
Neural Analysis of Mobile Radio Access Network

Kimmo Raivio
Helsinki University of Technology

Laboratory of Computer and Information Science
P.O. Box 5400, FIN-02015 HUT, Finland

Kimmo.Raivio@hut.fi

Olli Simula
Helsinki University of Technology

Laboratory of Computer and Information Science
P.O. Box 5400, FIN-02015 HUT, Finland

Jaana Laiho
Nokia Networks

P.O.Box 301, FIN-00045 Nokia Group
Finland

Abstract

The Self-Organizing Map (SOM) is an efficient tool for
visualization and clustering of multidimensional data. It
transforms the input vectors on two-dimensional grid of
prototype vectors and orders them. The ordered prototype
vectors are easier to visualize and explore than the original
data. Mobile networks produce a huge amount of spatio-
temporal data. The data consists of parameters of base sta-
tions (BS) and quality information of calls. There are two
alternatives in starting the data analysis. We can build ei-
ther a general one-cell-model trained using state vectors
from all cells, or a model of the network using state vectors
with parameters from all mobile cells. In both methods, fur-
ther analysis is needed to understand the reasons for vari-
ous operational states of the entire network.

1 Introduction

Data mining and exploration is an expanding new area
of research in artificial intelligence and information man-
agement. The objective of data mining is to extract relevant
information from databases containing large amounts of in-
formation. Typical data mining and analysis tasks include
classification, regression, and clustering of data, determin-
ing parameter dependencies, and finding various anomalies
from the data. In many engineering applications, the di-
mension of complex data is too large for human observa-
tion. Therefore, extracting relevant information from the
data calls for intelligent and adaptive computational meth-
ods. Artificial Neural Networks (ANNs) have successfully
been used in various intelligent data engineering applica-
tions.

The Self-Organizing Map (SOM) is a widely used neu-
ral network algorithm [8]. It has several beneficial features
making it a useful tool in data mining and exploration. The
SOM forms a nonlinear, topology-preserving mapping from
the input to the output space. The SOM follows the proba-
bility density function of the underlying data and functions,
thus, as an efficient clustering and data reduction algorithm.
The SOM is readily explainable, simple and - perhaps most
importantly - highly visual. SOM based methods have been
applied in the analysis of process data, e.g., in steel and for-
est industry [9]. In addition, the SOM has been used in anal-
ysis and monitoring of telecommunications systems. Appli-
cations include novel equalizer structures for discrete-signal
detection and adaptive resource allocation in telecommuni-
cations networks. In the current research, the goal is to de-
velop efficient adaptive methods for monitoring the mobile
network behavior and performance. Special interest is on
finding clusters of mobile cells, which can be configured
using similar parameters.

The SOM algorithm is able to perform both data cluster-
ing and visualization. The benefit of using SOM is in visu-
alization of interesting parts of data. The algorithm moves
the nodes of the map towards the areas of higher density of
mapped input vectors. As a result, the SOM efficiently visu-
alizes the clusters. In this work, a batch variate of the orig-
inal SOM algorithm is used. The samples collected from
a fixed time interval are first averaged over the topological
neighborhoods of the respective winner cells in the map.
After that the node vectors are updated in one step using
these averaged values, as in the classical K-means algorithm
[10].

The data used in this work has been generated using
wideband code division multiple access (WCDMA) radio
network simulator [7]. The WCDMA radio networks used
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in this study have been planned to provide 64-kbps service
with 95% coverage probability, and with reasonable (2%)
blocking. The microcellular scenario depicted in Fig. 1
is capable of providing 2 to 3 fold (depending on service
mix) the capacity of the macrocellular solution. The prop-
agation model in the macrocellular case has been standard
Okumura-Hata [1] [4] [11], in the microcellular case ray
tracing has been utilized [6] [12].

Figure 1. Helsinki city area with microcell sce-
nario. The map area is approximately 8.6 km

�
.

The network configurations studied in this paper were
macrocellular with 32 cells (11 base station sites) and mi-
crocellular with 46 omnidirectional cells. The macrocel-
lular sites were sectored and equipped with 65-degree an-
tennas, except one site was equipped with omnidirectional
antenna. The network configurations were planned to cover
the same area in Helsinki City. During the simulation the
users of the network were circuit-switched, with 64-kbps,
and the admission control was parameterized so that up-
link interference had no impact on the admission process.
Macrocell scenario is used to test the applicability of SOM
clustering in general, and furthermore, to see whether same
clustering techniques can be applied to different cell types.

The state of the network is characterized by 17 parame-
ters of each base station. These parameters are stored every
100ms. The parameters include the number of users con-
nected to BS, uplink noise raise in dBs, average frame error
rate (FER) and the real number of users, which are used in
this study. During a call each mobile user keeps a list of
possible BSs. Here, the maximum length of list is three.
The user is connected to all of them, but uses only one of
them at a time for the call. For the rest of the BSs on the
list the user is in softhandover. So, the first number of users
variable (noOfUsers) includes users in softhandover. A log-
arithmic scale with

����� �
as minimum is used for the error

rate.

2 Classification of cells using class frequen-
cies

Here, a method for classification of mobile cells will
be presented. Preliminary results are also included. The
method utilizes the SOM algorithm twice. A block diagram
of the method is shown in Fig. 2.
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Figure 2. Classification of mobile cells using
a general one cell model.

Analysis of the network starts with selection of variables
and data preprocessing. The method is designed to han-
dle any number of variables, but it gives more benefit if the
number of variables is large. After preprocessing, the algo-
rithm consists of two main steps.

At first, a general model of one mobile cell is built using
the SOM. The model is an average of all used cells. Clus-
ters of the SOM node vectors can be found manually us-
ing U-matrix presentation [14] of the vectors or some other
clustering method can be used.

The second step of the algorithm builds a model of the
network using cluster histograms of the data as profiles of
mobile cells. Histograms for each mobile cell can be com-
puted using the clusters as bins. Class frequencies are the
data, which is used to train the second SOM and to find the
best-matching units (BMU) of each cell.

2.1 General mobile cell model

In Fig. 3a the SOM component planes of the general mo-
bile cell model of microcell network scenario are shown.



  
0.129

4.21

8.28
 noOfUsers

  
0.544

9.15

17.7
 ulAveNoiseRaise

  
0.027

3.31

6.58
 ulUsers

  
−2

−1.59

−1.18
 ulFER

(a)

1

2

3 4

5

(b)

Figure 3. The component planes of SOM with
denormalized colorbars (a) and five clusters
of SOM node vectors given by Ward cluster-
ing (b).

The topology of the map is 2D 10 x 15 hexagonal grid.
Clusters of the general model are searched using hierar-
chical clustering methods [3]. Hierarchical clustering tech-
niques are either agglomerative, where at each round two
smaller groups of samples are added together to form larger
groups, or divisive, where the data vectors are separated in
finer groupings.

In this paper, five agglomerative clustering techniques
are used to find out the clusters of SOM codebook. The
tested methods are Ward, centroid, and single, average
and complete linkage clustering. Hierarchical clustering
of SOM codebook has been considered in [16] and [13].
The computational complexity of hierarchical clustering of
SOM codebook vectors is much lower than clustering di-
rectly the data.

The search for clusters of SOM node vectors is started

by finding local minimas of the codebook. Different sets
of local minimas are found depending on how large area
around each node is verified until a node is decided to be
local minima. The search area is limited by the maximum
topological distance or the radius of a neuron. The distance
to the nearest neuron equals one.

The local minimas are selected as the first centroids of
the base clusters. The rest of the neurons are added to
the base clusters using the selected clustering method. A
Davies-Bouldin (DB) validity index [2] is computed for
each clustering. For each clustering method the optimal
number of clusters minimizes
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where
�

is the number of clusters, � � within-cluster dis-
tance and

�
� � between clusters distance, � � and � � are the

clusters. The studied clustering methods differ in the defi-
nition of between clusters distance.

Table 1. Optimal base clusters of the first level
SOM. Radius of local minima search defines
the base clusters and the one corresponding
the lowest DB index is selected. The best
methods are marked with *.

Microcell scenario

Method Radius DB C

Ward 2.7 0.99 5*
centroid 2.7 1.00 5
complete 3.1 1.49 3
single 3.1 1.11 3
average 3.1 1.17 3

Macrocell scenario

Method Radius DB C

Ward 3.7 1.01 2
centroid 3.7 0.99 2
complete 3.7 0.75 2*
single 3.7 0.78 2
average 3.7 0.84 2

In Table 1 the results of the search for the best base clus-
ters are shown. The base clusters are found by quantiz-
ing the SOM codebook vectors to the local minimas of the
codebook. Different base cluster sets are found using differ-
ent radius for the search of local minimas. The radii giving
the clustering with lowest DB indexes are shown. Because
the studied clustering techniques are hierarchical, optimal
clustering can be found by testing the clusterings found
from the dendrograms against the validity index. However,



this is not done at this level, because it is desirable for fur-
ther studies to have more states. There are small variations
in the the performance of the methods, but only complete
linkage method has some difficulties in finding reasonable
base clusters from microcell scenario data. For the micro-
cell scenario Ward clustering gives the best results with low-
est values of Davies-Bouldin index. Five base clusters or
states of mobile cells minimize the validity index. The clus-
tering result is shown in Fig. 3b where the state 2 represents
the higher load state, state 5 higher FER state and the others
normal state.

2.2 SOM of class frequencies

The BMUs of data vectors give the state or the class of
the cell. From a sequence of states we can compute the class
frequencies of mobile cells. Using these frequency vectors
as data to a second level SOM we get a SOM of frequency
vectors or class histograms. The topology of the new SOM
is 2D rectangular grid. Grid of size 9 x 9 nodes has been
used for microcell scenario and grid of size 8 x 8 nodes has
been used for macrocell scenario. The BMU search and the
training of the map use Kullback-Leibler distance [5]. The
Kullback-Leibler distance or relative entropy between two
probability distributions ��� � � � and ��� � � � is defined by

���
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�
��� ��� � � ������� �

��� � � �
� � � � � � (2)

where the sum is over all states of the system (i.e., the
alphabet � of the discrete random variable � ). In Fig. 4
the second level SOM of histograms has been shown.

Figure 4. 9 x 9 SOM of class frequency his-
tograms.

The same hierarchical clustering methods as in the first
level SOM have been used to find clusters of the sec-
ond level SOM except now the optimal clustering is also
searched from dendrograms. From the results of Table 2 it
can be seen that Ward clustering gives the best base clusters
of mobile cells in microcell scenario. For both scenarios
clustering with lower DB index can be found from the den-
drograms as can be seen from Table 3. The dendrograms
built on optimal base clusters and on first guess base clus-
ters (radius equals one) are searched. For microcell scenario
centroid and single linkage clustering give the lowest values
of the validity index. All methods give two or three clus-
ters. The results are usually quite similar, but sometimes
a method may fail to find reasonable clustering. So, more
than one method should always be used.

Table 2. The best base clusters for the SOM
of histograms. Radius of local minima search
defines the base clusters and the one cor-
responding the lowest DB index is the best
(marked with *).

Microcell scenario

Method Radius DB C

Ward 4.1 0.73 2*
centroid 4.1 0.73 2
complete 4.1 0.73 2
single 4.1 0.74 2
average 4.1 0.73 2

Macrocell scenario
Method Radius DB C

Ward 1.0 4.19 5
centroid 1.0 4.19 5
complete 3.1 0.73 4*
single 3.1 0.73 4
average 3.1 0.73 4

The clusters given by centroid algorithm and the BMUs
of mobile cells are shown in Fig. 5. The BMUs of the orig-
inal data have been printed using subscript 1 and the BMUs
of the new data set with subscript 2 (c44 � means cell 44
with original data). In the original data set the admission
control was turned off, which means that all users have ac-
cess to the network all the time. Thus, the probability for
lower call qualities should have been larger. In the new data
set of the microcell network scenario, the admission control
was turned on. Old first level clusters (Fig. 3b) were used
to label the new data and compute new histograms.

The method divides the cells in two classes. By compar-
ing Fig. 5 with Fig. 4 and Fig. 3b, we can see that the cells
in lower right corner are characterized by higher FER and



Table 3. Optimal clusters of the SOM of his-
tograms given by dendrogram search. Ra-
dius for local minima search defines the base
clusters for each method. The best methods
are marked with *.

Microcell scenario
Method Radius DB C

Ward 1.0 0.90 2
4.1 0.73 2

centroid 1.0 0.31 2*
4.1 0.73 2

complete 1.0 0.63 2
4.1 0.73 2

single 1.0 0.31 2
4.1 0.74 2

average 1.0 0.73 3
4.1 0.73 2

Macrocell scenario
Method Radius DB C

Ward 1.0 0.31 2*
centroid 1.0 0.39 2
complete 1.0 0.50 3

3.1 0.49 3
single 1.0 0.32 2

3.1 0.31 2
average 1.0 0.31 2

3.1 0.31 2

lower number of users. All the cells at this location suffer
from same problems.

Such a clustering is beneficial in the radio network opti-
mization process. It is reasonable to assume that the config-
uration parameters for cells in one cluster within one opti-
mized radio resource management function (admission con-
trol, handover control, etc.) are the same. Furthermore, on
radio network "performance map" cells having close topo-
graphical location suffer from the same problem and can be,
with high probability, fixed with the same solution.

The method described above classifies cells using class
frequencies as models of cell behavior. The distributions
describe how much a particular cell differs from a general
cell model, which has been built using as much data as pos-
sible. The data which is used to build the lower level SOM
in this method should be selected carefully so that it repre-
sents well all the possible states of the cells. If it does not,
the lower level SOM should be trained again using new set
of data. When SOM and hierarchical clustering are used
twice on the same algorithm, it is not so clear how the first
clustering should be done to obtain reasonable results on the
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Figure 5. Clusters of mobile cells are found
using class frequencies of the SOM, which is
trained by number of connected users, uplink
noise raise, real number of users and FER of
each cell.

final level.

3 Classification of cells using correlations of
SOM component planes

In this section, another method for clustering mobile
cells on the basis of covariance matrixes of SOM compo-
nent planes is presented. Also this method uses two level
SOMs. In the previous method, the data was used to build a
model of one base station. The same data can also be used
to build models of the network. A block diagram of the
method is shown in Fig. 6.

At first SOMs of one variable are built. Each of these
SOMs is a model of the network. Next, the component
planes of the SOMs are processed. In this paper, the co-
variance matrixes of the component planes are computed.
Covariances of one or more variables are concatenated to be
used as profiles of mobile cells. These profiles are the data
to a second level SOM. The outputs of the second SOM are
the clusters of mobile cells.

3.1 SOM of one variable

Data of each cell is masked so that one variable of each
mobile cell is analyzed with the corresponding ones of the
other cells. The data to be analyzed has been normalized
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Figure 6. Classification of mobile cells using
one variable SOMs as models of the network.

to zero mean and unit variance as one data vector over all
the cells. Here the number of connected users, uplink noise
raise, real number of users and uplink FER of each cell have
been analyzed using the SOM. Hexagonal 2D neighborhood
grid of 10 x 15 nodes is used. Fig. 7 shows the SOM compo-
nent planes when the FER is studied. There is one compo-
nent plane per each mobile cell. The parameter values of the
network state at one moment can be read from similar loca-
tions on component planes. For example, upper left corner
gives one possible combination of network error rates.

The component planes are visualized using a common
color axis. This makes it possible to see the real error rates,
but it also hides the smaller variations inside the cells. In
the figure only some of the cells seem to differ from the
common behavior. Cells 15, 24 and 44 have a lot higher
FER than all the others.

3.2 Correlation of SOM component planes

If we are interested in, for example, to find out which
mobile cells have similar FER distribution, the task of hu-
man analyzer can be made easier by further processing the
component planes of SOM [15]. This kind of postprocess-
ing is more important if the number of component planes is
high.
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Figure 7. SOM component planes of the FERs.
Minimum FER is fixed to
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The component planes are considered as separate fig-
ures. Covariance matrix of the figures is computed by first
converting the figure dot values � ���� to vectors � � , where �
and � are the coordinates on the map and � is the mobile
cell number. The length of each vector � � is the product of
the dimensions of SOM topology.

The covariance matrix
�

of the planes � � is the new data,
which will be used on later studies. This data has one row
for each mobile cell. A new second level SOM is trained
using the covariance matrix. The topology of the new SOM
is 2D rectangular grid. When 46 component planes are an-
alyzed grid of size 9 x 9 nodes is used. For macrocell sce-
nario network map of size 8 x 8 nodes is used. The co-
variance matrix row of each cell is mapped on the second
level SOM and the BMU for each mobile cell is found. The
map nodes are labeled using the results of BMU search.
The SOM component planes have been reordered so that
the similar ones locate near each other.

3.3 Classification using several variables

Several SOMs for different variables can be built and re-
organized using the methods of Sections 3.1 and 3.2. The
covariance matrixes

� � of all first level SOMs can be com-
bined so that we get a new data matrix

� 

	 � ���
�
� � ��� ,



Table 4. Optimal base clusters of the second
level SOM. Radius of local minima search
defines the base clusters and the on corre-
sponding to the lowest DB index is the best.
The best methods are marked with *.

Microcell scenario
Method Radius DB C

Ward 1.0 0.94 8*
centroid 1.0 0.95 8
complete 1.0 1.16 8
single 1.6 1.21 6
average 1.6 1.14 6

Macrocell scenario

Method Radius DB C

Ward 3.7 0.95 3
centroid 3.7 0.92 3
complete 3.7 0.89 3
single 3.7 0.81 3*
average 3.7 0.89 3

� 
 � !�� !
� �
� . Matrix
�

has a row
� �

for each cell � .
The row is a concatenated vector of cell correlations of used
variables.

When the SOM is trained using this new data, the cells
appear in a new order. The second level SOM can now be
analyzed using the same hierarchical clustering methods as
in Section 2 to find clusters of mobile cells. Now, Euclidean
distance measure has been used. The base clusters are found
by quantization of SOM codebook vectors to the local mini-
mas of the codebook. Several sets of base clusters are found
using different radius for local minima search. The radii
giving best base clusters are shown in Table 4. The final
clustering results are shown in Table 5. Ward and single
linkage clustering give the best base clusters, but the DB in-
dexes of all studied methods are about the same. However,
for microcells scenario better clusterings can be found by
analyzing the dendrograms. The clusters of the microcell
scenario and the BMUs of the original data are shown in
Fig. 8. Cells 15, 24 and 44 form one cluster and the rest of
the cells form another cluster.

If new data is analyzed from a new cell or from a cell
which has been analyzed before component plane represen-
tation of this data has to be constructed. The easiest way
to do this is training the SOM again. When the SOM is
trained the new data can be used in the BMU search or it
can be masked out. If the new data is masked out in the
BMU search, but used when the neurons are updated we
can obtain similar SOM as before, but in addition we get
the component planes for the new data. From the compo-

Table 5. Optimal clusters of SOM given by
a search through dendrograms. Radius de-
fines the base clusters for each method. The
best methods are marked with *.

Microcell scenario

Method Radius DB C

Ward 1.0 0.65 3
centroid 1.0 0.53 2
complete 1.0 0.72 3
single 1.0 0.40 2*

1.6 0.40 2
average 1.0 0.40 2

1.6 0.40 2

Macrocell scenario

Method Radius DB C

Ward 1.0 0.90 2
3.7 0.95 3

centroid 1.0 0.89 3
3.7 0.92 3

complete 1.0 0.90 2
3.7 0.89 3

single 1.0 0.90 2
3.7 0.81 3*

average 1.0 0.90 2
3.7 0.89 3

nent planes new covariance matrices can be computed, new
clusters can be found and the BMUs of the new and the old
data can be found.

The method described above classifies mobile cells on
basis of correlations of selected variables. A model of mo-
bile network which describes the relations between mobile
cells has been built.

4 Conclusion

In this paper, two new methods to find clusters of mo-
bile cells in two radio access network scenarios have been
presented. In the first method, a lower level SOM, which
represents general mobile cell model is built. Histograms
of the states of the base stations are built using clusters of
lower level SOM. The same clusters can be used later to find
out histograms of new data. Thus, the operational mode
of each cell and the whole network can be monitored. In
the second method, lower level SOMs of one variable are
first build. Covariance matrices of the component planes
of these SOMs are then used to train another map, which
reorders the mobile cells.

States of one mobile cell and groups of similar mobile
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Figure 8. Clusters of mobile cells are found
using correlations of all four one variable
SOM component planes.

cells are found using agglomerative hierarchical clustering
techniques on SOM codebook vectors. Usually, all the
tested methods gave reasonable clusters with about the same
validity index, but sometimes some method may fail to find
clusters. Thus, more than one method should always be
tested. However, a search through dendrograms built us-
ing both the first guess and optimal base clusters gave often
better clusters when tested against Davies-Bouldin index.

The performance of clustering methods vary depend-
ing on selected set of variables and performed preprocess-
ing like definition of outliers. The algorithms process data
on multiple successive levels. Thus, a minor lower level
change like organization of the SOM on another way might
affect on final clustering. Usually, these changes are small,
but it is also possible that a clustering method fails due
to lower level reconfiguration. The algorithms should be
tested more using real data in several real networks to ob-
tain more reliable results.

Furthermore, in this paper it has been demonstrated that
the SOM provides powerful means to move from time con-
suming and ineffective per cell optimization to cell cluster
optimization. It has also been shown that the same methods
can be used with a network of any type of cells.
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