
Frequent Subgraph Discovery

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 01-028

Frequent Subgraph Discovery

Michihiro Kuramochi and George Karypis

July 01, 2001

Frequent Subgraph Disovery�Mihihiro Kuramohi and George KarypisDepartment of Computer Siene/Army HPC Researh CenterUniversity of Minnesota4-192 EE/CS Building, 200 Union St. SEMinneapolis, MN 55455Fasimile: (612)626-1596fkuram, karypisg�s.umn.eduJuly 1, 2001AbstratOver the years, frequent itemset disovery algorithms have been used to solve various interestingproblems. As data mining tehniques are being inreasingly applied to non-traditional domains, existingapproahes for �nding frequent itemsets annot be used as they annot model the requirement of thesedomains. An alternate way of modeling the objets in these data sets, is to use a graph to modelthe database objets. Within that model, the problem of �nding frequent patterns beomes that ofdisovering subgraphs that our frequently over the entire set of graphs. In this paper we presenta omputationally eÆient algorithm for �nding all frequent subgraphs in large graph databases. Weevaluated the performane of the algorithm by experiments with syntheti datasets as well as a hemialompound dataset. The empirial results show that our algorithm sales linearly with the number of inputtransations and it is able to disover frequent subgraphs from a set of graph transations reasonably fast,even though we have to deal with omputationally hard problems suh as anonial labeling of graphsand subgraph isomorphism whih are not neessary for traditional frequent itemset disovery.1 IntrodutionEÆient algorithms for �nding frequent itemsets|both sequential and non-sequential|in very large trans-ation databases have been one of the key suess stories of data mining researh [2, 1, 21, 8, 3, 19℄. Wean use these itemsets for disovering assoiation rules, for extrating prevalent patterns that exist in thedatasets, or for lassi�ation. Nevertheless, as data mining tehniques have been inreasingly applied tonon-traditional domains, suh as sienti�, spatial and relational datasets, situations tend to our on whihwe an not apply existing itemset disovery algorithms, beause these problems are diÆult to be adequatelyand orretly modeled with the traditional market-basket transation approahes.An alternate way of modeling the various objets is to use undireted labeled graphs to model eahone of objet entities|items in traditional frequent itemset disovery|and the relation between them. Inpartiular, eah vertex of a graph will orrespond to an entity and eah edge will orrespond to a relationbetween two entities. In this model both verties and/or edges may have labels assoiated with them whihare not required to be unique. Using suh a graph representation, a problem of �nding frequent patternsthen beomes that of disovering subgraphs whih our frequently enough over the entire set of graphs.Modeling objets using graphs allows us to represent arbitrary relations among entities. For example,we an onvert a basket of items into a graph, or more spei�ally a lique, whose verties orrespond to�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Researh OÆe ontratDA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performane Computing Researh Center ontratnumber DAAH04-95-C-0008. Aess to omputing failities was provided by the Minnesota Superomputing Institute.1

the basket's items, and all the items are onneted to eah other via an edge. Vertex labels orrespondto unique identi�ers of items, an edge between two verties u and v represents the oexistene of u and v,and eah edge has a label made of the two vertex labels at its both ends. Subgraphs that our frequentlyover a large number of baskets will form patterns whih inlude frequent itemsets in the traditional sensewhen the subgraphs beome liques. The key advantage of graph modeling is that it allows us to solveproblems that we ould not solve previously. For instane, onsider a problem of mining hemial ompoundsto �nd reurrent substrutures. We an ahieve that using a graph-based pattern disovery algorithm byreating a graph for eah one of the ompounds whose verties orrespond to di�erent atoms, and whoseedges orrespond to bonds between them. We an assign to eah vertex a label orresponding to the atominvolved (and potentially its harge), and assign to eah edge a label orresponding to the type of the bond(and potentially information about their relative 3D orientation). One these graphs have been reated,reurrent substrutures aross di�erent ompounds beome frequently ourring subgraphs.1.1 Related WorkDeveloping algorithms that disover all frequently ourring subgraphs in a large graph database is parti-ularly hallenging and omputationally intensive, as graph and/or subgraph isomorphisms play a key rolethroughout the omputations.Some of the early researh work in substruture disovery were done in the ontext of �nding reurrentpatterns in hemial analysis or pattern mathing and objet reognition in omputer vision. In partiular,Dehaspe et al. [4℄ applied Indutive Logi Programming (ILP) to obtain frequent patterns in the toxiologyevaluation problem [14℄. ILP has been atively used for prediting arinogenesis [15℄, whih is able to �nd allfrequent patterns that satisfy a given riteria. It is not designed to sale to large graph databases, however,and they did not report any statistis regarding the amount of omputation time required.Another approah that has been developed is using a greedy sheme [17, 9℄ to �nd some of the mostprevalent subgraphs. These methods are not omplete, as they may not obtain all frequent subgraphs,although they are faster than the ILP-based methods. Furthermore, these methods an also perform ap-proximate mathing when disovering frequent patterns, allowing them to reognize patterns that have slightvariations.Reently, Inokuhi et al. [10℄ presented a omputationally eÆient algorithm alled AGM, that an beused to �nd all frequent indued subgraphs in a graph database that satisfy a ertain minimum supportonstraint. A subgraph Gs = (Vs; Es) of G = (V;E) is indued if Es ontains all the edges of E that onnetverties in Vs. AGM �nds all frequent indued subgraphs using an approah similar to that used by Apriori[2℄, whih extends subgraphs by adding one vertex at eah step. Experiments reported in [10℄ show thatAGM ahieves good performane for syntheti dense datasets, and it required 40 minutes to 8 days to �ndall frequent indued subgraphs in a dataset ontaining 300 hemial ompounds, as the minimum supportthreshold varied from 20% to 10%.1.2 Our ContributionIn this paper we present a new algorithm, named FSG, for �nding all onneted subgraphs that appearfrequently in a large graph database. Our algorithm �nds frequent subgraphs using the same level-by-levelexpansion adopted in Apriori [2℄. The key features of FSG are the following: (1) it uses a sparse graphrepresentation whih minimizes both storage and omputation, (2) it inreases the size of frequent subgraphsby adding one edge at a time, allowing to generate the andidates eÆiently, (3) it uses simple algorithmsof anonial labeling and graph isomorphism whih work eÆiently for small graphs, and (4) it inorporatesvarious optimizations for andidate generation and ounting whih allow it to sale to large graph databases.We experimentally evaluated FSG on a large number of syntheti graphs, that were generated usinga framework similar to that used for market-basket transation generation [2℄. For problems in whih amoderately large number of di�erent types of entities and relations exist, FSG was able to ahieve goodperformane and to sale linearly with the database size. In fat, FSG found all the frequent onnetedsubgraphs in less than 500 seonds from a syntheti dataset onsisting of 80000 graphs with a supportthreshold of 2%. For problems where the number of edge and vertex labels was small, the performane ofFSG was worse, as the exponential omplexity of graph isomorphism dominates the overall performane. We2

also evaluated the performane of FSG on the same hemial ompound dataset used by AGM. Our resultsshow that FSG is able to �nd all the frequent onneted subgraphs using a 6.5% minimum support in 600seonds.2 Frequent Subgraph DisoveryIn our problem setting, we have a dataset of transations D. Eah transation t 2 D is a labeled, or olored,undireted graph1. Edges and verties have their labels, or olors. Given a minimum support �%, we wouldlike to �nd all onneted undireted subgraphs that frequently our in at least �jDj transations. Table 1shows the notation we use. Table 1: NotationNotation DesriptionD A dataset of graph transationst A transation of a graph in Dk-(sub)graph A (sub)graph with k edgesgk A k-subgraphCk A set of andidates with k edgesF k A set of frequent k-subgraphsl(gk) A anonial label of a k-graph gkThe key restrition in our problem statement is that we are �nding only subgraphs that are onneted.The motivation is primarily that the resulting frequent subgraphs will be enapsulating relations (or edges)between some of entities (or verties) of various objets. Within this ontext, onnetivity is a naturalproperty of frequent patterns. An additional bene�t of this restrition is that it redues the omplexity ofthe problem, as we do not need to onsider disonneted ombinations of frequent onneted subgraphs.In developing our frequent subgraph disovery algorithm, we deided to follow the struture of the algo-rithm Apriori used for �nding frequent itemsets [2℄, beause it ahieves the most e�etive pruning omparedwith other algorithms suh as GenMax, dElat [21℄ and Tree Projetion [1℄.The high level struture of our algorithm FSG is shown in Algorithm 1. Edges in the algorithm orrespondto items in traditional frequent itemset disovery. Namely, as these algorithms inrease the size of frequentitemsets by adding a single item at a time, our algorithm inreases the size of frequent subgraphs by addingan edge one by one. FSG initially enumerates all the frequent single and double edge graphs. Then, basedon those two sets, it starts the main omputational loop. During eah iteration it �rst generates andidatesubgraphs whose size is greater than the previous frequent ones by one edge (Line 5 of Algorithm 1). Next,it ounts the frequeny for eah of these andidates, and prunes subgraphs that do no satisfy the supportonstraint (Lines 7{11). Disovered frequent subgraphs satisfy the downward losure property of the supportondition, whih allows us to e�etively prune the lattie of frequent subgraphs.In Setion 2.1, we briey review some bakground issues regarding graphs. Setion 2.2 ontains details ofandidate generation with pruning and Setion 2.3 desribes frequeny ounting in FSG.2.1 Graph Representation, Canonial Labeling and Isomorphism2.1.1 Sparse Graph RepresentationOur algorithm uses sparse graph representation to store input transations, intermediate andidates andfrequent subgraphs. This representation saves memory when input transation graphs are sparse, and speedsup omputation.1The algorithm presented in this paper an be easily extended to direted graphs.3

Algorithm 1 fsg(D; �) (Frequent Subgraph)1: F 1 detet all frequent 1-subgraphs in D2: F 2 detet all frequent 2-subgraphs in D3: k 34: while F k�1 6= ; do5: Ck fsg-gen(F k�1)6: for eah andidate gk 2 Ck do7: gk:ount 08: for eah transation t 2 D do9: if andidate gk is inluded in transation t then10: gk:ount gk:ount + 111: F k fgk 2 Ck j gk:ount � �jDjg12: k k + 113: return F 1; F 2; : : : ; F k�22.1.2 Canonial LabelingBeause we deal with graphs, not itemsets, there are many di�erenes between our algorithm and the tradi-tional frequent itemset disovery. A di�erene appears when we try to sort frequent objets. In the traditionalfrequent itemset disovery, we an sort itemsets by lexiographi ordering. Clearly this is not appliable tographs. To get total order of graphs we use anonial labeling. A anonial label is a unique ode of a givengraph [12, 6℄. A graph an be represented in many di�erent ways, depending on the order of its edges orverties. Nevertheless, anonial labels should be always the same no matter how graphs are represented,as long as those graphs have the same topologial struture and the same labeling of edges and verties.By omparing anonial labels of graphs, we an sort them in a unique and deterministi way, regardlessof the representation of input graphs. We denote a anonial label of a graph g by l(g). It is easy to seethat omputing anonial labels is equivalent to determining isomorphism between graphs, beause if twographs are isomorphi with eah other, their anonial labels must be idential. Both anonial labelingand determining graph isomorphism are not known to be either in P or in NP-omplete [6℄. A naive way ofdetermining a anonial label is to use a attened representation of the adjaeny matrix of a graph. Namely,by onatenating rows or olumns of an adjaeny matrix one after another we onstrut a list of integers.By regarding this list of integers as a string, we an obtain total order of graphs by lexiographi ordering.To ompute a anonial label of a graph, we have to try all the permutations of its verties to see whihorder of verties gives the minimum adjaeny matrix. To narrow down the searh spae, we �rst partitionthe verties by their degrees and labels, whih is a well-known tehnique alled vertex invariants [12℄. Then,we try all the possible permutations of verties inside eah partition.Let us take an example to see how we an redue the searh spae of anonial labeling with vertexinvariants. Suppose we have a graph of size 3 as shown in Figure 1. Let a, b, and d denote vertexidenti�ers, not labels. Two edges of g3 are labeled with e0, and the other has a label e1. Verties a, b andd have the same label v0, and only is labeled with v1. Assume a anonial label of an adjaeny matrixis a string formed by onatenating olumns in the upper triangle of an adjaeny matrix from left to right.Suppose the following is the initial adjaeny matrix of the graph g3.v0b v0v0d v1 e0e1 e0a
Figure 1: Sample graph g34

id a b dlabel v0 v0 v1 v0a 0 e0 0 0b e0 0 e0 e1 0 e0 0 0d 0 e1 0 0By looking at eah vertex degree, we an partition them into two groups, one is for degree 1 and the otherfor degree 2. Verties a, and d belong to the �rst, and b to the seond.id a d blabel v0 v1 v0 v0partition 0 1a 0 0 0 e0 0 0 0 e0d 0 0 0 e1b e0 e0 e1 0Next, by the vertex labels, we an split the �rst partition into two again, beause v0 < v1 if we ompare \v0"with \v1" as strings. id d a blabel v0 v0 v1 v0partition 0 1 2d 0 0 0 e1a 0 0 0 e0 0 0 0 e0b e1 e0 e0 0There is no further partitioning possible by this simple vertex invariant sheme based on degrees and labels.Thus, we will exhaustively test all the possible permutations of verties within eah partition, and obtain twodi�erent permutations of the verties as shown below. The matrix at the right gives a label of \000e0e1e0",while the left one has a label of \000e1e0e0".id d a blabel v0 v0 v1 v0partition 0 1 2d 0 0 0 e1a 0 0 0 e0 0 0 0 e0b e0 e1 e0 0
id a d blabel v0 v0 v1 v0partition 0 1 2a 0 0 0 e0d 0 0 0 e1 0 0 0 e0b e0 e1 e0 0Beause e0 < e1 and \000e0e1e0" < \000e1e0e0" by string omparison, the label of the right matrix beomesanonial and its adjaeny matrix is the anonial representation of g3, that is, l(g3) = 000e0e1e0. Bypartitioning based on vertex invariants, we only tried 2 permutations in the last step, although the totalnumber of permutations for 4 verties was 4! = 24.Suppose we have a graph with M verties. By vertex invariants, also suppose we an reate N partitionsof the verties, and eah partition size is given by pi for i = 1; 2; : : : ; N . Clearly PNi=1 pi = M . Then, theredued searh spae beomes QNi=1(pi!), although the original was M !. Of ourse, vertex invariants do notasymptotially hange the omputational omplexity of anonial labeling [6℄. For example, if a given graphis regular, we an not reate �ne partitions and vertex invariants do not redue the searh spae.2.1.3 IsomorphismIn our algorithm, we need to solve both graph isomorphism and subgraph isomorphism. Graph isomorphismis a problem to determine whether given two graphs g1 and g2 are isomorphi, namely, to �nd a mapping5

from a set of verties to another set. Automorphism is a speial ase of graph isomorphism where g1 = g2,whih means to �nd a mapping from a graph to itself. Subgraph isomorphism is to �nd an isomorphismbetween g1 and a subgraph of g2. In other words, it is to determine if a graph is inluded in the other largergraph. A well-known algorithm for subgraph isomorphism is proposed in [16℄. As suggested in [6℄, graphisomorphism an be diretly solved in pratie, although it is not known to be either in P or in NP-omplete.On the other hand, subgraph isomorphism has been proved to be in NP-omplete [7℄. Thus, there is nosalable algorithm to solve it. When the size of graphs is small suh as 10 verties or less, however, it is alsoknown that subgraph isomorphism an be feasible even with a simple exhaustive searh [6, 16℄.A natural way to solve graph isomorphism is, starting from a single vertex in one graph, to try to �nd amapping to one of the verties in the other graph, that is onsistent with the labeling. Then, we keep the sameproess by adding verties one by one until either we �nd a omplete mapping or we end up with exhaustingthe searh spae. When we seek for the next mapping, we have to be areful to keep the onsisteny ofedge and vertex labels. We an redue the searh spae more if there are more labels are assigned to edgesand verties, whih leads to restrition against mapping. This approah an solve both graph and subgraphisomorphism.2.2 Candidate GenerationIn the andidate generation phase, we reate a set of andidates of size k + 1, given frequent k-subgraphs.Candidate subgraphs of size k + 1 are generated by joining two frequent k-subgraphs. In order for two suhfrequent k-subgraphs to be eligible for joining they must ontain the same (k � 1)-subgraph. We will referto this ommon (k � 1)-subgraph among two k-frequent subgraphs as their ore.Unlike the joining of itemsets in whih two frequent k-size itemsets lead to a unique (k + 1)-size itemset,the joining of two subgraphs of size k an lead to multiple subgraphs of size k+1. This is due to three reasons.First, the resulting two (k + 1)-subgraphs produed by the joining may di�er in a vertex that has the samelabel in both k-subgraphs. Figure 2(a) is suh an example. This pair of graphs g4a and g4b generates twodi�erent andidates g5a and g5b . The seond reason is beause a ore itself may have multiple automorphismsand eah automorphism an lead to a di�erent (k + 1)-andidate. An example for this ase is shown inFigure 2(b), in whih the ore|a square of 4 verties labeled with v0|has more than one automorphismwhih result in 3 di�erent andidates of size 6. Finally, two frequent subgraphs may have multiple ores asdepited by Figure 2().The overall algorithm for andidate generation is shown in Algorithm 2. For eah pair of frequent sub-graphs that share the same ore, the fsg-join is alled at Line 6 to generate all possible andidates of sizek + 1. For eah of the andidates, the algorithm �rst heks if they are already in Ck+1. If they are not,then it veri�es if all its k-subgraphs are frequent. If they are, fsg-join then inserts it into Ck+1, otherwise itdisards the andidate (Lines 7{16). The algorithm uses anonial labeling to eÆiently hek if a partiularsubgraph is already in Ck+1 or not.The key omputational steps in andidate generation are (1) ore identi�ation, (2) joining, and (3)using the downward losure property of a support ondition to eliminate some of generated andidates. Astraightforward way of implementing these tasks is to use subgraph isomorphism, graph automorphism andanonial labeling with binary searh, respetively. The amount of omputation required by the �rst step,however, an be substantially redued by keeping some information from the lattie of frequent subgraphs.Partiularly, if for eah frequent k-subgraph we store the anonial labels of its frequent (k � 1)-subgraphs,then the ores between two frequent subgraphs an be determined by simply omputing the intersetion ofthese lists. Also to speed up the omputation of the automorphism step during joining, we save previousautomorphisms assoiated with eah ore and look them up instead of performing the same automorphismomputation again. The saved list of automorphisms will be disarded one Ck+1 has been generated.Note we need to perform self join, that is, two graphs gki and gkj in Algorithm 2 are idential. It isneessary beause, for example, onsider transations without any labels, that is, eah transation in theinput is an undireted and unlabeled graph. Then, we will have only one frequent 1-subgraph and onefrequent 2-subgraph regardless of a support threshold, beause those are the only allowed strutures, andedges and verties do not have labels assigned. From those F 1 and F 2 where jF 1j = jF 2j = 1, to generatelarger graphs of Ck and F k for k � 3, the only way is the self join.6

v2v1 v1e3 e1 e2e4 v3v1 e1g5av1v1 v3e1e1 v2g4ae3 e2 v1 e2v1 v3e4e1 v2g4be1+ v2v1e3 e1e4 e2v1 v3e1g5bJoin(a) By vertex labelingJoin v0v0 v0v0v1v2 g61 v2v1v0v0 v0v0g62 v0v0v0v0 v2v1 g63v0v0v0 v0v1 g51 v0v0 v0v0v2 gk2+(b) By multiple automorphisms of a single oreJoinv1v1 ee g41v2 v1v1 ee v1v1 ee g42v2 v1v1 ee
v1v1 ee g53v2 v1v1 eee
v1v1 ee g51v2 v1v1 ee e v1v1 ee g52v2 v1v1 eev1 e

v1v1 ee g54v2 v1v1 eeev2eev2 v1 v1 ev1The �rst ore h31 eev1 v1 v1 ev1The seond ore h32
+

() By multiple oresFigure 2: Three di�erent ases of andidate joining2.3 Frequeny CountingOne andidate subgraphs have been generated, FSG omputes their frequeny. The simplest way of ahievingthis is for eah subgraph to san eah one of the transation graphs and determine if it is ontained or notusing subgraph isomorphism. Nonetheless, having to ompute these isomorphisms is partiularly expensiveand this approah is not feasible for large datasets. In the ontext of frequent itemset disovery by Apriori,the frequeny ounting is performed substantially faster by building a hash-tree of andidate itemsets andsanning eah transation to determine whih of the itemsets in the hash-tree it supports. Developing suhan algorithm for frequent subgraphs, however, is hallenging as there is no natural way to build the hash-treefor graphs. For this reason, FSG instead uses Transation ID (TID) lists, proposed by [5, 13, 18, 20, 21℄. Inthis approah for eah frequent subgraph we keep a list of transation identi�ers that support it. Now whenwe need to ompute the frequeny of gk+1, we �rst ompute the intersetion of the TID lists of its frequentk-subgraphs. If the size of the intersetion is below the support, gk+1 is pruned, otherwise we ompute thefrequeny of gk+1 using subgraph isomorphism by limiting our searh only to the set of transations in theintersetion of the TID lists.
7

Algorithm 2 fsg-gen(F k) (Candidate Generation)1: Ck+1 ;;2: for eah pair of gki ; gkj 2 F k; i � j suh that l(gki) � l(gkj) do3: for eah edge e 2 gki do freate a (k � 1)-subgraph of gki by removing an edge eg4: gk�1i gki � e5: if gk�1i is inluded in gkj then fgki and gkj share the same oreg6: T k+1 fsg-join(gki ; gkj)7: for eah gk+1j 2 T k+1 do8: ftest if the downward losure property holds for gk+1j g9: ag true10: for eah edge fl 2 gk+1j do11: hkl gk+1j � fl12: if hkl is onneted and hkl 62 F k then13: ag false14: break15: if ag = true then16: Ck+1 Ck+1 [fgk+1g17: return Ck+1Algorithm 3 fsg-join(gk1 ; gk2 ; hk�1) (Join)1: M detet all automorphisms of hk�12: fdetermine an edge e1 2 gk1 that does not appear in hk�1g3: e1 NULL4: for eah edge ei 2 gk1 do5: if ei 62 hk�1 then6: e1 ei7: break8: fdetermine an edge e2 2 gk2 that does not appear in hk�1g9: e2 NULL10: for eah edge ei 2 gk2 do11: if ei 62 hk�1 then12: e2 ei13: break14: G generate all possible graphs of size k + 1 from gk1 and gk2 , using M3 ExperimentsWe performed a set of experiments to evaluate the performane of FSG. There are two types of datasets weused. The �rst type was synthetially generated, and allowed us to study the performane of FSG underdi�erent onditions. The seond type ontains the moleular strutures of hemial ompounds, whih isused to evaluate the performane of FSG for large graphs.All experiments were done on 650MHz Intel Pentium III mahines with 2GB main memory, running theLinux operating system.3.1 Syntheti DatasetsFor the performane evaluation, we generate syntheti datasets ontrolled by a set of parameters shown inTable 2. The basi idea behind our data generator is similar to the one used in [2℄, but simpler.First, we generate a set of jLj potentially frequent onneted subgraphs whose size is determined byPoisson distribution with mean jI j. For eah frequent onneted subgraph, its topology as well as its edgeand vertex labels are hosen randomly. It has a weight assigned, whih beomes a probability that the8

Table 2: Syntheti dataset parametersNotation ParameterjDj The total number of transationsjT j The average size of transations(in terms of the number of edges)jI j The average size of potentially frequent subgraphs(in terms of the number of edges)jLj The number of potentially frequent subgraphsN The number of edge and vertex labelssubgraph is seleted to be inluded in a transation. The weights obey an exponential distribution with unitmean and the sum of the weights of all the frequent subgraphs is normalized to 1. We all this set of jLjfrequent subgraphs a seed pool. The number of distint edge and vertex labels is ontrolled by the parameterN . In partiular, N is both the number of distint edge labels as well as the number of distint vertex labels.Next, we generate jDj transations. The size of eah transation is a Poisson random variable whosemean is equal to jT j. Then we selet one of the frequent subgraphs already generated from the seed pool, byrolling an jLj-sided die. Eah fae of this die orresponds to the probability assigned to a potential frequentsubgraph in the seed pool. If the size of the seleted seed �ts in a transation, we add it. If the urrent sizeof a transation does not reah its seleted size, we keep seleting and putting another seed into it. When aseleted seed exeeds the transation size, we add it to the transation for the half of the ases, and disardit and move onto the next transation for the rest of the half. The way we put a seed into a transation isto �nd a mapping so that the overlap between a seed and a transation is maximized.In the following experiments, we use the ombinations of the parameters shown in Table 3.Table 3: Parameter settingsParameter ValuesjDj 10000jT j 5; 10; 20; 40jI j 3; 5; 7; 10jLj 200N 3; 5; 10; 20; 40Table 4 shows the amount of time required by FSG to �nd all the frequent subgraphs for various datasetsin whih we hanged N , jI j, jT j, and �. In all of these experiments, the number of transations jDj was �xedto 10000 and the number of potential frequent subgraphs jLj was set to 200. If the average transation sizejT j is smaller than that of potential frequent subgraphs jI j, we omitted suh ombinations beause we annot generate transations. In some ases, we aborted omputation beause the running time was too long orbeause the main memory was exhausted, whih are denoted by dashes in the table.By looking at the table, we an observe a number of interesting points regarding the performane of FSGfor di�erent types of datasets. First, as the number of edge and vertex labels N inreases, the amount of timerequired by FSG dereases. For example, when � = 2%, N = 3, jI j = 3 and jT j = 10, it takes 143 seonds,while the running time drops to 16 seonds for N = 20. This is beause as the number of edge and vertexlabels inreases there are fewer automorphisms and subgraph isomorphisms, whih leads to fast andidategeneration and frequeny ounting. Also by having more edge and vertex labels, we an e�etively prunethe searh spae of isomorphism beause they work as onstraints when we seek for a mapping of verties.Seond, as the size of the average transation jT j inreases the overall running time inreases as well. Therelative inrease is higher when N is small than when N is large. For example, going from jT j = 5 to jT j = 40under the setting of N = 5, jI j = 3 and � = 2%, the running time inreases by a fator of 20, whereas for9

the same set of parameters when N = 40, the inrease is only by a fator of 4. The reason for that is againhaving many edge and vertex labels e�etively dereases the number of isomorphisms and the searh spae.With small N and large jT j, we an not narrow down eÆiently the searh spae of subgraph isomorphismfor frequeny ounting and the running time inreases drastially. Third, as jI j inreases the overall runningtime also inreases. Again the relative inrease is smaller for larger values of N and smaller values of jT j bythe same reason desribed above.To determine the salability of FSG against the number of transations we performed an experiment inwhih we used jDj = 10000, 20000, 40000 and 80000 with jLj = 200, jI j = 5 and jT j ranging from 5 to 40.These results are shown in Figure 3. As we an see from the �gure, FSG sales linearly with the number oftransations.Table 4: Running times in seonds for syntheti data sets. We omitted parameter ombinations wherejI j > jT j, beause transation size is too small for potential frequent subgraphs. A dash in the table meanswe had to abort the omputation for the set of parameters beause of either memory exhaustion or takingtoo long time.N jIj jT j Running Time [se℄� = 2% � = 1%2 3 5 18 2410 143 43420 | |40 | |2 5 5 27 5210 251 224620 | |40 | |2 7 10 557 620320 | |40 | |2 10 10 | |20 | |
N jIj jT j Running Time [se℄� = 2% � = 1%3 3 5 12 2210 30 4020 112 39040 5817 |3 5 5 18 3210 51 10220 189 73640 6110 |3 7 10 66 451220 1953 |40 | |3 10 10 8290 |20 | |

N jIj jT j Running Time [se℄� = 2% � = 1%5 3 5 10 1210 20 2520 53 7140 196 2795 5 5 24 4410 55 8020 124 17440 340 6175 7 10 208 77020 772 133340 2531 31435 10 10 10914 |20 | |N jIj jT j Running Time [se℄� = 2% � = 1%10 3 5 9 1710 16 2520 35 4040 87 9810 5 5 10 1810 20 5120 47 11940 188 24610 7 10 190 81620 866 150640 2456 319910 10 10 10785 |20 | |
N jIj jT j Running Time [se℄� = 2% � = 1%20 3 5 9 1610 16 2820 34 3840 78 8520 5 5 10 1910 20 5120 48 11740 182 23320 7 10 193 80420 884 166740 2524 327120 10 10 10520 |20 | |

N jIj jT j Running Time [se℄� = 2% � = 1%40 3 5 20 2210 27 4420 44 4740 84 8940 5 5 20 2810 29 6020 55 13140 177 23440 7 10 197 123620 861 527340 2456 918340 10 10 9687 |20 | |3.2 Chemial Compound DatasetWe obtained a hemial dataset from [11℄. This was originally provided for the Preditive Toxiology Evalu-ation Challenge [14℄, whih ontains information on 340 hemial ompounds in two separated �les. The �rst�le named atoms.pl ontains de�nitions of atoms in ompounds. For example, \atm(d1; d11; ; 22;�0:133)"means that a hemial ompound d1 has an atom whose identi�er is d11, of element arbon, of type 22 andwith partial harge �0:133. The other �le bonds.pl provides bonding information between atoms. A linein the �le \bond(d1; d11; d12; 7)", for instane, states that in the ompound d1 its atoms d11 and d12 areonneted by a type 7 bond. There are 4 di�erent types of bonds (1,2,3 and 7) and 24 di�erent atoms (As,Ba, Br, C, Ca, Cl, Cu, F, H, Hg, I, K, Mn, N, Na, O, P, Pb, S, Se, Sn, Te, Ti and Zn). Also there are 6610

1 2 3 4 5 6 7 8

x 10
4

0

500

1000

1500

Number of Transactions

R
u

n
ti

m
e
 [

se
c]

T5.I5

T10.I5

T20.I5

T40.I5

Figure 3: Salability on the number of transationatom types (1, 2, 3, 8, 10, 14, 15, 16, 17, 19, 21, 22, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45,49, 50, 51, 52, 53, 60, 61, 62, 70, 72, 74, 75, 76, 77, 78, 79, 81, 83, 84, 85, 87, 92, 93, 94, 95, 96, 101, 102, 113,115, 120, 121, 129, 134, 191, 192, 193, 232 and 499).We onverted the data into graph transations. Eah ompound beomes a transation. Thus, there are340 transations in total. Eah vertex orresponds to an atom, whose label is made of a pair of the atomelement and the atom type. We did not inlude partial harge to vertex labels beause those values were notdisretized. Eah edge is plaed for every bond. Edge label diretly orresponds to the bond type. By theonversion, there are 4 edge labels and 66 vertex labels produed in total. The average transation size was27.4 in terms of the number of edges, and 27.0 in terms of the number of verties. Beause the number ofedges is very lose to that of verties, this dataset is sparse. There are 26 transations that have more than50 edges and verties. The largest transation ontains 214 edges and 214 verties.The experimental results by FSG for �nding frequent subgraphs are shown in Figure 4. Figure 4(a) showsthe running time required for di�erent values of support threshold and Figure 4(b) displays the numberof disovered frequent subgraphs on those support levels. With � = 7%, the largest frequent subgraphdisovered has 13 verties.With the support threshold � below 10%, both the running time and the number of frequent subgraphsinrease exponentially. FSG does well even for 7% support as it requires 600 seonds. AGM, a frequentindued subgraph disovery algorithm, required about 8 days for 10% and 40 minutes for 20% with almostthe same dataset on 400MHz PC [10℄.Comparing the performane of FSG on this dataset against those on the syntheti datasets, we an seethat it requires more time for this hemial dataset, one we take into aount of the di�erene in the numberof transations. This is beause in the hemial dataset, edge and vertex labels have non-uniform distribution.As we derease the minimum support, larger frequent subgraphs start to appear whih generally ontain onlyarbon and hydrogen and a single bonding type. Essentially with � < 10%, this dataset beomes similar tothe syntheti datasets where N = 2.3.3 Summary of DisussionsWe summarize the harateristis of FSG performane. First, FSG works better on graph datasets with moreedge and vertex labels. During both andidate generation and frequeny ounting, what FSG essentiallydoes is to solve graph and/or subgraph isomorphism. Without labels assigned, determining isomorphism ofgraphs is more diÆult to solve, beause we an not use labeling information as onstraints to narrow downthe searh spae of vertex mapping. We an on�rm it by omparing the results in Table 4 with variousvalues of the number of edge and vertex labels, N . 11

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

Minimum Support [%]

R
u

n
n

in
g
 T

im
e
 [

se
c]

(a) Minimum support � and running time 0 10 20 30 40 50
0

500

1000

1500

2000

2500

Minimum Support [%]

N
u

m
b
e
r

o
f

F
re

q
u

e
n

t
S

u
b
g
ra

p
h

s
D

is
co

v
e
re

d

(b) Minimum support � and the number of disoveredfrequent subgraphsFigure 4: Performane with the hemial ompound datasetSeond, the running time depends heavily on the size of frequent subgraphs to be disovered. If inputtransations ontain many large frequent patterns suh as more than 10 edges, the situation orresponds tothe parameter setting of jI j = 10, where FSG will not be likely to �nish its omputation in a reasonableamount of time. The same thing happened with the hemial dataset with a support threshold less than10%. If we ompare Figure 4(a) and Figure 4(b), we notie the running inreases more exponentially than thenumber of disovered subgraphs does, as we derease the minimum support. With a lower support riteria, westart getting larger frequent subgraphs and both andidate generation and frequeny ounting beome muhheavier. On the other hand, as for the ases of jI j � 5 in Table 4, FSG runs fast. The result of the hemialdataset is onsistent with it. For example, if we use � = 10% for the hemial dataset, FSG spends 28 seondsto get 882 frequent subgraphs in total. The largest frequent graphs among them have 11 edges, and there areonly 10 suh frequent 11-subgraphs disovered. Note that AGM disovered about 160000 indued subgraphsunder almost the same ondition. The reason of this di�erene is beause AGM onsiders all the possibleombinations of frequent indued subgraphs, while FSG only generates frequent onneted subgraphs. Onewe disovered frequent onneted subgraphs, however, we an aquire disonneted ones by transforminginput graph transations into basket transations where items orrespond to disovered frequent subgraphsand perform traditional frequent itemset disovery.Another important fator is the size of a transation. If the average size of transations beomes larger,frequeny ounting by subgraph isomorphism beomes heavier regardless of the size of andidate subgraphs.Traditional frequent itemset �nding algorithms are free from this problem. They an perform frequenyounting simply by taking the intersetion of itemsets and transations.As of the number of transations, FSG requires running time proportional to the size of inputs under thesame set of parameters. This is the same as frequent itemset disovery algorithms.4 ConlusionIn this paper we presented an algorithm, FSG, for �nding frequently ourring subgraphs in large graphdatabases, that an be used to disover reurrent patterns in sienti�, spatial, and relational datasets. Ourexperimental evaluation shows that FSG an sale reasonably well to very large graph databases providedthat graphs ontain a suÆiently many di�erent labels of edges and verties.12

AknowledgmentWe deeply thank Professor Takashi Washio, Professor Hiroshi Motoda and their researh group at the Instituteof Sienti� and Industrial Researh, Osaka University for providing the soure ode of AGM and usefulomments.Referenes[1℄ R. C. Agarwal, C. C. Aggarwal, V. V. V. Prasad, and V. Crestana. A tree projetion algorithm forgeneration of large itemsets for assoiation rules. IBM Researh Report RC21341, November 1998.[2℄ R. Agrawal and R. Srikant. Fast algorithms for mining assoiation rules. In J. B. Boa, M. Jarke,and C. Zaniolo, editors, Pro. of the 20th Int. Conf. on Very Large Databases (VLDB), pages 487{499.Morgan Kaufmann, September 1994.[3℄ R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. L. P. Chen, editors, Pro. ofthe 11th Int. Conf. on Data Engineering (ICDE), pages 3{14. IEEE Press, 1995.[4℄ L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substrutures in hemial ompounds. InR. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, editors, 4th International Conferene on KnowledgeDisovery and Data Mining, pages 30{36. AAAI Press., 1998.[5℄ B. Dunkel and N. Soparkar. Data organizatinon and aess for eÆient data mining. In Pro. of the15th IEEE International Conferene on Data Engineering, Marh 1999.[6℄ S. Fortin. The graph isomorphism problem. Tehnial Report TR96-20, Department of ComputingSiene, University of Alberta, 1996.[7℄ M. R. Garey and D. S. Johnson. Computers and Intratability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.[8℄ J. Han, J. Pei, and Y. Yin. Mining frequent patterns without andidate generation. In Pro. 2000ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), Dallas, TX, May 2000.[9℄ L. Holder, D. Cook, and S. Djoko. Substruture disovery in the subdue system. In Pro. of the Workshopon Knowledge Disovery in Databases, pages 169{180, 1994.[10℄ A. Inokuhi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substruturesfrom graph data. In Pro. of The 4th European Conf. on Priniples and Pratie of Knowledge Disoveryin Databases (PKDD'00), pages 13{23, Lyon, Frane, September 2000.[11℄ http://oldwww.omlab.ox.a.uk/oul/groups/mahlearn/PTE/.[12℄ R. C. Read and D. G. Corneil. The graph isomorph disease. Journal of Graph Theory, 1:339{363, 1977.[13℄ P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalotia, M. Bawa, and D. Shah. Turbo-harging vertialmining of large databases. In Pro. of ACM SIGMOD Int. Conf. on Management of Data, pages 22{33,May 2000.[14℄ A. Srinivasan, R. D. King, S. H. Muggleton, and M. Sternberg. The preditive toxiology evaluationhallenge. In Pro. of the Fifteenth International Joint Conferene on Arti�ial Intelligene (IJCAI-97),pages 1{6. Morgan-Kaufmann, 1997.[15℄ A. Srinivasas, R. D. Kind, S. Muggleton, and M. J. E. Sternberg. Carinogenesis preditions usingILP. In S. D�zeroski and N. Lavra�, editors, Pro. of the 7th International Workshop on Indutive LogiProgramming, volume 1297, pages 273{287. Springer-Verlag, 1997.[16℄ J. R. Ullman. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31{42, 1976.13

[17℄ K. Yoshida and H. Motoda. CLIP: Conept learning from inferene patterns. Arti�ial Intelligene,75(1):63{92, 1995.[18℄ M. Zaki and C. Hsiao. CHARM: An eÆient algorithm for losed assoiation rule mining. TehnialReport 99-10, Department of Computer Siene, Rensselaer Polytehni Institute, Otober 1999.[19℄ M. J. Zaki. Fast mining of sequential patterns in very large databases. Tehnial Report 668, Departmentof Computer Siene, Rensselaer Polytehni Institute, 1997.[20℄ M. J. Zaki. Salable algorithms for assoiation mining. Knowledge and Data Engineering, 12(2):372{390,2000.[21℄ M. J. Zaki and K. Gouda. Fast vertial mining using di�sets. Tehnial Report 01-1, Department ofComputer Siene, Rensselaer Polytehni Institute, 2001.

14

