
LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 01-026

LPMiner: An Algorithm for Finding Frequent Itemsets Using

Length-Decreasing Support Constraint

Masakazu Seno and George Karypis

June 19, 2001





LPMiner: An Algorithm for Finding Frequent ItemsetsUsing Length-Dereasing Support Constraint�Masakazu Seno and George KarypisDepartment of Computer Siene and Engineering, Army HPC Researh CenterUniversity of Minnesota4-192 EE/CS Building, 200 Union Street SE, Minneapolis, MN 55455Fax: (612) 625-0572fseno, karypisg�s.umn.eduJune 15, 2001AbstratOver the years, a variety of algorithms for �nding frequent itemsets in very large transation databases havebeen developed. The key feature in most of these algorithms is that they use a onstant support onstraintto ontrol the inherently exponential omplexity of the problem. In general, itemsets that ontain only a fewitems will tend to be interesting if they have a high support, whereas long itemsets an still be interesting evenif their support is relatively small. Ideally, we desire to have an algorithm that �nds all the frequent itemsetswhose support dereases as a funtion of their length. In this paper we present an algorithm alled LPMiner,that �nds all itemsets that satisfy a length-dereasing support onstraint. Our experimental evaluation showsthat LPMiner is up to two orders of magnitude faster than the FP-growth algorithm for �nding itemsets at aonstant support onstraint, and that its runtime inreases gradually as the average length of the transations(and the disovered itemsets) inreases.1 IntrodutionData mining researh during the last eight years has led to the development of a variety of algorithms for �ndingfrequent itemsets in very large transation databases [1, 2, 4, 9℄. These itemsets an be used to �nd assoiationrules or extrat prevalent patterns that exist in the transations, and have been e�etively used in many di�erentdomains and appliations.The key feature in most of these algorithms is that they ontrol the inherently exponential omplexity ofthe problem by �nding only the itemsets that our in a suÆiently large fration of the transations, alled thesupport. A limitation of this paradigm for generating frequent itemsets is that it uses a onstant value of support,irrespetive of the length of the disovered itemsets. In general, itemsets that ontain only a few items will tendto be interesting if they have a high support, whereas long itemsets an still be interesting even if their supportis relatively small. Unfortunately, if onstant-support-based frequent itemset disovery algorithms are used to �ndsome of the longer but infrequent itemsets, they will end up generating an exponentially large number of shortitemsets. Maximal frequent itemset disovery algorithms [9℄ an potentially be used to �nd some of these longeritemsets, but these algorithms an still generate a very large number of short infrequent itemsets if these itemsetsare maximal. Ideally, we desire to have an algorithm that �nds all the frequent itemsets whose support dereases as�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Researh OÆe ontrat DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performane Computing Researh Center ontrat number DAAH04-95-C-0008.Aess to omputing failities was provided by the Minnesota Superomputing Institute.1



a funtion of their length. Developing suh an algorithm is partiularly hallenging beause the downward losureproperty of the onstant support onstraint annot be used to prune short infrequent itemsets.In this paper we present another property, alled smallest valid extension (SVE), that an be used to prune thesearh spae of potential itemsets in the ase where the support dereases as a funtion of the itemset length. Usingthis property, we developed an algorithm alled LPMiner, that �nds all itemsets that satisfy a length-dereasingsupport onstraint. LPMiner uses the reently proposed FP-tree [4℄ data struture to ompatly store the databasetransations in main memory, and the SVE property to prune ertain portions of the onditional FP-trees, that arebeing generated during itemset disovery. Our experimental evaluation shows that LPMiner is up to two orders ofmagnitude faster than the FP-growth algorithm for �nding itemsets at a onstant support onstraint, and that itsruntime inreases gradually as the average length of the transations (and the disovered itemsets) inreases.The rest of this paper is organized as follows. Setion 2 provides some bakground information and relatedresearh work. Setion 3 desribes the FP-growth algorithm [4℄, on whih LPMiner is based. In Setion 4, wedesribe how the length-dereasing support onstraint an be exploited to prune the searh spae of frequentitemsets. The experimental results of our algorithm are shown in Setion 5, followed by the onlusion in Setion 6.2 Bakground and Related WorksThe problem of �nding frequent itemsets is formally de�ned as follows: Given a set of transations T , eah ontaininga set of items from the set I , and a support �, we want to �nd all subsets of items that our in at least �jT jtransations. These subsets are alled frequent itemsets.Over the years a number of eÆient algorithms have been developed for �nding all frequent itemsets. The�rst omputationally eÆient algorithm for �nding itemsets in large databases was Apriori [1℄, whih �nds frequentitemsets of length l based on previously generated (l�1)-length frequent itemsets. The key idea of Apriori is to usethe downward losure property of the support onstraint to prune the spae of frequent itemsets. The FP-growthalgorithm [4℄ �nds frequent itemsets by using a data struture alled FP-tree that an ompatly store in memorythe transations of the original database, thus eliminating the need to aess the disks more than twie. AnothereÆient way to represent transation database is to use vertial tid-list database format. The vertial databaseformat assoiates eah item with all the transations that inlude the item. Elat in [7℄ uses this data format to�nd all frequent itemsets.Even though to our knowledge no work has been published for �nding frequent itemsets in whih the supportdereases as a funtion of the length of the itemset, there has been some work in developing itemset disoveryalgorithms that use multiple support onstraints. Liu et al. [5℄ presented an algorithm in whih eah item hasits minimum item support (or MIS). The minimum support of an itemset is the lowest MIS among those items inthe itemset. By sorting items in asending order of their MIS values, the minimum support of the itemset neverdereases as the length of itemset grows, making the support of itemsets downward losed. Thus the Apriori-basedalgorithm an be applied. Wang et al. [6℄ allow a set of more general support onstraints. In partiular, theyassoiate a support onstraint for eah one of the itemsets. By introduing a new funtion alled Pminsup that has\Apriori-like" property, they proposed an Apriori-based algorithm for �nding the frequent itemsets. Finally, Cohenet al. [3℄ adopt a di�erent approah in that they do not use any support onstraint. Instead, they searh for similaritemsets using probabilisti algorithms, that do not guarantee that all frequent itemsets an be found.3 FP-growth AlgorithmIn this setion, we desribe how the FP-growth algorithm works beause our approah is based on this algorithm.The desription here is based on [4℄.The key idea behind FP-growth is to use a data struture alled FP-tree to obtain a ompat representationof the original transations so that they an �t into the main memory. As a result, any subsequent operationsthat are required to �nd the frequent itemsets an be performed quikly, without having to aess the disks. TheFP-growth algorithm ahieves that by performing just two passes over the transations. Figure 1 shows how theFP-tree generation algorithm works given an input transation database that has �ve transations with a total2



tid transaction

3
4
5

B C

A C E
B C D E

B E2
1 A B C D E

Transaction Database

item

A
B
C
D
E

support

40%
80%
80%

80%

F

F 20%
Item Support Table

sort by support B
C
E
A
D

null

B C E A D
B E
B C
B C E D
C E A

B

C

E

A

D

E

D

C

E

A

in the same order in NL
sort items in each transaction

Node-Link NL

4

3 1

1

1

12

1

1

1

2n
d 

sc
an

1s
t s

ca
n

FP-tree

(a)

(b)

(c)

(d)

40%

Figure 1: Flow of FP-tree generationof six di�erent items. First, it sans the transation database to ount how many times eah item ours in thedatabase to get an \Item Support Table" (step (a)). The \Item Support Table" has a set of (item-name, support)pairs. For example, item A ours twie in the database, namely in a transation with tid 1 and another one withtid 5; therefore its support is 2=5 = 40%. In step (b), those items in the Item Support Table are sorted aordingto their support. The result is stored in item-name �eld of Node-Link header table NL. Notie that item F is notinluded in NL beause the support of item F is less than the minimum support onstraint 40%. In step (), itemsin eah transation in the input transation database are sorted in the same order as items in the Node-Link headertable NL. While transation tid 5 is sorted, item F is disarded beause the item is infrequent and has no need ofonsideration. In step (d), the FP-tree is generated by inserting those sorted transations one by one. The initialFP-tree has only its root. When the �rst transation is inserted, nodes that represent item B, C, E, A, and Dare generated, forming a path from the root in this order. The ount of eah node is set to 1 beause eah noderepresents only one transation (tid 1) so far. Next, when the seond transation is inserted, a node representingitem B is not generated. Instead, the node already generated is reused. In this ase, beause the root node hasa hild that represents item B, the ount of the node is inremented by 1. As for item E, sine there is no hildrepresenting item E under the urrent node, a new node with item-name E is generated as a hild of the urrentnode. Similar proesses are repeated until all the sorted transations are inserted into the FP-tree.One an FP-tree is generated from the input transation database, the algorithm mines frequent itemsets fromthe FP-tree. The algorithm generates itemsets from shorter ones to longer ones adding items one by one to thoseitemsets already generated. It divides mining the FP-tree into mining smaller FP-trees, eah of whih is based onan item on the Node-Link header table in Figure 1. Let us hoose item D as an example. For item D, we generate anew transation database alled onditional pattern base. Eah transation in the onditional pattern base onsistsof items on the paths from parent nodes whose hild nodes have item-name D to the root node. The onditionalpattern base for item D is shown in Figure 2. Eah transation in the onditional pattern base also has its ountof ourrene orresponding to the ount of the node with item-name D in the original FP-tree. Note that item Ditself is a frequent itemset onsisting of one item. Let us all this frequent itemset \D" a onditional pattern. Aonditional pattern base is a set of transations eah of whih inludes the onditional pattern. What we do next isto forget the original FP-tree in Figure 1 for a while and then fous on the onditional pattern base we got just nowto generate frequent itemsets that inlude this onditional pattern \D". For this purpose, we generate a smallerFP-tree than the original one, based on the onditional pattern \D". This new FP-tree, alled onditional FP-tree,3



A E C B
E C B

1
1

item count

item support

A
E
C
B

20%
40%
40%
40%

C
E

B
Node-Link NL

C

null

E

B

(Single path FP-tree)

2

2

2

Conditional Pattern Base of conditional pattern D

Conditional FP-tree of conditional pattern DFigure 2: Conditional FP-treeis generated from the onditional pattern base using the FP-tree generation algorithm again. If the onditionalFP-tree is not a single path tree, we divide mining this onditional FP-tree to mining even smaller onditionalFP-trees reursively. This is repeated until we obtain a onditional FP-tree with only a single path. During thosereursively repeated proesses, all seleted items are added to the onditional pattern. One we obtain a singlepath onditional FP-tree like the one in Figure 2, we generate all possible ombinations of items along the pathand ombine eah of these sets of items to the onditional pattern. For example, from those three nodes in theonditional FP-tree in Figure 2, we have 23 = 8 ombinations of item B, C, and E: \ " (no item), \B", \C", \E",\BC", \CE", \EB", and \BCE". Then we obtain frequent itemsets based on onditional pattern base \D": \D",\DB", \DC", \DE", \DBC", \DCE", \DEB", and \DBCE".4 LPMiner AlgorithmLPMiner is an itemset disovery algorithm, based on the FP-growth algorithm, whih �nds all the itemsets thatsatisfy a partiular length-dereasing support onstraint f(l); here l is the length of the itemset. More preisely,f(l) satis�es f(la) � f(lb) for any la; lb suh that la < lb. The idea of introduing this kind of support onstraint isthat by using a support that dereases with the length of the itemset, we may be able to �nd long itemsets, thatmay be of interest, without generating an exponentially large number of shorter itemsets. Figure 3 shows a typiallength-dereasing support onstraint. In this example, the support onstraint dereases linearly to the minimumvalue and then stays the same for itemsets of longer length. Our problem is restated as �nding those itemsetsloated above the urve determined by length-dereasing support onstraint f(l).A simple way of �nding suh itemsets is to use any of the traditional onstant-support frequent itemset disoveryalgorithms, in whih the support was set to minl>0 f(l), and then disard the itemsets that do not satisfy the length-dereasing support onstraint. This approah, however, does not redue the number of infrequent itemsets beingdisovered, and as our experiments will show, requires a large amount of time.As disussed in the introdution, �nding the omplete set of itemsets that satisfy a length-dereasing supportfuntion is partiularly hallenging beause we annot use the downward losure property of the onstant supportfrequent itemsets. This property states that in order for an itemset of length l to be frequent, all of its subsetshave to be frequent as well. As a result, one we �nd that an itemset of length l is infrequent, we know thatany longer itemsets that inlude this partiular itemset annot be frequent, and thus eliminate suh itemsets fromfurther onsideration. However, beause in our problem the support of an itemset dereases as its length inreases,an itemset an be frequent even if its subsets are infrequent.A key property, regarding the itemset whose support dereases as a funtion of their length, is the following.Given a partiular itemset I with a support of �I , suh that �I < f(jI j), then f�1(�I ) = min(fljf(l) = �Ig) is4



support(%)0.5
0.01 1 10

f
length of itemset

Figure 3: An example of typial length-dereasing support onstraintthe minimum length that an itemset I 0 suh that I 0 � I must have before it an potentially beome frequent.Figure 4 illustrates this relation graphially. The length of I 0 is nothing more than the point at whih a lineparallel to the x-axis at y = �I intersets the support urve; here, we essentially assume the best ase in whihI 0 exists and it is supported by the same set of transations as its subset I . We will refer to this property as thesmallest valid extension property or SVE for short.LPMiner uses this property as muh as it an to prune the onditional FP-trees, that are generated during theitemset disovery phase. In partiular, it uses three di�erent pruning methods that, when ombined, substantiallyredue the searh spae and the overall runtime. These methods are desribed in the rest of this setion.4.1 Transation Pruning, TPThe �rst pruning sheme implemented in LPMiner uses the smallest valid extension property to eliminate entireandidate transations of a onditional pattern base. Reall from Setion 3 that, during frequent itemset generation,the FP-growth algorithm builds a separate FP-tree for all the transations that ontain the onditional patternurrently under onsideration. Let CP be that onditional pattern, jCP j be its length, and �(CP ) be its support.If CP is infrequent, we know from the SVE property that in order for this onditional pattern to grow to somethingindeed frequent, it must have a length of at least f�1(�(CP )). Using this requirement, before building the FP-tree orresponding to this onditional pattern, we an eliminate any transations whose length is shorter thanf�1(�(CP )) � jCP j, as these transations annot ontribute to a valid frequent itemset in whih CP is part of it.We will refer to this as the transation pruning method and denote it by TP.We evaluated the omplexity of this method in omparison with the omplexity of inserting a transation to aonditional pattern base. There are three parameters we have to know to prune a transation: the length of eahtransation being inserted, f�1(�(CP )), and jCP j. The length of eah transation is alulated in a onstant timeadded to the original FP-growth algorithm, beause we an ount eah item when the transation is atually beinggenerated. As f�1(�(CP )) and jCP j are ommon values for all transations in a onditional pattern base, thesevalues need to be alulated only one for the onditional pattern base. It takes a onstant time added to the originalFP-growth algorithm to alulate jCP j. As for f�1(�(CP )), evaluating f�1 takes O(log(jI j)) to exeute binarysearh on the support table determined by f(l). Let pb be the onditional pattern base and m =Ptran2pb jtranj.The omplexity per inserting a transation is O(log(jI j)=m). Under an assumption that all items in I are ontainedin pb, this value is nothing more than O(1). Thus, the omplexity of this method is just a onstant time perinserting a transation. 5



length of itemset

I I’

support(%)

: SVE of I

Figure 4: Smallest valid extension (SVE)4.2 Node Pruning, NPThe seond pruning method fouses on pruning ertain nodes of a onditional FP-tree, on whih the next onditionalpattern base is about to be generated. Let us onsider a node v of the FP-tree. Let I(v) be the item stored at thisnode, �(I(v)) be the support of the item in the onditional pattern base, and h(v) be the height of the longest pathfrom the root through v to a leaf node. From the SVE property we know that the node v will ontribute to a validfrequent itemset if and only if h(v) + jCP j � f�1(�(I(v))) (1)where jCP j is the length of onditional pattern of the urrent onditional FP-tree. The reason that equation (1) isorret is beause, among the transations that go through node v, the longest itemset that I(v) an partiipate inhas a length of h(v). Now, if the support of I(v) is small suh that it requires an itemset whose length f�1(�(I(v)))is greater than h(v) + jCP j, then that itemset annot be supported by any of the transations that go throughnode v. Thus, if equation (1) does not hold, node v an be pruned from the FP-tree. One node v is pruned, then�(I(v)) will derease as well as the height of the nodes through v, possibly allowing further pruning. We will referto this as the node pruning method, or NP for short.A key observation to make is that both the TP and NP methods an be used together as eah one of themprunes portions of the FP-tree that the other one does not. In partiular, the NP methods an prune a node in apath that is longer than f�1(�(CP )) � jCP j, beause the item of that node has lower support than CP . On theother hand, TP redues the frequeny of some itemsets in the FP-tree by removing entire short transations. Forexample, onsider two transations; (A, B, C, D) and (A, B). Let's assume that f�1(�(CP ))� jCP j = 4, and eahone of the items A,B,C,D has a support equal to that of CP . In that ase, the NP will not remove any nodes,whereas TP will eliminate the seond transation.In order to perform the node pruning, we need to ompute the height of eah node and then traverse eahnode v to see if it violates equation (1). If it does, then the node v an be pruned, the height of all the nodes whoselongest path goes through v must be deremented by 1, and the support of I(v) needs to be deremented to takeaount of the removal of v. Every time we make suh hanges in the tree, nodes that ould not have been prunedbefore may now beome eligible for pruning. In partiular, all the rest of the nodes that have the same item I(v)needs to be reheked, as well as all the nodes whose height was deremented upon the removal of v. Our initialexperiments with suh an implementation showed that the ost of performing the pruning was quite often higherthan the saving we ahieved when used in onjuntion with the TP sheme. For this reason we implemented anapproximate but fast version of this sheme that ahieves a omparable degree of pruning.6



Our approximate NP algorithm initially sorts the transations of the onditional pattern base in dereasingtransation length, then traverses eah transation in that order, and tries to insert them in the FP-tree. Let t beone suh transation and l(t) be its length. When t is inserted into the FP-tree, it may share a pre�x with sometransations already in the FP-tree. However, as soon as the insertion of t results in a new node being reated, wehek to see if we an prune it using equation (1). In partiular, if v is that newly reated node, then h(v) = l(t),beause the transations are inserted into the FP-tree in dereasing length. Thus v an be pruned ifl(t) + jCP j < f�1(�(I(v))) : (2)If that an be done, the new node is eliminated and the insertion of t ontinues to the next item. Now if one ofthe next items inserts a new node u, then that one may be pruned using equation (2). In equation (2), we use theoriginal length of the transation l(t), not the length after the removal of the item previously pruned. The reasonis that l(t) is the orret upper bound of h(u), beause one of the transations inserted later may have a length ofat most l(t), the same as the length of the urrent transation, and an modify its height.The above approah is approximate beause (I) the elimination of a node a�ets only the nodes that an beeliminated in the subsequent transations, not the nodes already in the tree; (II) we use pessimisti bounds on theheight of a node (as disussed in the previous paragraph). This approximate approah, however, does not inreasethe omplexity of generating the onditional FP-tree, beyond the sorting of the transations in the onditionalpattern base. Sine the length of the transation falls within a small range, they an be sorted using buket sort inlinear time.4.3 Path Pruning, PPOne the tree beomes a single path, the original FP-growth algorithm generates all possible ombinations of itemsalong the path and onatenates eah of those ombinations with its onditional pattern. If the path ontains kitems, there exist a total of 2k suh ombinations. However, using the SVE property we an limit the number ofombinations that we may need to onsider.Let fi1; i2; : : : ; ikg be the k items suh that �(ij) � �(ij+1). One way of generating all possible 2k ombinationsis to grow them inrementally as follows. First, we reate two sets, one that ontains i1, and the other that doesnot. Next, for eah of these sets, we generate two new sets suh that, in eah pair of them, one ontains i2 andthe other does not, leading to four di�erent sets. By ontinuing this proess a total of k times, we will obtain allpossible 2k ombinations of items. This approah essentially builds a binary tree with k levels of edges, in whihthe nodes orrespond to the possible ombinations. One suh binary tree for k = 4 is shown in Figure 5.To see how the SVE property an be used to prune ertain subgraphs of this tree (and hene ombinations tobe explored), onsider a partiular internal node v of that tree. Let h(v) be the height of the node (root has a heightof zero), and let �(v) be the number of edges that were one on the path from the root to v. In other words, �(v) isthe number of items that have been inluded so far in the set. Using the SVE property we an stop expanding thetree under node v if and only if �(v) + (k � h(v)) + jCP j < f�1(�(Ih(v))) :Essentially, the above formula states that, based on the frequeny of the urrent item, the set must have a suÆientlylarge number of items before it an be frequent. If the number of items that were already inserted in the set (�(v))is small plus the number of items that are left for possible insertion (k � h(v)) is not suÆiently large, then nofrequent itemsets an be generated from this branh of the tree, and hene it an be pruned. We will refer to thismethod as path pruning or PP for short.The omplexity of PP per one binary tree is k log jI j beause we need to evaluate f�1 for k items. On theother hand, the original FP-growth algorithm has the omplexity of O(2k) for one binary tree. The former is muhsmaller for large k. For small k, this analysis tells that PP may ost more than the saving. Our experimental result,however, suggests that the e�et of pruning pays the prie.7



Edge to the left hild = 0Edge to the right hild = 1ni1HHHH����ni2AA���� ni2HHHH�� ni3HHHHni3����ni3���� ni3AA��ni4AA�� ni4AA�� ni4AA�� ni4AA�� ni4AA�� ni4AA��ni4AA��ni4AA�� Figure 5: Binary tree when k = 45 Experimental ResultsWe experimentally evaluated the various searh spae pruning methods of LPMiner using a variety of datasetsgenerated by the syntheti transation generator that is provided by the IBM Quest group and was used in evaluatingthe Apriori algorithm [1℄. All of our experiments were performed on Intel-based Linux workstations with PentiumIII at 600MHz and 1GB of main memory. All the reported runtimes are in seonds.We used two lasses of datasets DS1 and DS2. Both of two lasses of datasets ontained 100K transations.For eah of the two lasses we generated di�erent problem instanes, in whih we varied the average size of thetransations from 3 items to 35 items for DS1, obtaining a total of 33 di�erent datasets, DS1.3, : : :, DS1.35, andfrom 3 items to 30 items for DS2, obtaining DS2.3, : : :, DS2.30. For eah problem instane in both of DS1.xand DS2.x, we set the average size of the maximal long itemset to be x=2, so as x inreases, the dataset ontainslonger frequent itemsets. The di�erene between DS1.x and DS2.x is that eah problem instane DS1.x onsistsof 1K items, whereas eah problem instane DS2.x onsists of 5K items. The harateristis of these datasets aresummarized in Table 1.parameter DS1 DS2jDj Number of transations 100K 100KjT j Average size of the transations 3 to 35 3 to 30jI j Average size of the maximal potentially long itemsets jT j=2 jT j=2jLj Number of maximal potentially large itemsets 10000 10000N Number of items 1000 5000Table 1: Parameters for datasets used in our testsIn all of our experiments, we used minimum support onstraint that dereases linearly with the length of thefrequent itemsets. In partiular, for eah of the DS1.x datasets, the initial value of support was set to 0.5 and it wasdereased linearly down to 0.01 for itemsets up to length x. For the rest of the itemsets, the support was kept �xedat 0.01. The left graph of Figure 6 shows the shape of the support urve for DS1.20. In the ase of the DS2 lassof datasets, we used a similar approah to generate the onstraint, however instead of using 0.01 as the minimumsupport, we used 0.005. The right graph of Figure 6 shows the shape of the support urve for DS2.20.
8



LPMinerDataset FP-growth NP TP PP NP+TP NP+PP TP+PP NP+TP+PPDS1.3 3.664 3.559 3.695 3.672 3.614 3.598 3.706 3.572DS1.4 4.837 3.816 4.423 4.828 3.764 3.871 4.407 3.775DS1.5 7.454 5.035 6.361 7.467 4.904 4.993 6.369 4.865DS1.6 11.164 6.813 8.810 11.149 6.324 6.829 8.813 6.421DS1.7 15.316 8.778 11.827 15.329 8.065 8.798 11.842 8.051DS1.8 22.079 12.153 15.666 22.065 10.701 12.155 15.630 10.667DS1.9 28.122 15.260 19.676 28.025 13.519 15.245 19.695 13.559DS1.10 40.427 21.369 25.035 40.387 18.322 21.291 25.038 18.342DS1.11 49.420 25.276 29.291 49.583 22.320 25.767 29.805 22.178DS1.12 71.091 32.806 35.726 70.920 27.886 32.648 35.595 27.874DS1.13 86.639 38.489 41.226 86.282 32.921 38.271 41.203 32.805DS1.14 130.604 47.867 48.314 125.701 40.552 47.590 48.261 40.389DS1.15 155.171 54.868 54.903 154.612 46.734 54.727 54.839 47.934DS1.16 255.528 67.794 68.522 253.890 56.468 67.161 64.066 60.442DS1.17 289.600 73.841 70.428 285.373 63.333 77.307 70.126 61.611DS1.18 409.961 85.851 80.079 404.513 71.296 84.641 79.170 71.043DS1.19 488.898 95.666 89.101 483.596 79.276 94.794 88.480 78.827DS1.20 730.399 113.983 105.252 711.947 93.823 110.499 101.096 89.358DS1.21 856.614 125.378 117.470 837.304 102.944 122.580 114.886 100.077DS1.22 1224.417 145.259 141.530 1180.976 117.607 137.180 133.186 109.376DS1.23 1430.478 153.676 156.277 1385.205 124.548 150.661 151.419 121.270DS1.24 1840.375 183.516 191.363 1739.318 142.728 174.060 184.608 134.174DS1.25 2147.452 199.894 219.430 2038.823 155.002 193.338 210.911 148.172DS1.26 3465.201 287.813 306.509 3134.160 212.427 226.667 259.939 166.956DS1.27 3811.978 296.645 336.420 3479.318 217.086 253.775 302.121 185.205DS1.28 7512.347 2142.169 1911.442 4646.935 1733.971 300.822 362.577 210.955DS1.29 8150.431 1748.402 1552.467 5271.311 1288.414 337.896 412.495 233.016DS1.30 8884.682 431.021 534.117 7370.503 338.811 397.331 489.129 266.111DS1.31 9744.785 489.858 604.189 8073.919 347.581 447.265 568.864 302.462DS1.32 31063.532 11001.177 8289.842 12143.147 7943.063 547.121 676.441 361.113DS1.33 29965.612 4750.367 1789.832 14037.153 1423.910 615.470 760.411 408.505DS1.34 51420.519 16214.516 10990.934 18027.933 10446.444 751.236 905.894 487.831DS1.35 64473.916 11282.476 6828.611 21458.692 6426.131 856.127 1024.330 561.449Table 2: Comparison of pruning methods using DS1LPMinerDataset FP-growth NP TP PP NP+TP NP+PP TP+PP NP+TP+PPDS2.3 11.698 11.436 12.708 12.680 13.392 11.579 11.354 11.277DS2.4 16.238 15.178 15.060 16.558 15.768 14.762 15.219 14.243DS2.5 20.230 16.781 17.701 20.406 16.627 16.712 17.516 17.004DS2.6 33.859 21.293 22.972 33.719 20.705 21.411 23.700 20.691DS2.7 42.712 23.419 27.253 43.554 22.864 23.583 26.654 23.009DS2.8 71.215 29.089 33.553 70.947 26.878 28.848 33.619 26.846DS2.9 90.909 30.675 38.187 89.857 29.446 30.496 38.669 29.732DS2.10 146.919 37.372 47.848 147.161 34.559 37.153 47.757 35.100DS2.11 181.040 40.243 54.862 182.041 38.316 39.713 55.119 37.986DS2.12 275.834 47.299 66.480 274.819 43.653 46.978 66.040 43.281DS2.13 329.967 49.697 75.979 329.018 47.775 49.714 76.343 47.594DS2.14 475.752 58.445 90.502 471.671 53.758 56.396 88.981 52.975DS2.15 542.815 62.627 104.307 539.249 60.567 61.607 103.873 60.503DS2.16 812.486 80.111 125.099 798.523 72.078 77.162 122.502 70.391DS2.17 936.694 85.838 142.994 926.153 80.798 84.775 140.097 78.362DS2.18 1280.641 100.254 165.018 1252.841 93.058 91.616 160.608 86.791DS2.19 1437.460 106.910 183.748 1409.567 99.812 101.294 181.314 97.464DS2.20 2359.507 143.242 223.244 2282.950 125.456 116.602 207.559 112.240DS2.21 2563.249 154.079 249.584 2483.045 135.950 130.427 234.743 125.072DS2.22 3592.047 229.332 315.034 3388.120 186.411 150.000 267.465 139.401DS2.23 3935.333 236.802 336.882 3725.836 191.559 166.241 300.465 156.602DS2.24 5137.134 313.264 373.711 4676.638 208.681 186.624 336.514 173.389DS2.25 5898.104 293.610 392.530 5424.018 208.909 208.689 375.901 194.778DS2.26 12974.804 2297.732 2094.524 10022.341 1884.838 241.356 426.627 221.592DS2.27 13411.080 2351.364 2053.704 10314.877 1823.076 263.164 466.550 241.366DS2.28 - 8431.519 7149.525 - 6977.563 328.289 551.046 296.884DS2.29 - 7980.772 6288.037 - 6050.794 334.178 581.189 299.912DS2.30 - 4564.717 2243.066 - 1905.217 367.330 639.672 322.922Table 3: Comparison of pruning methods using DS29



S
up

po
rt

 (
%

)

0.5

Length of Patterns Length of Patterns
2520151050

0.005

0.1

0.2

0.3

0.4

0.5

Support Curve for DS2.20

2520151050

Support Curve for DS1.20

0.01

0.1

0.2

0.3

0.4

S
up

po
rt

 (
%

)

Figure 6: Support urve for DS1.20 and DS2.205.1 ResultsTables 2 and 3 show the experimental results that we obtained for the DS1 and DS2 datasets, respetively. Eahrow of the tables shows the results obtained for a di�erent DS1.x or DS2.x dataset, spei�ed on the �rst olumn.The remaining olumns show the amount of time required by di�erent itemset disovery algorithms. The olumnlabeled \FP-growth" shows the amount of time taken by the original FP-growth algorithm using a onstant supportonstraint that orresponds to the smallest support of the support urve, 0.01 for DS1, and 0.005 for DS2. Theolumns under the heading \LPMiner" show the amount of time required by the proposed itemset disovery algo-rithm that uses the dereasing support urve to prune the searh spae. A total of seven di�erent varieties of theLPMiner algorithm are presented, that are di�erent ombinations of the pruning methods desribed in Setion 4.For example, the olumn label \NP" orresponds to the sheme that uses only node pruning (Setion 4.2), whereasthe olumn labeled \NP+TP+PP" orresponds to the sheme that uses all the three di�erent shemes desribed inSetion 4. Note that values with a \-" orrespond to experiments that were aborted beause they were taking toolong time.A number of interesting observations an be made from the results in these tables. First, either one of theLPMiner methods performs better than the FP-growth algorithm. In partiular, the LPMiner that uses all threepruning methods does the best, requiring substantially smaller time than the FP-growth algorithm. For DS1, it isabout 2.2 times faster for DS1.10, 8.2 times faster for DS1.20, 33.4 times faster for DS1.30, and 115 times fasterfor DS1.35. Similar trends an be observed for DS2, in whih the performane of LPMiner is 4.2 times faster forDS2.10, 21.0 times faster for DS2.20, and 55.6 times faster for DS2.27.Seond, the performane gap between FP-growth and LPMiner inreases as the length of the disoveredfrequent itemset inreases (reall that, for both DS1.x and DS2.x, the length of the frequent itemsets inreaseswith x). This is due to the fat that the overall itemset spae that LPMiner an prune beomes larger, leading toimproved relative performane.Third, omparing the di�erent pruning methods in isolation, we an see that NP and TP lead to the largestruntime redution and PP ahieves the smallest redution. This is not surprising as PP an only prune itemsetsduring the late stages of itemset generation.Finally, the runtime with three pruning methods inreases gradually as the average length of the transa-tions (and the disovered itemsets) inreases, whereas the runtime of the original FP-growth algorithm inreasesexponentially.
10



6 ConlusionIn this paper we presented an algorithm that an eÆiently �nd all frequent itemsets that satisfy a length-dereasingsupport onstraint. The key insight that enabled us to ahieve high performane was the smallest valid extensionproperty of the length dereasing support urve.Referenes[1℄ R. Agrawal and R. Srikant. Fast Algorithms for Mining Assoiation Rules. VLDB 1994, 487-499.[2℄ R.C. Agarwal, C. Aggarwal, V.V.V. Prasad, and V. Crestana. A Tree Projetion Algorithm for Generation ofLarge Itemsets for Assoiation Rules. IBM Researh Report RC21341, Nov, 1998.[3℄ E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman, and C. Yang. FindingInteresting Assoiations without Support Pruning. ICDE 2000, 489-499.[4℄ J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. SIGMOD 2000, 1-12.[5℄ B. Liu, W. Hsu, Y. Ma. Mining assoiation rules with multiple minimum supports. SIGKDD 1999, 125-134[6℄ K. Wang, Y. He, and J. Han. Mining Frequent Itemsets Using Support Constraints. VLDB 2000, 43-52[7℄ M. J. Zaki. Salable algorithms for assoiation mining. IEEE Transations on Knowledge and Data Engineering,12(3):372-390, 2000[8℄ M. J. Zaki and C. Hsiao. CHARM: An eÆient algorithm for losed assoiation rule mining. RPI TehnialReport 99-10, 1999.[9℄ M. J. Zaki and K. Gouda. Fast Vertial Mining Using Di�sets. RPI Tehnial Report 01-1, 2001

11


