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Abstract

In this paper, we explore a new model of mining gen-
eral temporal association rules from large databases where
the exhibition periods of the items are allowed to be dif-
Jerent from one to another. Note that in this new model,
the downward closure property which all prior Apriori-
based algorithms relied upon to attain good efficiency is
no longer valid As a result, haw to efficiently generate
candidate itemsets form large databases has become the
major challenge. To address this issue, we develop an ef-
ficient algorithm, referred to as algorithm SPF (standing
Jor Segmented Progressive Filter) in this paper. The basic
idea behind SPF is to first segment the database into sub-
databases in such a way that items in each sub-database
will have either the common starting time or the common
ending time. Then, for each sub-database, SPF progres-
sively filters candidate 2-itemsets with cumulative filtering
thresholds either forward or backward in time. This fea-
ture allows SPF of adopting the scan reduction technique
by generating all candidate k-itemsets (k > 2) from candi-
date 2-itemsets directly. The experimental results show that
algorithm SPF significantly outperforms other schemes
which are extended from prior methods in terms of the exe-
cution time and scalability.

1. Introduction

In recent years, a significant amount of research ef-
fort has been elaborated upon deriving data mining tech-
niques to discover useful but unknown knowledge from
large databases. The knowledge discovered includes those
on association rules, classification rules, sequential pat-
terns, path traversal patterns, user moving patterns, and etc.
Among others, mining of association rules is a well ad-
dressed important problem, i.e., “Given a database of sales
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transactions, one would like to discover the important asso-
ciations among items such that the presence of some items
in a transaction wil! imply the presence of other items in the
same transaction.”

The problem of mining association rules was first ex-
plored by [2]. Following this pioneering work, several
fast algorithms based on the level-wise Apriori framework
[3, 15] and partitioning [12] are proposed to remedy the per-
formance bottleneck of Apriori. In addition, several novel
mining techniques, including TreeProjection [1] and FP-
growth algorithms [10], also receive a significant amount
of research attention, On the other hand, many variants of
mining association rules are studied to explore more mining
capabilities, such as incremental updating [5, 11], mining of
generalized and multi-level rules [8, 16], mining of quanti-
tative rules [17], mining of multi-dimensional rules [14],
constraint-based rule mining [9] and mining with multi-
ple minimum supports [13, 18], mining associations among
correlated or infrequent items [7], and temporal association
rule discovery [4, 6].

While these are important results toward enabling the
integration of association mining and fast searching algo-
rithms, their mining methods, however, cannot be effec-
tively applied to the transaction database where the exhi-
bition periods of the items are different from one to another.
As a matter of fact, it is a common phenomenon that the
items in a real transaction database have different exhibi-
tion periods. The problem can be best understood by the
following example. i

Example 1.1: Consider the transaction database D as
shown in Figure I. A set of time series database indi-
cates the transaction records from January 2002 to April
2002. The exhibition: period of each item is given in the
right of Figure 1. Assume that the minimum support and
the minimum confidence required are min_supp = 30%
and min_conf = 75%, respectively. By conventional min-
ing algorithms, with respect to the same support counting
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Figure 1. An illustrative database where the
items have individual exhibition periods.

basis |D|, only the itemsets {4}, {B}, {C} and {F} will
be termed as frequent itemsets. Thus, no rule will be dis-
covered in this case. However, as will be shown later in
Example 1.2, some rules do exist in the illustrative database
when the individual exhibition periods of items are taken
into consideration.

From Example 1.1, we can observe that the problem of
conventional mining algorithms lies in their absence of eq-
uitable support counting basis for each itemset. It is noted
that the itemsets with longer exhibition periods (e.g., A4,
B, € and F) are more likely to be frequent than those
with shorter exhibition periods (e.g., D and F). As a re-
sult, the association rules we usually discover will be those
composed of long-term items {e.g., milk and bread are fre-
quently purchased together, which is, however, of less in-
terest to us). In contrast, some short-term itemsets, such as
those composed of seasonal food or clothes, which may be
really “frequent” and interesting in their exhibition periods
are less likely to be identified as frequent ones if a con-
ventional mining process is employed, To address this is-
sue, we explore in this paper a new model of mining gen-
eral temporal association rules where the items are allowed
to have different exhibition periods, and the determination
of their supports is made in accordance with their exhibi-
tion periods. Explicitly, we introduce the notion of maxi-
mal common exhibition period (abbreviated as MCP) and
define the relative support to provide an equitable support
counting basis for each itemset. The MCP of the itemset
X, denoted by [p, g], is defined as the period between the
latest-exhibition-start time p and the eariiest-exhibition-end
time q of all items belonging to X. For example, for the
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itemset BC in Figure 1, its MCP is [2, 3] since the latest-
exhibition-start time of the items B and C is 2 and the
earliest-exhibition-end time of the items B and C is 3. The
relative support of the itemset X is given by supp(X™?) =

TR SIXSTH where DP9 indicates the partial database
bounded by [p, ¢], and [{T' € DP9|X C T} indicates the
number of transactions that contain X in D™?. The gen-
eral temporal association rule (X = Y)™7 is termed to
be frequent within its MCP [p, ¢] if and only if its relative
support is not smatler than the minimum support required
(i.e, supp((X U Y)??) > min_supp), and its confidence
is not smaller than the minimum confidence needed (i.e.,

conf((X = Y)P7) = 22BINET) > min_conf),

Example 1.2: Based on the definitions above, the frequent
general temporal association rulgs in Example 1.1 can be
identified as follows:

(1) (A == B)>* with supp(AB?*) = 3 > 30% and
conf((A=> B)>4) = ZRAED) — &5 750
(2) (D = B)%? with supp(BD??) = 2 > 30% and

conf((D = B)»?) = 22800 = 1 > 75%;
(3) (E = F)*3 with supp(EF**) = 2 > 30% and
conf((E = F)*3) = supp(EFY2) % > 75%:

supp(E%.7)
(4) (D = BC)2? with supp(BCD??) = 2 > 30% and

conf((D = BC)2?) = RUICD0) — 2 5 75%.

It is important to note that in this new model, the down-

ward closure property which all prior Apriori-based algo-
rithms relied upen to attain good efficiency is no longer
valid. Recall that the downward closure property guar-
antees that all sub-itemsets of a frequent itemset are fre-
quent. Based on this property, all prior Apriori-based al-
gorithms are allowed to limit their attention to those can-
didates whose sub-itemsets are frequent and to prune the
searching space effectively. However, once this property is
not valid anymore, the searching space will explode and be-
come difficult to tackle.
Example 1.3: From the illustrative database in Example
1.1, we can find that although the itemset BC D is frequent
in its maximal common exhibition period, the itemsets BC,
BD and CD are not all frequent in their corresponding
maxima! common exhibition periods. Explicitly, the item-
set BC is infrequent in its maximal common exhibition pe-
riod (2, 3] since its relative support is only 25% (< 30%).
Similarly, the itemset C D is infrequent in its maximal com-
mon exhibition period [1,2]. Hence, to determine if an
itemset is frequent, without the downward closure property,
we are not allowed anymore to limit our attention to those
whose subitemsets are frequent.

To address this issue, we develop an efficient algorithm,
referred to as algorithm SPF (standing for Segmented
Progressive Filter) in this paper. In essence, algorithm
SPF consists of two major procedures, i.e., Segmentation



(abbreviated as ProcSG) and Progressively Filtering (abbre-
viated as ProcPF}. The basic idea behind SPF is to first di-
vide the database into partitions according to the time gran-
ularity imposed. Then, in light of the exhibition period of
each item, SPF employs ProcSG to segment the database
into sub-databases in such a way that items in each sub-
database will have either the common starting time or the
common ending time. Note that such a segmentation will
allow us of counting the itemsets in each sub-database ei-
ther forward or backward (in time) efficiently. Then, for
each sub-database, SPF utilizes ProcPF to progressively
filter candidate 2-itemsets with cumulative filtering thresh-
olds from one partition to another. Since infrequent 2-
itemsets are hence filtered out in the early processed par-
titions, the resulting candidate 2-itemsets will be very close
to the frequent 2-itemsets. This feature allows us of adopt-
ing the scan reduction technique by generating all candidate
k-itemsets (k > 2) from candidate 2-itemsets directly {15].
The experimental results show that algorithm S PF signifi-
cantly outperforms other schemes which are extended from
prior methods in terms of the execution time and scalabil-
ity. The advantage of SPF becomes even more prominent
as the size of the database increases.

The rest of this paper is organized as follows. Section
2 describes the problem of mining general temporal associ-
ation rules. The proposed algorithm SPF is presented in
Section 3. The performance of algorithm SPF is empiri-
cally evaluated in Section 4. We conclude this paper with
Section 5.

2. Problem Description

As described in Section 1, the items in a transaction
database may have different exhibition periods. Without
loss of generality, it is assumed that a certain time gran-
ularity, e.g., week, month, quarter or year, is imposed by
the application database. Let n be the number of partitions
divided by the time granularity imposed. In the model con-
sidered, db™? (1 < p < g < n) denotes the portion of the
transaction database formed by a continuous region from
the partition P, to the partition P, and X9 denotes the
temporal itemset whose items are commonly exhibited from
the partition F;, to the partition F,.

As such, we can define the maximal temporal itemset
X749 and the correspending temporal sub-itemsets as fol-
lows,

Definition 1: The temporal itemset XP9 is called a max-
imal temporal itemset (T1) if’ P, is the latest starting par-
tition and Fy Is the earliest ending partition of all items
belonging to X. |[p,q| is referred to as the maximal com-
mon exhibition period (MCP} of the itemset X, denoted by
MCP(X).

Definition 2: The temporal itemset Y74 is called a tempo-
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ral sub-itemset (SI) of the maximal temporal itemset XP:9 if
YcCX.

Based on Definition 1, the temporal itemset BCD*? in
Figure 1 is deemed a maximal temporal itemset since the
latest starting partition and the earliest ending partition of
the items B, C' and D are both Py, In addition, the temporal
itemsets BC%2, BD»? and CD?? are the corresponding
temporal sub-itemsets of BC D22 according to Definition
2. Note that BD?? is also a maximal temporal itemset it-
self, but BC?? is not since the earliest ending partition of
the items B and C is Pj rather than Ps.

In the conventional problem of mining association rules,
the support of the itemset X is determined by supp(X) =

J_{Z%%EZM, which is referred to as the absolute sup-
port in this paper. However, as explained in Section 1, we
shall provide an equitable support counting basis for each
temporal itemset. To this end, we define the relative sup-
port for a temporal itemset below.

Definition 3: The relative support of the temporal itemset
X7 js defined as

H{T € dbP¥|X C T}
b

supp(XP¥) =

which is the fraction of the fransactions supporting the item-
sef X in dbP 9.

With the equitable support counting basis defined in Def-
inition 3, we can then determine whether a maximal tempo-
ral itemset is frequent by the following definition.
Definition 4: The maximal temporal itemset X MCP(X) j5
termed to be frequent iff supp(XMCPX) > min_supp
where min_supp is the minimum support required.
Property 1: All temporal sub-itemsets of a frequent maxi-
mal temporal itemset are frequent.

As will be explained later, Property 1 is very important
for us to determine the confidence of a general temporal
assoctation rule defined below.

Definition 5: The rule (Y == ZYMCPX) derived from
the maximal temporal itemset X MCP XD s called a general
temporal associationrule if Y C X and Z =X ~Y.
Definition 6: The confidence of the general temporal asso-
ciation rule (Y = Z)YMCPIYVZ) is defined as

supp((Y U 2)MEFYV)
supp(Y MCP(VUE))

COT-‘.f((Y = Z)MCP(YUZ)) -

Note that the calculation of the confidence of a general
temporal association rule not only depends on the relative
support of the corresponding maximal temporal itemset but
also relys on the relative supports of the corresponding tem-
poral sub-itemsets. Property 1 ensures that the relative sup-
ports of the corresponding temporal sub-itemsets can be ob-
tained without extra database scans since all temporal sub-



itemsets of the frequent maximal temporal itemset are also
frequent.

Finally, given a pair of min_conf and min_supp re-

quired, we can define the frequent general temporal asso-
ciation rule below.
Definition 7: The general temporal association rule
(Y = Z)YMCPYVD) s termed to be frequent iff
supp((Y UZ)MCPIYV2)Y > min_supp and conf((Y ==
ZYMCPYVUD)) > min_conf.

With these definitions, the problem of mining general
temporal association rules is to discover all frequent general
temporal association rules from the large database. Simi-
larly, the problem of mining general temporal association
can be decomposed into two steps: (1) Generate all fre-
quent maximal temporal itemsets (7°Js) and the correspond-
ing temporal sub-itemsets (51s) with their relative supports;
(2) Derive all frequent general temporal association rules
that satisfy min.conf from these frequent T'Ts.

Note that once the frequent 7'Is and S1s with their sup-
ports are obtained, deriving the frequent general temporal
association rules is straightforward. Therefore, in the rest of
this paper we concentrate our discussion on the algorithms
for mining frequent T'I's and S1s.

3. Mining General Temporal Association Rules

We present the proposed algorithm, SPF, for mining
general tempora} association rules in this section. A detailed
description of algorithm SPF' is given in Section 3.1. In
Section 3.2, we use an example to illustrate the operations
of SPF.

3.1. Algorithm SPF

The major challenge of mining general temporal associ-
ation rules is that the exhibition periods of the items in the
transaction database are allowed to be different from one
to another. In such a circumstance, it is very difficult to
efficiently generate candidate itemsets since the downward
closure property is no longer valid as explained in Section
1. To address this problem, a novel algorithm, SPF, is
proposed in this section to discover general temporal asso-
ciation rules efficiently.

In essence, algorithm SPF consists of two major proce-
dures, i.e., Segmentation (abbreviated as ProcSG) and Pro-
gressively Filtering (abbreviated as ProcPF). The basic idea
behind SPF is to first divide the database into partitions ac-
cording to the time granularity imposed. Then, in light of
the exhibition period of each item, SPF employs ProcSG
to segment the database into sub-databases in such a way
that items in each sub-database will have either the common
starting time or the common ending time. For each sub-
database, SPF utilizes ProcPF to progressively filter can-
didate 2-itemsets with cumulative filtering thresholds from
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one partition to another. After all sub-databases are pro-
cessed, SPF unions all candidate 2-itemsets generated in
each sub-database. As pointed out earlier, since infrequent
2-itemsets will be filtered out in the early processed parti-
tions, the resulting candidate 2-itemsets will be very close to
the frequent 2-itemsets. This feature allows us of adopting
the scan reduction technique by generating all candidate k-
itemsets (k > 2) from candidate 2-itemsets directly. After
all candidate itemsets are generated, they are transformed
to T'Is, and the corresponding S1s are generated based on
these T'Is. Finally, the frequent T'J's and STs with their sup-
ports can be obtained by scanning the whole database once.

3.1.1. Description of ProcSG for Segmentation

The motivation of PrecSG is to first reduce the problem
of mining general temporal association rules to the one in
which the exhibition periods of the items are only allowed
to be either different in the starting time or different in the
ending time. After such a reduction, we are able ta employ
ProcPF, in each sub-database, to progressively filter can-
didate 2-itemsets either forward or backward (in time) ef-
ficiently. However, as mentioned above, the advantageous
feature of ProcPF is that it can progressively filter out in-
frequent 2-itemset in the early processed partitions. Thus,
the more segments the whole database is divided into, the
less significant the filtering effect will be. In view of this,
ProcSG is devised to segment the whole database into the
minimal number of sub-databases as required for items in
each sub-database to have either the common starting parti-
tion or the common ending partition.
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Figure 2. An example illustrating the execu-
tion of ProcSG.

Figure 2 illustrates the execution of ProcSG. Operations
in lines 1-3 initialize the parameters used in the procedure.
The for loop in lines 4-8, for each item, sets the left flag of
the starting partition and the right flag of the ending parti-
tion to be true. The resulting values in flag array are shown
in the bottom of Figure 2. With these fiags, the for loop in
lines 9-31 scans the partitions from the first to the last. Once



the value of direction is reversed, one segmentation has to
be made, and the value of direction is reset. From the ex-
ample in Figure 2, the value of direction is reversed twice,
meaning that two times of segmentation are needed. Con-
sequently, the original database db'® is divided into db'®,
db** and db®*.

Procedure ProcSG(n)

. SM =0; direction = —1, head = 1;

2. for(index = (0ton)

3. flagh][L] = false; flagli][R] = false;

4, for(eachitem i € I) {

5. (p.q) = MCP(i);

6. flaglp — 1)[L] = true;

7. flaglq]lR] = true;

8. }

9 for(i=1ton—1){

10. if (direction == —1) {

1. if(flagli][L] == true and flagli][R) == true) {
12, SM = SM U {{head, indez, direction)};
13, head = index + 1;

14.  } elseif (flag[s]{L] == true and flagli]|R] == false)
15. direction = L;

16.  elseif { flag[¢][L] == false and flag[i][R] == true)
E7. direction = R;

18.  } elseif (direction == L) {

19.  if(flaglindez]|R] == true) {

20. SM = §M U {(head, index, direction)};
2]. head = index + 1;

22. direction = ~1;

23}

24, } elseif (direction == R){

25, if(flagli][L] == true) {

26. SM = SM U {(head, indez, direction)},
27. head = indez + 1;

28. direction = —1;

29}

30. }

3.}

32. SM = SM U {{head,n,direction)}};
33. return SM;

3.1.2. Description of ProcPF for Progressively Filtering

After the entire database is segmented by ProcSG, ProcPF
is designed to progressively filter candidates 2-itemsets
from one partition to another in cach sub-database. Specif-
ically, ProcPF generates all 2-itemsets and counts their oc-
currences in the first partition. For those 2-itemsets whose
numbers of occurrences are not smaller than the filtering
threshold (i.e., min_supp * | P;}), they are viewed as can-
didate 2-itemsets and will be brought to the next partition
for further processing. Then, ProcPF will generate new
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2-itemsets in the second partition and count their cccur-
rences as well. However, for those candidate 2-itemsets
brought from the previous partition, their numbers of oc-
currences will be cumulated from the previous partition
to the current one. Note that the filtering threshold (i.e.,
min_supp* (| P| + | Ps|)) for them will also be cumulated.
Similarly, those 2-itemsets whose numbers of occurrences
are not smailer than their corresponding filtering thresholds
will be brought to the next partition for further processing
until there is no partition to be processed any more.

Let PS denote the cumulative set of candidate 2-
itemsets. It is noted that PS is composed of the foliow-
ing two types of candidate 2-itemsets: (1) the candidate 2-
itemsets that were carried over from the previous partition
and remain as candidate 2-itemsets after the current parti-
tion is included into consideration; and (2) the candidate
itemsets that were not in the cumulative candidate set in
the previous partition but are newly selected after taking the
current partition into account. Since a significant number
of 2-itemsets will be filtered out in the early partitions, the
resulting PS5 will be very close to the set of frequent 2-
itemsets after processing all partitions. Taking advantage of
this feature, we can employ the scan reduction technique to
generate all candidate k-itemsets where & > 2 from (k-1)-
itemnsets at the same time [15].

The procedure to progressively filter out infrequent 2-
itemsets is shown in ProcPF. ProcPF takes three arguments
p, q and direction as the inputs, where p and ¢ are the
starting and ending partitions to be processed (p < ¢), and
direction indicates the scanning direction, i.e., either for-
ward (i.e., from p to q) or backward (i.e., from g to p) in
time, If the items in the sub-database have the same end-
ing partition, the direction is forward. Otherwise, the di-
rection is backward. As shown in ProcPF, operations in
lines 1-5 initially set PS to be an empty set and determine
the scanning sequence. The for loop, in lines 6-17, finds
out all 2-itemsets with their numbers of occurrences in each
partition, and employs the corresponding filtering threshold
(i-e., min_supp * 3 . _x srare s [P7]) 10 filter out infre-
quent ones. After processing all partitions, the cumulative
set of candidate 2-itemsets, PS, is returned in line 18.

Procedure ProcPF(p, ¢, direction)
PS=4;
if {direction == left)
head = p; tail = g;
else

for {h = head to tail)
for (each 2-itemset Xz in Fy)
if(X2 ¢ PS){
Xa.count = Np, (X3);
Xo start = h;
if (X2.count > min.supp = |Py|)

1
2
3
4.
5. head=gq; tail =p;
6
7
8
9

0.
11.



12. PS =PS5U Xa;

13. Yelse{

4. Xa.count = Xo.count + Np, {X2);

15. il (Xz.count < [min-supp*3_ . _x. srarep [Pml])
16. PSS = PS5 - Xa;

1.}

18. return P5S;

Finally, algorithm SPF is completed by the integration
of ProcSG and ProcPF. At first, algorithm SPF segments
the database into sub-databases by ProcSG. Then, for each
sub-database, algorithm S PF employs ProcPF to progres-
sively filter out candidate 2-itemsets. Using the scan reduc-
tion technique [15], S PF generates all candidate k-itemsets
from (k-1)-itemsets. Thereafter, the candidate k-itemsets
are transformed to T Is, and the corresponding S7s are gen-
erated. Finally, the database is scanned once to determine
all frequent T'Js and STs,

3.2, An llfustrative Example of Algorithm SPF

The operation of algorithm SPF can be best under-
stood by an illustrative example as shown in Figure 1. Sup-
pose that the minimum support and confidence required are
30% and 75%, respectively, i.e., min_supp = 30% and
min_conf = 75%. As explained in Section 3.1, SPF
first segments the database into several sub-databases by
ProcSG. In our example, the transaction database, db', is
segmented into two sub-databases, db!'? and db**as shown
in Figure 3. The scanning direction of db*2 is from the left
to the right whereas the scanning direction of db3? is from
the right to the left.

direction =
A A d
B B )
C .
b lj/ N
E E
3 F
Pl P2 P3 P4 P P27 P3 P4
Figure 3. Segmenting the illustrative
database.

After the database is segmented into sub-databases
where the items in each sub-database have either the
same starting or ending partition., algorithm S PF employs
ProcPF to progressively filter the candidate 2-itemsets in
each of these two sub-databases. The execution of ProcPF
in sub-database db'- is shown in the upper-left part of Fig-
ure 4. Five 2-itemsets are first considered in the parti-
tion P;, and their numbers of occurrences and the parti-
tion in which they are first considered (i.e., P} are also
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Figure 4. Progressively Filtering candidate 2-
itemsets in each sub-database.

recorded. The corresponding filtering threshold for each
of them is equal to 2 = [4 % 0.3} since there are four
transactions in P;. As a result, only the 2-itemsets AD,
AF and CF are viewed as the candidate 2-itemsets and
brought to the next partition for further processing. In the
partition Ps, the 2-itemsets AC, BC, BD, BF and CD
are newly generated, and their numbers of occurrences and
the partition in which they are first considered (ie., Px)
are also recorded. Since AD, AF and CF are brought
from the previous partition, their numbers of occurrences
are cumulated. So are the corresponding filtering thresh-
olds for them {i.e., 3 = 0.3 % {4 + 4)]). Thus, only the
2-itemsets CF, BC, BD and C D are viewed as candidate
2-itemsets after processing Ps. The execution of ProcPF in
the sub-database db®*® works similarly and is shown in the
upper-right part of Figure 4. Note that the scanning direc-
tion in the sub-database db®* is from the right to the left,
i.e., from P, to P;. After scanning the sub-databases db'+?
and db>*, the resulting candidate set Cp becomes {AB,
BC, BD, CD, CF, EF}. Using the scan reduction tech-
nique, we generate all candidate k-itemsets from candidate
{k-1)-itemsets where k& > 2. In our case, only one candi-
date 3-itemset BC D is generated. Then, these candidates
are transformed to the T'Is (i.e., {AB**, BC*?, BD?®,
CDY CF'3, EF33, BCD%?}), and the corresponding
STs (i.e., {A2’4, B2,2’ BQ,B’ B?,tl.7 01,2’ Cl,s, Cz,z’ CZ‘B’
DV2, D2 E33 pL3 33 BO22 BD22 CD2%))are
generated as shown in the bottom of Figure 4, By scan-
ning the entire database again, we can have the relative sup-~
ports of all temporal itemsets in T'J U ST and then deter-
ming the frequent T1s. From the frequent T'Is determined
(ie, {AB>*, BD?? CF'?, EF33 BCD%?)}), we can
thus derive all frequent general temporal association rules
as shown in Example 1.2.



4. Performance Analysis

To assess the performance of algorithm SPF, we com-
pare algorithm SPF with Apriori{¥, which is extended
from algorithm Apriori 1o deal with the problem of mining
general tempora} association rules. Apriori!¥ first trans-
forms each item to the temporal 1-itemsets with all possi-
ble exhibition periods. Then, based on the anti-monotone
Apriori-like heuristic, it generates candidate temporal k-
itemsets from frequent temporal (k- 1)-itemsets until no can-
didate temporal itemset can be generated any more. The
simulation program is coded in C++. The experiments
are run on a computer with Pentium III CPU and 512MB
RAM, As will be shown later, algerithm SPF outperforms
Aprieri!P in terms of execution time and scalability. We
describe the method used to generate synthetic databases
i Section 4.1. The execution time of algorithm SPF and
Apriori!F is compared in Section 4.2. Results of scaleup
experiments are presented in Section 4.3.

4.1. Generation of Synthetic Workload

The method used in this paper to generate synthetic
databases is similar to the one used in [3, 15] with some
modifications. In order to mimic various exhibition peri-
ods of the items in a realistic database, the modifications
are made as follows. Initially, we still employ the method
used in {3, 15] to generate a synthetic database. Then, we
equally divide the synthetic database into P partitions to
simulate the phenomenon of the time granularity required.
In addition, to model the exhibition periods of the items ina
realistic database, we randomly select a starting partition s
in the range |1, P} and the ending partition ¢ in range |s, P)
for each item in the synthetic database. Finally, we scan
the database once to remiove the items in the transactions
which are not within their exhibition periods. For example,
the item A would be removed from the transaction ABC in
partition 1 if the exhibition period of the item A were (2, 4].

Based on such a modified method, we generate several
different synthetic databases to evaluate the performance of
algorithm SPF, Each of the generated database consists of
| D transactions with average size of |T'| items. The number
of different items in each database is V. The average size of
the potential frequent itemsets is set to {f|, and the number
of the potential frequent itemsets is set to |L|. The mean
correlation level between the potential frequent itemsets is
set to 0.25 in our experiments. In addition, for the simplicity
of presentation, we use the notation Tz — Iy — Dz{Nm —
Ln— Po) to represent a database in which |T| = z, |I| = v,
D==:z(K),N=m(K),|L = nand |P] = oin the
following subsections.
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4.2. Execution Time

In the first experiment, we investigate the execution time
of algorithm SPF and Apriori’f by varying minimum
supports. The experimental results on various synthetic
databases are shown in Figure 5. As shown in Figure 5, al-
gorithm S P F consistently outperforms Apriori!F in terms
of the execution time. Specifically, the execution time of al-
gorithm S PF is in orders of magnitude smaller than that of
Apriori!?. The margin even grows as the minimum sup-
port decreases.

600
400
200

1400 | |
1200 T10-14-D200(N10-12-P12) |
1000 t‘\ ---a-. Apriori?
800 r ~—a——5PF

|

i

Ex ecution Time (sec)

0.7
M inimum Support (%)

0.3 0.5

Figure 5. The execution time under various
minimum supports.

The advantage of SPF over Apriori'® can be ex-
plained below, First, the number of candidates generated
by Aprieri!f increases exponentially as the number of
items or the number of partitions increases. In contrast,
the number of candidates generated by algorithm SPF is
in proportion to the number of items or the number of par-
titions in the synthetic database. Second, Apriori!® needs
to scan the database multiple times to determines frequent
k-itemsets. However, by the technique of scan reduction, al-
gorithm §PF only needs to scan the database twice. These
two factors will be further explored in the second experi-
ment in Section 4.3.

4.3. Scaleup Experiments

In the fourth experiment, we investigate the scalability
of algorithm 5 PF by varying the number of transactions in
the synthetic database (|.2]). Three different minimum sup-
ports are considered in this experiment set, i.e., 0.2%, 0.4%,
0.8% respectively. The experimental result is shown in Fig-
ure 6. Note that the execution time under various numbers
of transactions are normalized with respect to the time for
T10 — I4 — D100. As shown in Figure 6, the execution
time of algorithm S PF increases linearly while the number
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Figure 6. Normalized execution time under
various numbers of transactions

of transactions in the synthetic database increases. It shows
that algorithm SPF is of good scalability.

5. Conclusion

In this paper, we explored a new model of mining general
temporal association rules, i.e., (X = Y)MCP(XUY), from
large databases where the exhibition periods of the items
are allowed to be different from one to another. We devel-
oped an efficient algorithm, referred to as algorithm SPF
in this paper to discover general temporal association rules
effectively. The experimental results showed that algorithm
SPF significantly outperforms other schemes which are
extended from prior methods in terms of the execution time
and scalability. With the capability of mining general tem-
poral association rules for items with different exhibition
periods, algorithm S P F outperforms prior methods in its
generality and supetiority.
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