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tOver the years, frequent itemset dis
overy algorithms have been used to solve various interestingproblems. As data mining te
hniques are being in
reasingly applied to non-traditional domains, existingapproa
hes for �nding frequent itemsets 
annot be used as they 
annot model the requirement of thesedomains. An alternate way of modeling the obje
ts in these data sets, is to use a graph to modelthe database obje
ts. Within that model, the problem of �nding frequent patterns be
omes that ofdis
overing subgraphs that o

ur frequently over the entire set of graphs. In this paper we presenta 
omputationally eÆ
ient algorithm for �nding all frequent subgraphs in large graph databases. Weevaluated the performan
e of the algorithm by experiments with syntheti
 datasets as well as a 
hemi
al
ompound dataset. The empiri
al results show that our algorithm s
ales linearly with the number of inputtransa
tions and it is able to dis
over frequent subgraphs from a set of graph transa
tions reasonably fast,even though we have to deal with 
omputationally hard problems su
h as 
anoni
al labeling of graphsand subgraph isomorphism whi
h are not ne
essary for traditional frequent itemset dis
overy.1 Introdu
tionEÆ
ient algorithms for �nding frequent itemsets|both sequential and non-sequential|in very large trans-a
tion databases have been one of the key su

ess stories of data mining resear
h [2, 1, 21, 8, 3, 19℄. We
an use these itemsets for dis
overing asso
iation rules, for extra
ting prevalent patterns that exist in thedatasets, or for 
lassi�
ation. Nevertheless, as data mining te
hniques have been in
reasingly applied tonon-traditional domains, su
h as s
ienti�
, spatial and relational datasets, situations tend to o

ur on whi
hwe 
an not apply existing itemset dis
overy algorithms, be
ause these problems are diÆ
ult to be adequatelyand 
orre
tly modeled with the traditional market-basket transa
tion approa
hes.An alternate way of modeling the various obje
ts is to use undire
ted labeled graphs to model ea
hone of obje
t entities|items in traditional frequent itemset dis
overy|and the relation between them. Inparti
ular, ea
h vertex of a graph will 
orrespond to an entity and ea
h edge will 
orrespond to a relationbetween two entities. In this model both verti
es and/or edges may have labels asso
iated with them whi
hare not required to be unique. Using su
h a graph representation, a problem of �nding frequent patternsthen be
omes that of dis
overing subgraphs whi
h o

ur frequently enough over the entire set of graphs.Modeling obje
ts using graphs allows us to represent arbitrary relations among entities. For example,we 
an 
onvert a basket of items into a graph, or more spe
i�
ally a 
lique, whose verti
es 
orrespond to�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Resear
h OÆ
e 
ontra
tDA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performan
e Computing Resear
h Center 
ontra
tnumber DAAH04-95-C-0008. A
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omputing fa
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the basket's items, and all the items are 
onne
ted to ea
h other via an edge. Vertex labels 
orrespondto unique identi�ers of items, an edge between two verti
es u and v represents the 
oexisten
e of u and v,and ea
h edge has a label made of the two vertex labels at its both ends. Subgraphs that o

ur frequentlyover a large number of baskets will form patterns whi
h in
lude frequent itemsets in the traditional sensewhen the subgraphs be
ome 
liques. The key advantage of graph modeling is that it allows us to solveproblems that we 
ould not solve previously. For instan
e, 
onsider a problem of mining 
hemi
al 
ompoundsto �nd re
urrent substru
tures. We 
an a
hieve that using a graph-based pattern dis
overy algorithm by
reating a graph for ea
h one of the 
ompounds whose verti
es 
orrespond to di�erent atoms, and whoseedges 
orrespond to bonds between them. We 
an assign to ea
h vertex a label 
orresponding to the atominvolved (and potentially its 
harge), and assign to ea
h edge a label 
orresponding to the type of the bond(and potentially information about their relative 3D orientation). On
e these graphs have been 
reated,re
urrent substru
tures a
ross di�erent 
ompounds be
ome frequently o

urring subgraphs.1.1 Related WorkDeveloping algorithms that dis
over all frequently o

urring subgraphs in a large graph database is parti
-ularly 
hallenging and 
omputationally intensive, as graph and/or subgraph isomorphisms play a key rolethroughout the 
omputations.Some of the early resear
h work in substru
ture dis
overy were done in the 
ontext of �nding re
urrentpatterns in 
hemi
al analysis or pattern mat
hing and obje
t re
ognition in 
omputer vision. In parti
ular,Dehaspe et al. [4℄ applied Indu
tive Logi
 Programming (ILP) to obtain frequent patterns in the toxi
ologyevaluation problem [14℄. ILP has been a
tively used for predi
ting 
ar
inogenesis [15℄, whi
h is able to �nd allfrequent patterns that satisfy a given 
riteria. It is not designed to s
ale to large graph databases, however,and they did not report any statisti
s regarding the amount of 
omputation time required.Another approa
h that has been developed is using a greedy s
heme [17, 9℄ to �nd some of the mostprevalent subgraphs. These methods are not 
omplete, as they may not obtain all frequent subgraphs,although they are faster than the ILP-based methods. Furthermore, these methods 
an also perform ap-proximate mat
hing when dis
overing frequent patterns, allowing them to re
ognize patterns that have slightvariations.Re
ently, Inoku
hi et al. [10℄ presented a 
omputationally eÆ
ient algorithm 
alled AGM, that 
an beused to �nd all frequent indu
ed subgraphs in a graph database that satisfy a 
ertain minimum support
onstraint. A subgraph Gs = (Vs; Es) of G = (V;E) is indu
ed if Es 
ontains all the edges of E that 
onne
tverti
es in Vs. AGM �nds all frequent indu
ed subgraphs using an approa
h similar to that used by Apriori[2℄, whi
h extends subgraphs by adding one vertex at ea
h step. Experiments reported in [10℄ show thatAGM a
hieves good performan
e for syntheti
 dense datasets, and it required 40 minutes to 8 days to �ndall frequent indu
ed subgraphs in a dataset 
ontaining 300 
hemi
al 
ompounds, as the minimum supportthreshold varied from 20% to 10%.1.2 Our ContributionIn this paper we present a new algorithm, named FSG, for �nding all 
onne
ted subgraphs that appearfrequently in a large graph database. Our algorithm �nds frequent subgraphs using the same level-by-levelexpansion adopted in Apriori [2℄. The key features of FSG are the following: (1) it uses a sparse graphrepresentation whi
h minimizes both storage and 
omputation, (2) it in
reases the size of frequent subgraphsby adding one edge at a time, allowing to generate the 
andidates eÆ
iently, (3) it uses simple algorithmsof 
anoni
al labeling and graph isomorphism whi
h work eÆ
iently for small graphs, and (4) it in
orporatesvarious optimizations for 
andidate generation and 
ounting whi
h allow it to s
ale to large graph databases.We experimentally evaluated FSG on a large number of syntheti
 graphs, that were generated usinga framework similar to that used for market-basket transa
tion generation [2℄. For problems in whi
h amoderately large number of di�erent types of entities and relations exist, FSG was able to a
hieve goodperforman
e and to s
ale linearly with the database size. In fa
t, FSG found all the frequent 
onne
tedsubgraphs in less than 500 se
onds from a syntheti
 dataset 
onsisting of 80000 graphs with a supportthreshold of 2%. For problems where the number of edge and vertex labels was small, the performan
e ofFSG was worse, as the exponential 
omplexity of graph isomorphism dominates the overall performan
e. We2



also evaluated the performan
e of FSG on the same 
hemi
al 
ompound dataset used by AGM. Our resultsshow that FSG is able to �nd all the frequent 
onne
ted subgraphs using a 6.5% minimum support in 600se
onds.2 Frequent Subgraph Dis
overyIn our problem setting, we have a dataset of transa
tions D. Ea
h transa
tion t 2 D is a labeled, or 
olored,undire
ted graph1. Edges and verti
es have their labels, or 
olors. Given a minimum support �%, we wouldlike to �nd all 
onne
ted undire
ted subgraphs that frequently o

ur in at least �jDj transa
tions. Table 1shows the notation we use. Table 1: NotationNotation Des
riptionD A dataset of graph transa
tionst A transa
tion of a graph in Dk-(sub)graph A (sub)graph with k edgesgk A k-subgraphCk A set of 
andidates with k edgesF k A set of frequent k-subgraphs
l(gk) A 
anoni
al label of a k-graph gkThe key restri
tion in our problem statement is that we are �nding only subgraphs that are 
onne
ted.The motivation is primarily that the resulting frequent subgraphs will be en
apsulating relations (or edges)between some of entities (or verti
es) of various obje
ts. Within this 
ontext, 
onne
tivity is a naturalproperty of frequent patterns. An additional bene�t of this restri
tion is that it redu
es the 
omplexity ofthe problem, as we do not need to 
onsider dis
onne
ted 
ombinations of frequent 
onne
ted subgraphs.In developing our frequent subgraph dis
overy algorithm, we de
ided to follow the stru
ture of the algo-rithm Apriori used for �nding frequent itemsets [2℄, be
ause it a
hieves the most e�e
tive pruning 
omparedwith other algorithms su
h as GenMax, dE
lat [21℄ and Tree Proje
tion [1℄.The high level stru
ture of our algorithm FSG is shown in Algorithm 1. Edges in the algorithm 
orrespondto items in traditional frequent itemset dis
overy. Namely, as these algorithms in
rease the size of frequentitemsets by adding a single item at a time, our algorithm in
reases the size of frequent subgraphs by addingan edge one by one. FSG initially enumerates all the frequent single and double edge graphs. Then, basedon those two sets, it starts the main 
omputational loop. During ea
h iteration it �rst generates 
andidatesubgraphs whose size is greater than the previous frequent ones by one edge (Line 5 of Algorithm 1). Next,it 
ounts the frequen
y for ea
h of these 
andidates, and prunes subgraphs that do no satisfy the support
onstraint (Lines 7{11). Dis
overed frequent subgraphs satisfy the downward 
losure property of the support
ondition, whi
h allows us to e�e
tively prune the latti
e of frequent subgraphs.In Se
tion 2.1, we brie
y review some ba
kground issues regarding graphs. Se
tion 2.2 
ontains details of
andidate generation with pruning and Se
tion 2.3 des
ribes frequen
y 
ounting in FSG.2.1 Graph Representation, Canoni
al Labeling and Isomorphism2.1.1 Sparse Graph RepresentationOur algorithm uses sparse graph representation to store input transa
tions, intermediate 
andidates andfrequent subgraphs. This representation saves memory when input transa
tion graphs are sparse, and speedsup 
omputation.1The algorithm presented in this paper 
an be easily extended to dire
ted graphs.3



Algorithm 1 fsg(D; �) (Frequent Subgraph)1: F 1  dete
t all frequent 1-subgraphs in D2: F 2  dete
t all frequent 2-subgraphs in D3: k  34: while F k�1 6= ; do5: Ck  fsg-gen(F k�1)6: for ea
h 
andidate gk 2 Ck do7: gk:
ount 08: for ea
h transa
tion t 2 D do9: if 
andidate gk is in
luded in transa
tion t then10: gk:
ount gk:
ount + 111: F k  fgk 2 Ck j gk:
ount � �jDjg12: k  k + 113: return F 1; F 2; : : : ; F k�22.1.2 Canoni
al LabelingBe
ause we deal with graphs, not itemsets, there are many di�eren
es between our algorithm and the tradi-tional frequent itemset dis
overy. A di�eren
e appears when we try to sort frequent obje
ts. In the traditionalfrequent itemset dis
overy, we 
an sort itemsets by lexi
ographi
 ordering. Clearly this is not appli
able tographs. To get total order of graphs we use 
anoni
al labeling. A 
anoni
al label is a unique 
ode of a givengraph [12, 6℄. A graph 
an be represented in many di�erent ways, depending on the order of its edges orverti
es. Nevertheless, 
anoni
al labels should be always the same no matter how graphs are represented,as long as those graphs have the same topologi
al stru
ture and the same labeling of edges and verti
es.By 
omparing 
anoni
al labels of graphs, we 
an sort them in a unique and deterministi
 way, regardlessof the representation of input graphs. We denote a 
anoni
al label of a graph g by 
l(g). It is easy to seethat 
omputing 
anoni
al labels is equivalent to determining isomorphism between graphs, be
ause if twographs are isomorphi
 with ea
h other, their 
anoni
al labels must be identi
al. Both 
anoni
al labelingand determining graph isomorphism are not known to be either in P or in NP-
omplete [6℄. A naive way ofdetermining a 
anoni
al label is to use a 
attened representation of the adja
en
y matrix of a graph. Namely,by 
on
atenating rows or 
olumns of an adja
en
y matrix one after another we 
onstru
t a list of integers.By regarding this list of integers as a string, we 
an obtain total order of graphs by lexi
ographi
 ordering.To 
ompute a 
anoni
al label of a graph, we have to try all the permutations of its verti
es to see whi
horder of verti
es gives the minimum adja
en
y matrix. To narrow down the sear
h spa
e, we �rst partitionthe verti
es by their degrees and labels, whi
h is a well-known te
hnique 
alled vertex invariants [12℄. Then,we try all the possible permutations of verti
es inside ea
h partition.Let us take an example to see how we 
an redu
e the sear
h spa
e of 
anoni
al labeling with vertexinvariants. Suppose we have a graph of size 3 as shown in Figure 1. Let a, b, 
 and d denote vertexidenti�ers, not labels. Two edges of g3 are labeled with e0, and the other has a label e1. Verti
es a, b andd have the same label v0, and only 
 is labeled with v1. Assume a 
anoni
al label of an adja
en
y matrixis a string formed by 
on
atenating 
olumns in the upper triangle of an adja
en
y matrix from left to right.Suppose the following is the initial adja
en
y matrix of the graph g3.v0b v0v0d v1 
e0e1 e0a
Figure 1: Sample graph g34



id a b 
 dlabel v0 v0 v1 v0a 0 e0 0 0b e0 0 e0 e1
 0 e0 0 0d 0 e1 0 0By looking at ea
h vertex degree, we 
an partition them into two groups, one is for degree 1 and the otherfor degree 2. Verti
es a, 
 and d belong to the �rst, and b to the se
ond.id a 
 d blabel v0 v1 v0 v0partition 0 1a 0 0 0 e0
 0 0 0 e0d 0 0 0 e1b e0 e0 e1 0Next, by the vertex labels, we 
an split the �rst partition into two again, be
ause v0 < v1 if we 
ompare \v0"with \v1" as strings. id d a 
 blabel v0 v0 v1 v0partition 0 1 2d 0 0 0 e1a 0 0 0 e0
 0 0 0 e0b e1 e0 e0 0There is no further partitioning possible by this simple vertex invariant s
heme based on degrees and labels.Thus, we will exhaustively test all the possible permutations of verti
es within ea
h partition, and obtain twodi�erent permutations of the verti
es as shown below. The matrix at the right gives a label of \000e0e1e0",while the left one has a label of \000e1e0e0".id d a 
 blabel v0 v0 v1 v0partition 0 1 2d 0 0 0 e1a 0 0 0 e0
 0 0 0 e0b e0 e1 e0 0
id a d 
 blabel v0 v0 v1 v0partition 0 1 2a 0 0 0 e0d 0 0 0 e1
 0 0 0 e0b e0 e1 e0 0Be
ause e0 < e1 and \000e0e1e0" < \000e1e0e0" by string 
omparison, the label of the right matrix be
omes
anoni
al and its adja
en
y matrix is the 
anoni
al representation of g3, that is, 
l(g3) = 000e0e1e0. Bypartitioning based on vertex invariants, we only tried 2 permutations in the last step, although the totalnumber of permutations for 4 verti
es was 4! = 24.Suppose we have a graph with M verti
es. By vertex invariants, also suppose we 
an 
reate N partitionsof the verti
es, and ea
h partition size is given by pi for i = 1; 2; : : : ; N . Clearly PNi=1 pi = M . Then, theredu
ed sear
h spa
e be
omes QNi=1(pi!), although the original was M !. Of 
ourse, vertex invariants do notasymptoti
ally 
hange the 
omputational 
omplexity of 
anoni
al labeling [6℄. For example, if a given graphis regular, we 
an not 
reate �ne partitions and vertex invariants do not redu
e the sear
h spa
e.2.1.3 IsomorphismIn our algorithm, we need to solve both graph isomorphism and subgraph isomorphism. Graph isomorphismis a problem to determine whether given two graphs g1 and g2 are isomorphi
, namely, to �nd a mapping5



from a set of verti
es to another set. Automorphism is a spe
ial 
ase of graph isomorphism where g1 = g2,whi
h means to �nd a mapping from a graph to itself. Subgraph isomorphism is to �nd an isomorphismbetween g1 and a subgraph of g2. In other words, it is to determine if a graph is in
luded in the other largergraph. A well-known algorithm for subgraph isomorphism is proposed in [16℄. As suggested in [6℄, graphisomorphism 
an be dire
tly solved in pra
ti
e, although it is not known to be either in P or in NP-
omplete.On the other hand, subgraph isomorphism has been proved to be in NP-
omplete [7℄. Thus, there is nos
alable algorithm to solve it. When the size of graphs is small su
h as 10 verti
es or less, however, it is alsoknown that subgraph isomorphism 
an be feasible even with a simple exhaustive sear
h [6, 16℄.A natural way to solve graph isomorphism is, starting from a single vertex in one graph, to try to �nd amapping to one of the verti
es in the other graph, that is 
onsistent with the labeling. Then, we keep the samepro
ess by adding verti
es one by one until either we �nd a 
omplete mapping or we end up with exhaustingthe sear
h spa
e. When we seek for the next mapping, we have to be 
areful to keep the 
onsisten
y ofedge and vertex labels. We 
an redu
e the sear
h spa
e more if there are more labels are assigned to edgesand verti
es, whi
h leads to restri
tion against mapping. This approa
h 
an solve both graph and subgraphisomorphism.2.2 Candidate GenerationIn the 
andidate generation phase, we 
reate a set of 
andidates of size k + 1, given frequent k-subgraphs.Candidate subgraphs of size k + 1 are generated by joining two frequent k-subgraphs. In order for two su
hfrequent k-subgraphs to be eligible for joining they must 
ontain the same (k � 1)-subgraph. We will referto this 
ommon (k � 1)-subgraph among two k-frequent subgraphs as their 
ore.Unlike the joining of itemsets in whi
h two frequent k-size itemsets lead to a unique (k + 1)-size itemset,the joining of two subgraphs of size k 
an lead to multiple subgraphs of size k+1. This is due to three reasons.First, the resulting two (k + 1)-subgraphs produ
ed by the joining may di�er in a vertex that has the samelabel in both k-subgraphs. Figure 2(a) is su
h an example. This pair of graphs g4a and g4b generates twodi�erent 
andidates g5a and g5b . The se
ond reason is be
ause a 
ore itself may have multiple automorphismsand ea
h automorphism 
an lead to a di�erent (k + 1)-
andidate. An example for this 
ase is shown inFigure 2(b), in whi
h the 
ore|a square of 4 verti
es labeled with v0|has more than one automorphismwhi
h result in 3 di�erent 
andidates of size 6. Finally, two frequent subgraphs may have multiple 
ores asdepi
ted by Figure 2(
).The overall algorithm for 
andidate generation is shown in Algorithm 2. For ea
h pair of frequent sub-graphs that share the same 
ore, the fsg-join is 
alled at Line 6 to generate all possible 
andidates of sizek + 1. For ea
h of the 
andidates, the algorithm �rst 
he
ks if they are already in Ck+1. If they are not,then it veri�es if all its k-subgraphs are frequent. If they are, fsg-join then inserts it into Ck+1, otherwise itdis
ards the 
andidate (Lines 7{16). The algorithm uses 
anoni
al labeling to eÆ
iently 
he
k if a parti
ularsubgraph is already in Ck+1 or not.The key 
omputational steps in 
andidate generation are (1) 
ore identi�
ation, (2) joining, and (3)using the downward 
losure property of a support 
ondition to eliminate some of generated 
andidates. Astraightforward way of implementing these tasks is to use subgraph isomorphism, graph automorphism and
anoni
al labeling with binary sear
h, respe
tively. The amount of 
omputation required by the �rst step,however, 
an be substantially redu
ed by keeping some information from the latti
e of frequent subgraphs.Parti
ularly, if for ea
h frequent k-subgraph we store the 
anoni
al labels of its frequent (k � 1)-subgraphs,then the 
ores between two frequent subgraphs 
an be determined by simply 
omputing the interse
tion ofthese lists. Also to speed up the 
omputation of the automorphism step during joining, we save previousautomorphisms asso
iated with ea
h 
ore and look them up instead of performing the same automorphism
omputation again. The saved list of automorphisms will be dis
arded on
e Ck+1 has been generated.Note we need to perform self join, that is, two graphs gki and gkj in Algorithm 2 are identi
al. It isne
essary be
ause, for example, 
onsider transa
tions without any labels, that is, ea
h transa
tion in theinput is an undire
ted and unlabeled graph. Then, we will have only one frequent 1-subgraph and onefrequent 2-subgraph regardless of a support threshold, be
ause those are the only allowed stru
tures, andedges and verti
es do not have labels assigned. From those F 1 and F 2 where jF 1j = jF 2j = 1, to generatelarger graphs of Ck and F k for k � 3, the only way is the self join.6



v2v1 v1e3 e1 e2e4 v3v1 e1g5av1v1 v3e1e1 v2g4ae3 e2 v1 e2v1 v3e4e1 v2g4be1+ v2v1e3 e1e4 e2v1 v3e1g5bJoin(a) By vertex labelingJoin v0v0 v0v0v1v2 g61 v2v1v0v0 v0v0g62 v0v0v0v0 v2v1 g63v0v0v0 v0v1 g51 v0v0 v0v0v2 gk2+(b) By multiple automorphisms of a single 
oreJoinv1v1 ee g41v2 v1v1 ee v1v1 ee g42v2 v1v1 ee
v1v1 ee g53v2 v1v1 eee
v1v1 ee g51v2 v1v1 ee e v1v1 ee g52v2 v1v1 eev1 e

v1v1 ee g54v2 v1v1 eeev2eev2 v1 v1 ev1The �rst 
ore h31 eev1 v1 v1 ev1The se
ond 
ore h32
+

(
) By multiple 
oresFigure 2: Three di�erent 
ases of 
andidate joining2.3 Frequen
y CountingOn
e 
andidate subgraphs have been generated, FSG 
omputes their frequen
y. The simplest way of a
hievingthis is for ea
h subgraph to s
an ea
h one of the transa
tion graphs and determine if it is 
ontained or notusing subgraph isomorphism. Nonetheless, having to 
ompute these isomorphisms is parti
ularly expensiveand this approa
h is not feasible for large datasets. In the 
ontext of frequent itemset dis
overy by Apriori,the frequen
y 
ounting is performed substantially faster by building a hash-tree of 
andidate itemsets ands
anning ea
h transa
tion to determine whi
h of the itemsets in the hash-tree it supports. Developing su
han algorithm for frequent subgraphs, however, is 
hallenging as there is no natural way to build the hash-treefor graphs. For this reason, FSG instead uses Transa
tion ID (TID) lists, proposed by [5, 13, 18, 20, 21℄. Inthis approa
h for ea
h frequent subgraph we keep a list of transa
tion identi�ers that support it. Now whenwe need to 
ompute the frequen
y of gk+1, we �rst 
ompute the interse
tion of the TID lists of its frequentk-subgraphs. If the size of the interse
tion is below the support, gk+1 is pruned, otherwise we 
ompute thefrequen
y of gk+1 using subgraph isomorphism by limiting our sear
h only to the set of transa
tions in theinterse
tion of the TID lists.
7



Algorithm 2 fsg-gen(F k) (Candidate Generation)1: Ck+1  ;;2: for ea
h pair of gki ; gkj 2 F k; i � j su
h that 
l(gki ) � 
l(gkj ) do3: for ea
h edge e 2 gki do f
reate a (k � 1)-subgraph of gki by removing an edge eg4: gk�1i  gki � e5: if gk�1i is in
luded in gkj then fgki and gkj share the same 
oreg6: T k+1  fsg-join(gki ; gkj )7: for ea
h gk+1j 2 T k+1 do8: ftest if the downward 
losure property holds for gk+1j g9: 
ag true10: for ea
h edge fl 2 gk+1j do11: hkl  gk+1j � fl12: if hkl is 
onne
ted and hkl 62 F k then13: 
ag false14: break15: if 
ag = true then16: Ck+1  Ck+1 [ fgk+1g17: return Ck+1Algorithm 3 fsg-join(gk1 ; gk2 ; hk�1) (Join)1: M  dete
t all automorphisms of hk�12: fdetermine an edge e1 2 gk1 that does not appear in hk�1g3: e1  NULL4: for ea
h edge ei 2 gk1 do5: if ei 62 hk�1 then6: e1  ei7: break8: fdetermine an edge e2 2 gk2 that does not appear in hk�1g9: e2  NULL10: for ea
h edge ei 2 gk2 do11: if ei 62 hk�1 then12: e2  ei13: break14: G generate all possible graphs of size k + 1 from gk1 and gk2 , using M3 ExperimentsWe performed a set of experiments to evaluate the performan
e of FSG. There are two types of datasets weused. The �rst type was syntheti
ally generated, and allowed us to study the performan
e of FSG underdi�erent 
onditions. The se
ond type 
ontains the mole
ular stru
tures of 
hemi
al 
ompounds, whi
h isused to evaluate the performan
e of FSG for large graphs.All experiments were done on 650MHz Intel Pentium III ma
hines with 2GB main memory, running theLinux operating system.3.1 Syntheti
 DatasetsFor the performan
e evaluation, we generate syntheti
 datasets 
ontrolled by a set of parameters shown inTable 2. The basi
 idea behind our data generator is similar to the one used in [2℄, but simpler.First, we generate a set of jLj potentially frequent 
onne
ted subgraphs whose size is determined byPoisson distribution with mean jI j. For ea
h frequent 
onne
ted subgraph, its topology as well as its edgeand vertex labels are 
hosen randomly. It has a weight assigned, whi
h be
omes a probability that the8



Table 2: Syntheti
 dataset parametersNotation ParameterjDj The total number of transa
tionsjT j The average size of transa
tions(in terms of the number of edges)jI j The average size of potentially frequent subgraphs(in terms of the number of edges)jLj The number of potentially frequent subgraphsN The number of edge and vertex labelssubgraph is sele
ted to be in
luded in a transa
tion. The weights obey an exponential distribution with unitmean and the sum of the weights of all the frequent subgraphs is normalized to 1. We 
all this set of jLjfrequent subgraphs a seed pool. The number of distin
t edge and vertex labels is 
ontrolled by the parameterN . In parti
ular, N is both the number of distin
t edge labels as well as the number of distin
t vertex labels.Next, we generate jDj transa
tions. The size of ea
h transa
tion is a Poisson random variable whosemean is equal to jT j. Then we sele
t one of the frequent subgraphs already generated from the seed pool, byrolling an jLj-sided die. Ea
h fa
e of this die 
orresponds to the probability assigned to a potential frequentsubgraph in the seed pool. If the size of the sele
ted seed �ts in a transa
tion, we add it. If the 
urrent sizeof a transa
tion does not rea
h its sele
ted size, we keep sele
ting and putting another seed into it. When asele
ted seed ex
eeds the transa
tion size, we add it to the transa
tion for the half of the 
ases, and dis
ardit and move onto the next transa
tion for the rest of the half. The way we put a seed into a transa
tion isto �nd a mapping so that the overlap between a seed and a transa
tion is maximized.In the following experiments, we use the 
ombinations of the parameters shown in Table 3.Table 3: Parameter settingsParameter ValuesjDj 10000jT j 5; 10; 20; 40jI j 3; 5; 7; 10jLj 200N 3; 5; 10; 20; 40Table 4 shows the amount of time required by FSG to �nd all the frequent subgraphs for various datasetsin whi
h we 
hanged N , jI j, jT j, and �. In all of these experiments, the number of transa
tions jDj was �xedto 10000 and the number of potential frequent subgraphs jLj was set to 200. If the average transa
tion sizejT j is smaller than that of potential frequent subgraphs jI j, we omitted su
h 
ombinations be
ause we 
annot generate transa
tions. In some 
ases, we aborted 
omputation be
ause the running time was too long orbe
ause the main memory was exhausted, whi
h are denoted by dashes in the table.By looking at the table, we 
an observe a number of interesting points regarding the performan
e of FSGfor di�erent types of datasets. First, as the number of edge and vertex labels N in
reases, the amount of timerequired by FSG de
reases. For example, when � = 2%, N = 3, jI j = 3 and jT j = 10, it takes 143 se
onds,while the running time drops to 16 se
onds for N = 20. This is be
ause as the number of edge and vertexlabels in
reases there are fewer automorphisms and subgraph isomorphisms, whi
h leads to fast 
andidategeneration and frequen
y 
ounting. Also by having more edge and vertex labels, we 
an e�e
tively prunethe sear
h spa
e of isomorphism be
ause they work as 
onstraints when we seek for a mapping of verti
es.Se
ond, as the size of the average transa
tion jT j in
reases the overall running time in
reases as well. Therelative in
rease is higher when N is small than when N is large. For example, going from jT j = 5 to jT j = 40under the setting of N = 5, jI j = 3 and � = 2%, the running time in
reases by a fa
tor of 20, whereas for9



the same set of parameters when N = 40, the in
rease is only by a fa
tor of 4. The reason for that is againhaving many edge and vertex labels e�e
tively de
reases the number of isomorphisms and the sear
h spa
e.With small N and large jT j, we 
an not narrow down eÆ
iently the sear
h spa
e of subgraph isomorphismfor frequen
y 
ounting and the running time in
reases drasti
ally. Third, as jI j in
reases the overall runningtime also in
reases. Again the relative in
rease is smaller for larger values of N and smaller values of jT j bythe same reason des
ribed above.To determine the s
alability of FSG against the number of transa
tions we performed an experiment inwhi
h we used jDj = 10000, 20000, 40000 and 80000 with jLj = 200, jI j = 5 and jT j ranging from 5 to 40.These results are shown in Figure 3. As we 
an see from the �gure, FSG s
ales linearly with the number oftransa
tions.Table 4: Running times in se
onds for syntheti
 data sets. We omitted parameter 
ombinations wherejI j > jT j, be
ause transa
tion size is too small for potential frequent subgraphs. A dash in the table meanswe had to abort the 
omputation for the set of parameters be
ause of either memory exhaustion or takingtoo long time.N jIj jT j Running Time [se
℄� = 2% � = 1%2 3 5 18 2410 143 43420 | |40 | |2 5 5 27 5210 251 224620 | |40 | |2 7 10 557 620320 | |40 | |2 10 10 | |20 | |
N jIj jT j Running Time [se
℄� = 2% � = 1%3 3 5 12 2210 30 4020 112 39040 5817 |3 5 5 18 3210 51 10220 189 73640 6110 |3 7 10 66 451220 1953 |40 | |3 10 10 8290 |20 | |

N jIj jT j Running Time [se
℄� = 2% � = 1%5 3 5 10 1210 20 2520 53 7140 196 2795 5 5 24 4410 55 8020 124 17440 340 6175 7 10 208 77020 772 133340 2531 31435 10 10 10914 |20 | |N jIj jT j Running Time [se
℄� = 2% � = 1%10 3 5 9 1710 16 2520 35 4040 87 9810 5 5 10 1810 20 5120 47 11940 188 24610 7 10 190 81620 866 150640 2456 319910 10 10 10785 |20 | |
N jIj jT j Running Time [se
℄� = 2% � = 1%20 3 5 9 1610 16 2820 34 3840 78 8520 5 5 10 1910 20 5120 48 11740 182 23320 7 10 193 80420 884 166740 2524 327120 10 10 10520 |20 | |

N jIj jT j Running Time [se
℄� = 2% � = 1%40 3 5 20 2210 27 4420 44 4740 84 8940 5 5 20 2810 29 6020 55 13140 177 23440 7 10 197 123620 861 527340 2456 918340 10 10 9687 |20 | |3.2 Chemi
al Compound DatasetWe obtained a 
hemi
al dataset from [11℄. This was originally provided for the Predi
tive Toxi
ology Evalu-ation Challenge [14℄, whi
h 
ontains information on 340 
hemi
al 
ompounds in two separated �les. The �rst�le named atoms.pl 
ontains de�nitions of atoms in 
ompounds. For example, \atm(d1; d11; 
; 22;�0:133)"means that a 
hemi
al 
ompound d1 has an atom whose identi�er is d11, of element 
arbon, of type 22 andwith partial 
harge �0:133. The other �le bonds.pl provides bonding information between atoms. A linein the �le \bond(d1; d11; d12; 7)", for instan
e, states that in the 
ompound d1 its atoms d11 and d12 are
onne
ted by a type 7 bond. There are 4 di�erent types of bonds (1,2,3 and 7) and 24 di�erent atoms (As,Ba, Br, C, Ca, Cl, Cu, F, H, Hg, I, K, Mn, N, Na, O, P, Pb, S, Se, Sn, Te, Ti and Zn). Also there are 6610
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Figure 3: S
alability on the number of transa
tionatom types (1, 2, 3, 8, 10, 14, 15, 16, 17, 19, 21, 22, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45,49, 50, 51, 52, 53, 60, 61, 62, 70, 72, 74, 75, 76, 77, 78, 79, 81, 83, 84, 85, 87, 92, 93, 94, 95, 96, 101, 102, 113,115, 120, 121, 129, 134, 191, 192, 193, 232 and 499).We 
onverted the data into graph transa
tions. Ea
h 
ompound be
omes a transa
tion. Thus, there are340 transa
tions in total. Ea
h vertex 
orresponds to an atom, whose label is made of a pair of the atomelement and the atom type. We did not in
lude partial 
harge to vertex labels be
ause those values were notdis
retized. Ea
h edge is pla
ed for every bond. Edge label dire
tly 
orresponds to the bond type. By the
onversion, there are 4 edge labels and 66 vertex labels produ
ed in total. The average transa
tion size was27.4 in terms of the number of edges, and 27.0 in terms of the number of verti
es. Be
ause the number ofedges is very 
lose to that of verti
es, this dataset is sparse. There are 26 transa
tions that have more than50 edges and verti
es. The largest transa
tion 
ontains 214 edges and 214 verti
es.The experimental results by FSG for �nding frequent subgraphs are shown in Figure 4. Figure 4(a) showsthe running time required for di�erent values of support threshold and Figure 4(b) displays the numberof dis
overed frequent subgraphs on those support levels. With � = 7%, the largest frequent subgraphdis
overed has 13 verti
es.With the support threshold � below 10%, both the running time and the number of frequent subgraphsin
rease exponentially. FSG does well even for 7% support as it requires 600 se
onds. AGM, a frequentindu
ed subgraph dis
overy algorithm, required about 8 days for 10% and 40 minutes for 20% with almostthe same dataset on 400MHz PC [10℄.Comparing the performan
e of FSG on this dataset against those on the syntheti
 datasets, we 
an seethat it requires more time for this 
hemi
al dataset, on
e we take into a

ount of the di�eren
e in the numberof transa
tions. This is be
ause in the 
hemi
al dataset, edge and vertex labels have non-uniform distribution.As we de
rease the minimum support, larger frequent subgraphs start to appear whi
h generally 
ontain only
arbon and hydrogen and a single bonding type. Essentially with � < 10%, this dataset be
omes similar tothe syntheti
 datasets where N = 2.3.3 Summary of Dis
ussionsWe summarize the 
hara
teristi
s of FSG performan
e. First, FSG works better on graph datasets with moreedge and vertex labels. During both 
andidate generation and frequen
y 
ounting, what FSG essentiallydoes is to solve graph and/or subgraph isomorphism. Without labels assigned, determining isomorphism ofgraphs is more diÆ
ult to solve, be
ause we 
an not use labeling information as 
onstraints to narrow downthe sear
h spa
e of vertex mapping. We 
an 
on�rm it by 
omparing the results in Table 4 with variousvalues of the number of edge and vertex labels, N . 11
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(b) Minimum support � and the number of dis
overedfrequent subgraphsFigure 4: Performan
e with the 
hemi
al 
ompound datasetSe
ond, the running time depends heavily on the size of frequent subgraphs to be dis
overed. If inputtransa
tions 
ontain many large frequent patterns su
h as more than 10 edges, the situation 
orresponds tothe parameter setting of jI j = 10, where FSG will not be likely to �nish its 
omputation in a reasonableamount of time. The same thing happened with the 
hemi
al dataset with a support threshold less than10%. If we 
ompare Figure 4(a) and Figure 4(b), we noti
e the running in
reases more exponentially than thenumber of dis
overed subgraphs does, as we de
rease the minimum support. With a lower support 
riteria, westart getting larger frequent subgraphs and both 
andidate generation and frequen
y 
ounting be
ome mu
hheavier. On the other hand, as for the 
ases of jI j � 5 in Table 4, FSG runs fast. The result of the 
hemi
aldataset is 
onsistent with it. For example, if we use � = 10% for the 
hemi
al dataset, FSG spends 28 se
ondsto get 882 frequent subgraphs in total. The largest frequent graphs among them have 11 edges, and there areonly 10 su
h frequent 11-subgraphs dis
overed. Note that AGM dis
overed about 160000 indu
ed subgraphsunder almost the same 
ondition. The reason of this di�eren
e is be
ause AGM 
onsiders all the possible
ombinations of frequent indu
ed subgraphs, while FSG only generates frequent 
onne
ted subgraphs. On
ewe dis
overed frequent 
onne
ted subgraphs, however, we 
an a
quire dis
onne
ted ones by transforminginput graph transa
tions into basket transa
tions where items 
orrespond to dis
overed frequent subgraphsand perform traditional frequent itemset dis
overy.Another important fa
tor is the size of a transa
tion. If the average size of transa
tions be
omes larger,frequen
y 
ounting by subgraph isomorphism be
omes heavier regardless of the size of 
andidate subgraphs.Traditional frequent itemset �nding algorithms are free from this problem. They 
an perform frequen
y
ounting simply by taking the interse
tion of itemsets and transa
tions.As of the number of transa
tions, FSG requires running time proportional to the size of inputs under thesame set of parameters. This is the same as frequent itemset dis
overy algorithms.4 Con
lusionIn this paper we presented an algorithm, FSG, for �nding frequently o

urring subgraphs in large graphdatabases, that 
an be used to dis
over re
urrent patterns in s
ienti�
, spatial, and relational datasets. Ourexperimental evaluation shows that FSG 
an s
ale reasonably well to very large graph databases providedthat graphs 
ontain a suÆ
iently many di�erent labels of edges and verti
es.12
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