tasks with human sight annotation information. In
addition, eye-tracking technology has been used in augmented
reality [16], mixed reality [17], and deep learning [15]. These
successful applications motivate our research of using sight to
enable human-robot manipulation.

III. METHOD

A. System Overview

This section presents a friendly human-robot interaction
by incorporating near-eye-tracking with robotic manipulation.
The developed robotic assistive system is integrated with a
head-mounted eye-tracking device so that the user’s intention
can be conveniently captured. That is, the user can use the
sight to control a robotic arm to manipulate and grasp objects.
Fig. 1 illustrates the pipeline of how the human intentions are
perceived through eye gaze and translated to actions that the
robot can execute. The method involves a combination of three
steps: i) A head-mounted eye-tracking device integrated with
low-cost stereo cameras measures the user’s gaze direction.
The biological model of human eyeball is incorporated with
computer vision to identify the pupil orientation and locate
the gaze coordinates of the eyes in 3D space. ii) In parallel, a
hierarchical transformer visual model is developed to extract
effective features for grasping, where the attention performs
global perception. A feature pyramid inside the transformer
network gathers features from each stage for multi-scale
sensing in order to generate the final grasping configuration.
iii) The information from the two subsystems is fused and the
gaze point with human attention is filtered against the grasping

:

Semantic information fusion

Robot visual scene User visual scene

Grasp detection Real-time eye tracking

User’s gaze point Filtered depth image

Robotic arm path planning and grasping

Grasped object position 

Fig. 1. The whole system pipeline. The pink section indicates the grasp
detection subsystem and the green section is the eye-tracking module. The
bottom yellow area is the fusion module, where objects of interest are selected
for grasping based on the user’s gaze.

quality heatmap to obtain the grasping pose parameters for the
desired object.

B. Eye-tracking

The human eye is a highly sophisticated optical instrument
that allows light entering the eye to be imaged on the retina
through a series of reflections and refractions. The refractive
system of eyes consists of the cornea, vitreous humor, and lens,
which forms multiple refractive surfaces at their interfaces
due to the different refractive indices of each part, making
the optical system extremely complex. In practice, to simplify
the model, the refraction of the cornea during imaging of
pupil is ignored and the cornea is modelled as a sphere
with the same curvature at all points. We employ the eyeball
model presented by [18], where the eye is modelled as two
nested ellipsoids. The larger ellipsoid is the ocular and the
smaller is the cornea. The corneal surface is modelled as a
rotating ellipsoidal plane. The pupil is the channel for light
to enter the eye and the direction of pupil directly indicates
the rotation of eyeball and sight. The central pupil coordinate
is the most important feature in sight tracking. Our pupil
central localization is split into two steps: coarse localization
and refined localization. The coarse localization mainly uses
radical symmetry transformations to quickly locate points in
the pupil area and eliminate invalid cases such as blink frames.
Refined localization is carried out by edge extraction using
Canny operation, followed by edge filtering and ellipse fitting
of edge segments to obtain the pupil’s precise position.

According to the coordinates of the pupil centre obtained
by processing the eye image, based on the camera imaging
calibration theory [19], the 3D coordinates of the pupil center
satisfy the following relationship up

vp
1
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1

Pz
A
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Py
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Fig. 2. Illustration of the near-eye-tracking.

where [up, vp] is the gaze point estimated on the near-eye
image, [Px, Py, 1] is the gaze point in the world coordinate
system. Pz and A are the coordinate transformation matrix
and the camera internal parameter matrix, respectively, which
can be implemented by OpenCV [20]. To simplify the compu-
tation, the distance between the image plane and the camera
is usually taken to be 1. Therefore, the 3D coordinates of the
pupil are  Px

Py
Pz

 =

 Px
Py
1

 =


up−cx
fx

up−cy
fy

1

 . (2)

Similarly, the 3D coordinates of the centre of spot can also be
found. Thus, the direction vectors p1, p2 are calculated by the
connection between the camera optical center and the pupil
center. The direction vectors g1, g2 are derived from the lines
between the camera center and the corneal spot center. Since
the ocular optic axis, reflected corneal spot, and the center of
eye camera are coplanar, the normal vectors of the two planes
shown in Fig. 2 are calculated through{

n1 = p1×g1

‖p1×g1‖
n2 = p2×g2

‖p2×g2‖ .
(3)

The optical axis of the eye is the intersection of two planes,
so the direction of the optical axis lOA can be obtained
from the normal vectors of the two planes through equation
n1×n2
‖n1×n2‖ , after which the corresponding coordinates of the
other positions of the optical axis can be calculated.

Our near-eye assistance system as a whole is shown in Fig.
5, where tiny eye cameras are installed on a head-mounted
frame to capture high-resolution near-eye images. As shown in
Fig. 2, for each eye, two near-eye cameras are used to capture
the corneal reflected spot and calculate the corneal spherical
center and 3D optical axis for the coordinates of the imaging.
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Fig. 3. Overview of the transformer based grasp detection model.

At the same time, a scene image with the same view as
the user is acquired by a scene camera mounted on the same
frame. The system builds on the spherical cornea model and
applies multiple near-eye cameras to resolve the corneal center
and optical axis of the eyes in 3D space, detects the pupil
center, and fits the line of sight. The line of sight is solved
by analyzing the eyeball and applying optical principles. The
pupil’s 3D coordinates are obtained by detecting the centres
of pupil in the image from near-eye cameras. Since the optical
axis of eyes passes through the center of pupil and the sphere
of the cornea, the line of sight can be obtained by calculating
the line between the two coordinates based on the geometric
model of the eye [18].

C. Grasp Detection

Compared to object detection, the grasp detection is gener-
ally made of small rectangles and is more sensitive to positions
and rotation angles. To provide a more global understanding
of the model, as opposed to convolutional kernels with fixed
receptive fields, stacked transformer layers are adopted as
backbone to gradually extract coarse-grained to fine-grained
feature representations. As shown in Fig. 3, the input image
I ∈ RW×H , where W and H are the width and height of
the image I. At first, the image is split into non-overlapping
patches through a conv projection layer. Each patch in the
image is treated as a word token. Similar to [21], there are
four successive blocks to extract semantic rich information,
and each stage contains a patching merging layer and a swin
transformer layer. Each block is composed of patch merging
and swin transformer layer. Patching merging is functionally
similar to the pooling mechanism in CNN, which is designed
to reduce the resolution of an image while increasing the
number of channels of features. The dimension of features
of each stage is shown in Fig. 3. The foundation of swin
transformer layer is the attention mechanism. Input features



are linearly transformed to obtain query, key, and value. Then
the self-attention is computed as

Attention(Q,K, V ) = SoftMax(
QKT

√
d

)V, (4)

where
√
d is the scale factor. Swin transformer layer performs

self-attention within a local window, greatly reducing the
computational complexity. Meanwhile, the shifted window is
applied to model the global relationships. The whole compu-
tation flow is as follows:

x̂l = W-MSA
(
LN
(
xl−1

))
+ xl−1,

xl = MLP
(
LN
(
x̂l
))

+ x̂l,

x̂l+1 = SW-MSA
(
LN
(
xl
))

+ xl,

xl+1 = MLP
(
LN
(
x̂l+1

))
+ x̂l+1

(5)

The feature xl−1 from last layer enters the W-MSA module
via the layerNorm layer, and there exists a residual connec-
tion between each module. After that, it goes through SW-
MSA layer in a similar way. Here W-MSA represents the
window multi-head attention layer and SW-MSA indicates
shifted window multi-head attention layer. One motivation
for using swin transformer as backbone network is that it
maintains both global and local perception. Meanwhile, it
reduces computational complexity compared to vanilla self-
attention.

A feature fusion pyramid is designed at the bottom of model
in Fig. 3 to collect features from each stage in the backbone
network. Features from different stages are aggregated through
a feature pyramid for a multiscale fusion of contextual in-
formation. The feature fusion module uses concatenation to
fuse these features that learn semantic and spatial contextual
information. The network finally outputs the grasping quality
head, grasping width head, and grasping angle head via 1× 1
convolutional kernels. Each output head is the same size as the
original input. For grasping quality head, each parameter in the
quality output takes a value between 0 and 1, indicating the
probability of a successful grasp in the corresponding position
in the image. The angle head consists of two parts: cos2θ and
sin2θ, and the resulting angle is calculated by 1

2arctan
cos2θ
sin2θ .

Afterwards, all outputs of grasping quality head are searched
for the point with the highest grasping quality as the grasping
center, as well as its corresponding gripper rotation angle and
width.

The loss function L is defined as L = w1Lpose+w2Langle+
w3Lpose. For each component of the loss function, Li is the
mean square error between the corresponding value of the
model and the ground truth. w1, w2, and w3 are the relevant
weight factors. For instance, the first term of L is defined as
Lpose =

∑N
i=1 ‖G̃i − G∗i ‖2, where G̃i is the output of the

grasp quality head and G∗i is the corresponding ground truth.

IV. EXPERIMENT

A. Dataset and Implementation Details

The Cornell [10] grasping dataset is used to evaluate the
effectiveness of our grasp detection model. Each image in the
dataset has been taken with a center crop of 224 × 224. The

full grasp detection model is implemented in Pytorch, running
on a single NVIDIA GTX 3090 GPU. The batch size is set
to 32 and we use AdamW optimizer with a learning rate of
1e-4.

Evaluation Criteria. Following the standards in [10], [8],
[22], the grasping rectangle metric is used to evaluate the
grasping results. A predicted grasp is treated as positive if
it meets the following two criteria.

i) The discrepancy between the rotation angle of the pre-
dicted grasp and the ground truth does not exceed 30◦.

ii) The Jaccard index, defined in (6), of the predicted grasp
and the ground truth is greater than 0.25,

J (R∗,R) = |R
∗ ∩R|

|R∗ ∪R|
, (6)

where R is the predicted grasping rectangle region and R∗ is
the ground truth. R∗ ∩R is an intersection of these two areas
and R∗ ∪R is the union of these two regions.

Fig. 5. The developed head-mounted eye-tracking device.

B. Grasping Results

Given the desired grasping coordinates, the robot inverse
kinematics are utilized to realize the desired trajectory. The
detailed comparisons with other methods on the Cornell
dataset are listed in Table II. Although the performance gap
among the state-of-the-art methods is moderate, our model
achieves the best performance. For instance, our transformer-
based grasping model achieves an accuracy of 96.28 if only
depth images are used as input, and 98.86 for the RGB-D as
input. In particular, our model directly predicts the grasping
quality, angle, and width of grasping rectangles, obviating the
requirements for design anchors for different targets.

To test whether our model can be generalized to new scenes,
objects are arranged in new positions with different orienta-
tions. We divide the objects into three categories, including
objects that appear in the dataset, objects that are similar in
the dataset, and objects that have never been seen before. In
each category, there are at least four objects. Each type of
object is grasped several times, and the number of successful
grasps are recorded. The detailed grasping results are shown
in Table I. In Table I, we can see that it performs well for
tools seen in the dataset, and shows good generalization to
similar objects. For unseen objects and complex scenes, our
method also provides a decent improvement in grasp detection
accuracy.



(a) Visual attention (b) Gazed-based physical grasping

Fig. 4. (a) Visualization of the scene images and the human attention heatmaps captured by our proposed method. From left to right, the human gaze points
are the blue bottle, eyeglass box, banana, and apple, respectively. (b) Experiment for real-time gaze-based grasping.

TABLE I
EXPERIMENTAL ROBOTIC GRASPING SUCCESS RATE FOR DIFFERENT OBJECTS.

Seen Objects Familiar Objects Unseen Objects
Objects Detected grasp (%) Objects Detected grasp (%) Objects Detected grasp (%)
Mouse 15 / 15 13 / 15 Orange 14 / 15 12 / 15 Scissor 12 / 15 11 / 15

Remote Control 15 / 15 13 / 15 Staples Box 15 / 15 12 / 15 Toothpaste Box 12 / 15 12 / 15
Apple 14 / 15 12 / 15 Knife 12 / 15 11 / 15 Razor 13 / 15 11 / 15
Pencil 14 / 15 13 / 15 Screwdriver 12 / 15 14 / 15 Toy 12 / 15 9 / 15

Average 96 % 85 % Average 88 % 81.6 % Average 81.6 % 71.6 %

TABLE II
THE ACCURACY ON CORNELL GRASPING DATASET.

Authors Algorithm Accuracy (%)
Jiang [23] Fast Search 60.5
Lenz [10] SAE, struct. reg. 73.9
Redmon [11] AlexNet, MultiGrasp 88.0
Wang [22] Two-stage closed-loop 85.3
Asif [24] STEM-CaRFs 88.2
Kumra [8] ResNet-50x2 89.2
Morrison [12] GG-CNN 73.0
Guo [25] ZF-net 93.2
Zhou [26] FCGN, ResNet-101 97.7
Karaoguz [27] GRPN 88.7
Asif [28] GraspNet 90.2

GraspFormer-D 96.28
Our GraspFormer-RGB 97.72

GraspFormer-RGB-D 98.86

C. System Design

The system consists of two main components, the eye-
tracking module and grasping module. The robot employed
in our experiments is a Franka Emika Panda robot. An RGB-
D camera is fixed on the robot’s gripper. The used camera is
RealSense D435i. The panda robot has a parallel finger and
its active range is limited to 10cm with a maximum loading
capacity of no more than 3kg.

The eye-tracking hardware includes four eye cameras as-
sociated with infrared light source, one scene camera, multi-
channel video acquisition circuits, and a head-mounted frame.
The near-eye cameras are positioned below the human eyes
to take high-resolution images of eyes, and the near-infrared
light around the camera provides a corneal reflective spot used
to accurately resolve the 3D eye features under the assumption
of an aspheric corneal model.

D. Limitations

Since properties such as corneal refraction and corneal
asphericity can introduce additional parameters which are hard
to calibrate, it is challenging to directly solve for pupil centre
coordinates by optical principles. To mitigate the challenge, a
simplified and approximated eye model is used in our eye-
tracking module. Specifically, the refraction of the cornea
is ignored, whereas the refractive index of human cornea is
approximately 1.376. The curvature of the corneal surface
is also overlooked, which is modelled as a sphere in our
model. Note that in reality the curvature is not constant at
all points on the surface of the eyes. Such approximations can
lead to discrepancies in the gaze estimation. In the grasping
subsystem, our model does not perform well when grasping
transparent objects, since the RealSense camera does not yet
provide a good depth for such objects. It is found in the
experiment that the objects with complex surfaces or smooth
materials are likely to slip out of the grippers during grasping.

V. CONCLUSIONS AND DISCUSSIONS

TABLE III
TIME DELAY ANALYSIS OF GAZE INTERACTION-BASED GRASPING

ASSISTIVE SYSTEM.

Setup Time Delay
Image Acquisition 0.01 ms

Image Preprocessing 0.2 ms
Gaze Point Estimation 3 ms

grasp detection
GraspFormer Tiny 47 ms
GraspFormer Small 56 ms
GraspFormer Base 88 ms

Total Time
GraspFormer Tiny 50.21ms
GraspFormer Small 59.21ms
GraspFormer Base 91.21ms



Fig. 6. Images of the eye captured by near-eye cameras.

In this work, we provide a contactless human-robot interface
that enables robotic manipulation using sight. The proposed
framework leverages a head-mounted eye-tracking device to
automatically locate the object that human pays attention
to. Once the user’s gaze point is obtained, a transformer-
based grasp model takes advantages of global perception to
identify the user’s region of interest. The results show that
the developed gaze-based robotic arm is capable of moving
objects or grasping desired objects by near-eye-tracking. Ab-
lation studies demonstrate that our eye-tracking can achieve
reasonably decent tracking accuracy. The associated head-
mounted device provides a low-cost design and meets real-
time requirements.

Compared to using other human-machine interfaces, our
eye interaction is more flexible and user-friendly. Eye-driven
human-robot interaction serves as a novel framework and
shows great potential in various applications. Future research
will consider extending the current work to more challenging
environments (e.g., outdoor environments) for more complex
tasks (e.g., pouring water, serving food).
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