
Speed-up Iterative Frequent Itemset Mining with Constraint Changes

Gao Cong Bing Liu

School of Computing, National University of Singapore, Singapore 117543
E-mail: {conggao, liub}@comp.nus.edu.sg

Abstract

Mining of frequent itemsets is a fundamental data

mining task. Past research has proposed many efficient
algorithms for the purpose. Recent work also highlighted
the importance of using constraints to focus the mining
process to mine only those relevant itemsets. In practice,
data mining is often an interactive and iterative process.
The user typically changes constraints and runs the mining
algorithm many times before satisfied with the final
results. This interactive process is very time consuming.
Existing mining algorithms are unable to take advantage
of this iterative process to use previous mining results to
speed up the current mining process. This results in
enormous waste in time and in computation. In this paper,
we propose an efficient technique to utilize previous
mining results to improve the efficiency of current mining
when constraints are changed. We first introduce the
concept of tree boundary to summarize the useful
information available from previous mining. We then show
that the tree boundary provides an effective and efficient
framework for the new mining. The proposed technique
has been implemented in the contexts of two existing
frequent itemset mining algorithms, FP-tree and Tree
Projection. Experiment results on both synthetic and real-
life datasets show that the proposed approach achieves
dramatic saving in computation.

1. Introduction

Frequent itemset mining plays an essential role in
mining association rules [3], correlations, sequential
patterns, maximal patterns [4], etc. Although many
efficient algorithms [3, 16, 1, 9] have been developed,
mining of frequent itemsets remains to be a time
consuming process [10], especially when the data size is
large. To make the matter worse, in most practical
applications, the user often needs to run the mining
algorithm many times before satisfied with the final
results. In each process, the user typically changes some
parameters or constraints.

Considering a mining task with only the minimum
support constraint (also called the frequency constraint),
the user may initially set the minimum support to 5% and
run a mining algorithm. After inspecting the returned

results, s/he finds that 5% is too high. S/he then decides to
reduce the minimum support to 3% and runs the algorithm
again. Usually, this process is repeated many times before
s/he is satisfied with the final mining results.

This interactive and iterative mining process is very
time consuming. Mining the dataset from scratch in each
iteration is clearly inefficient because a large portion of the
computation from previous mining is repeated in the new
mining process. This results in enormous waste in
computation and time. So far, limited work has been done
to address this problem, and to the best of our knowledge
there is still no effective and efficient solution.

In recent years, many constraints (apart from the
traditional support and confidence constraints) are
introduced into frequent itemset mining in order to find
only those relevant itemsets [13, 10, 12]. On one hand,
these additional constraints give the user more freedom to
express his/her preferences. On the other hand, however, it
often prolongs the mining process because the user may
want to see the results of various combinations of
constraint changes by running the mining algorithm more
times. This makes mining using previous results for
efficiency even more important.

Constraint changes can mean tightening constraints and
relaxing constraints. Let us use an example to start the
discussion.

Example: Consider that one sets the constraint that the
average price of the items in an itemset is less than $100 in
the old mining process (for a market basket problem).
After inspecting the mining results, one finds that the
results are not satisfactory. There are possible two reasons:
(1) $100 is too low (many useful itemsets may not be
discovered), and (2) $100 is too high (too many itemsets
are generated). One may wish to change the average price
to $150 or to $80 for the new mining. The question is “can
we make use of the results from the old mining to speed up
the new mining?”

It is straightforward to answer part of the question, i.e.,
when constraints are tightened (the solution space is
reduced), e.g., when the average price of frequent itemsets
is decreased. To obtain the new set of frequent itemsets
under the new constraints, we can simply check the
frequent itemsets from the old mining to filter out those
itemsets that do not satisfy the new constraints. This
filtering process is sufficient because the set of new
frequent itemsets is only a subset of the old set.

When constraints are relaxed (the solution space is

expanded), the problem becomes non-trivial as re-running
the mining algorithm is needed to find those additional
frequent itemsets. For instance, in the above example,
when the average price of frequent itemsets is increased,
more itemsets may be generated. The problem becomes
even more complicated when multiple constraints are
changed at the same time. The objective of this work is to
study how to make use of the previous mining results to
speed up re-mining when constraints are changed.

In this paper, we propose a novel technique to solve this
problem. Using the relaxation of frequency constraint (the
decrease of minimum support) as an example, we first
propose the concept of tree boundary to summarize and to
reorganize the previous mining results. We then show that
the additional frequent itemsets can be generated in the
new mining process by extending only the itemsets on the
tree boundary without re-generating the frequent itemsets
produced in the previous mining (note that our tree
boundary based technique is quite different from the
incremental mining approaches based on negative border).
The proposed technique has been implemented in the
contexts of two frequent itemset mining algorithms, FP-
tree [9] and Tree Projection [1]. This results in two
augmented itemset mining algorithms RM-FP (re-mining
using FP-tree) and RM-TP (re-mining using Tree
Projection). Extensive experiments on both synthetic data
and real-life data show that RM-FP and RM-TP
dramatically outperform FP-tree and Tree Projection
algorithm respectively. Finally, we also address how the
proposed technique can be applied to handle the changes
of other types of constraints given in previous studies [13,
10, 12].

2. Related work

Frequent itemset mining has been studied extensively in

the past e.g. in [3, 16, 1, 9, 15, 4, 5]. Most current algorithms
are variations of the Apriori algorithm [3]. They use
support-based generate-and-test approach to find all the
frequent itemsets. Recently, some tree-based algorithms
were also proposed, e.g., the FP-tree algorithm [9], which is
based on the frequent pattern tree, and Tree Projection
algorithm [1], which is based on the lexicographic tree.
Both algorithms do not strictly follow the Apriori-like
candidate generate-and-test approach and were shown to
be more efficient than the Apriori algorithm [3].

Since [13] first introduced item constraints to produce
only those useful itemsets, many other types of constraints
have been integrated into itemset mining algorithms [10,
12]. Although many efficient algorithms for mining
frequent itemsets with constraints exist, user interaction is
at the minimum level. To remedy this situation, [10]
proposes to establish breakpoints in the mining process to
accept user feedback to guide the mining. Furthermore,
online association rule mining also allows the user to

increase minimum support during the mining process [2].
However, [2] does not allow decreasing of minimum
support. Similarly, the support threshold used in [11] for
incremental and interactive sequence pattern mining can
also be increased but not decreased.

The closely related work to ours is the incremental
mining, where the concept of negative border (proposed in
[16]) is utilized to update the mining results when
additional data becomes available [14, 15, 8, 11]. A
negative border consists of all the itemsets that are
candidates of the Apriori algorithm that do not have
sufficient support. Although the methods in [14, 15, 8]
only need one scan of the updated dataset, they could not
avoid the disadvantage of negative border, i.e., maintaining
a negative border is very memory consuming and is not
well adapted for very large databases [11].

The approach in [14, 15, 8] seemingly can be adapted
for handling constraint relaxation. [15] actually mentions
the possibility but no detailed algorithm is proposed.
However, one significant shortcoming of the approach is
that generating candidates under new constraints using the
negative border under old constraints usually result in
over-generation of a huge number of useless candidates.
This makes the approach in [14, 15, 8] impractical for our
constraint relaxation problem for large datasets, especially
when the minimum support is low. For example, if 105
frequent itemsets are obtained given minimum support of
1% and 50 1-itemsets become frequent after minimum
support is reduced to 0.9%, the number of candidate
itemsets generated using the above approach is (250-1)*105

≈ 1020 even if we do not consider the expansions of 105
frequent itemsets themselves. This is clearly impractical.

FUP in [6] is another incremental mining method that
follows the Apriori framework. FUP is not for mining with
constraint changes. If it is applied to our task, it basically
re-runs the Apriori algorithm without re-counting the
supports of those itemsets generated previously (they still
need to be re-generated). The computation saving is thus
very limited, if any, because of some overheads (see [7]
for more details).

3. Problem statement

Let I be the set of all items, and Γ be a transaction
database. Each transaction in Γ consists of a subset of
items in I. Let S (⊆ I) be an itemset. The support of S
(denoted by Support(S)) is defined as in [3]. Given a
minimum support MinSup, an itemset S is frequent in Γ if
Support(S) ≥ MinSup. With a transaction set Γ and a
MinSup, the problem of frequent itemset mining is to find
the complete set of frequent itemsets in Γ.

Constraints can be imposed on both itemset S itself and
its attributes (e.g., price, type, etc) in frequent itemset
mining. There are many types of constraints that can be
imposed on frequent itemset mining. Four categories of

constraints: anti-monotone, monotone, succinct, and
convertible constraints have been effectively integrated
into some mining algorithms [10, 12].

Iterative mining of frequent itemsets with constraint
changes: Given a transaction database Γ, the whole
process of iterative (and interactive) mining of frequent
itemsets with constraint changes is captured with the
following iterative steps:

(1) specify the initial set of constraints SC.
(2) run the mining algorithm
(3) check the returned results to determine whether

they are satisfactory. If so, the mining process ends.
Otherwise, the user changes one or more constraints in SC
(including deletion and addition of constraints), and the
process then goes to (2).

(1) and (3) will not be discussed further in the paper as
it is the user’s responsibility to devise and to change
constraints. Our objective is to design a framework for the
mining algorithm in (2) so that it is able to leverage on the
mining results from the previous mining iteration to
improve the efficiency of the current mining, and
consequently speed up the whole data mining process.

Constraint changes: Change of a constraint includes
two cases:

(1) Tighten the constraint: The solution space is
reduced. For example, when the minimum support is
increased.

(2) Relax the constraint: The solution space is
expanded. For example, the minimum support is decreased.

Constraint changes mean changes to one or several
constraints in a set of pre-defined constraints. The changes
cover deletion or addition of constraints. Adding a new
constraint corresponds to tightening the constraint, while
deleting an existing constraint corresponds to relaxing the
constraint.

As discussed earlier, if a constraint C is tightened to C′,
the set of itemsets that satisfy the new constraint C′ is only
a subset of the itemsets that satisfy the old constraint C.
Thus, the set of itemsets that satisfy C′ can be obtained by
filtering the set of itemsets that satisfy C. The challenge
comes when a constraint C is relaxed to C′. The set of
itemsets that satisfy the old constraint C is only a subset of
the itemsets that satisfy the new constraint C′. The problem
is how to efficiently discover the set of itemsets Fn that
satisfy the new constraint C′ but not the old constraint C.
The rest of the paper focuses on this problem. We also
study how to utilize the previous mining results to
efficiently discover the set of itemsets when multiple
constraints are changed at the same time.

4. The proposed technique

We use the minimum support constraint as an example

to present the proposed technique for finding the set of
itemsets Fn that satisfy the new but not the old minimum

support when the minimum support is reduced (relaxed)
from one mining process to the next. The relaxation
problems of the other constraints can be solved within the
proposed framework (to be discussed in Section 7),
although the technical details may vary.

Let MinSupold be the minimum support used in the
previous (or old) mining, and MinSupnew be the relaxed (or
new) minimum support. This section first introduces the
useful information that can be obtained from the previous
mining process using a tree-based itemset mining
framework. The reason that we use a tree-based framework
will become clear later. We then describe a method to
represent the old information for the purpose of mining
under MinSupnew. Next, we present a naïve approach and
the proposed technique for discovering the set of itemsets
Fn that are frequent under MinSupnew but not MinSupold.

4.1. Useful information from previous mining

After running a mining algorithm using MinSupold, we

find the set of frequent itemsets. One byproduct of the
process is the set of itemsets that are checked against
MinSupold (supports are counted) but are not frequent. Let
Lf be the set of frequent itemsets under MinSupold, and Lif
be the set of itemsets that are counted, but found infrequent
(the byproduct). Although all frequent itemset mining
algorithms generate the same set Lf, the set of infrequent
itemsets Lif checked in the process varies according to
algorithms.

Algorithms, such as those in [4, 1, 9], do not strictly
follow the candidate generation of Apriori-like algorithms
[3, 16, 10]. Instead, they are based on some kinds of tree.
We classify these algorithms as tree-based algorithms.
Tree-based algorithms will count the support of an itemset
S = {i1, i2, …, ik} if two proper subsets of S, namely S1 =
{i1, …, ik-2, ik-1} and S2 = {i1,… , ik-2, ik}, are frequent.

We use tree-based mining algorithms as the underlying
mining framework of our proposed technique because tree-
based mining algorithms give us sufficient information,
while Apriori-like algorithms do not (see the end of the
Section). [1,9] also show that tree-based algorithms are
actually more efficient in many cases.

As in [1], we use a lexicographic tree to represent the
set of frequent itemsets Lf. Given the set of items I, it is
assumed that a lexicographic order R exists among the
items in I. The order R is important for efficiency and for
the organization of mining results. We use the notation i ≤L

j to denote that item i occurs lexicographically earlier than j.
Definition 4.1 (Lexicographic Tree) A node in a

lexicographic tree corresponds to a frequent itemset. The
root of the tree corresponds to the null itemset.

We extend Definition 4.1 to also represent those
itemsets in Lif with a lexicographic tree. An example
lexicographic tree is shown in Figure 1. Those nodes
enclosed in circles are frequent itemsets under MinSupnew

but not MinSupold, which are in Fn. Those nodes enclosed
by dotted squares are the itemsets in Lif that are not
frequent under either MinSupold or MinSupnew. The other
nodes are itemsets that are frequent under both MinSupold
and MinSupnew. Let P and Q be two itemsets and Q be the
parent of P.

Definition 4.2 (Tree Extensions) A frequent 1-
extension of an itemset such that the last item is the
contributor to the extension is called a tree extension. The
list of tree extensions of a node P is denoted by E(P).

In Figure 1, under MinSupold, the list of tree extensions
of node 3 E(3) = <4, 6>.

Definition 4.3 (Candidate Extensions) The list of
candidate extensions of a node P is defined to be those
items in E(Q) that occur lexicographically after the node P.
We denote the list by C(P). Note that E(P) is a subset of
C(P).

Items in C(P) are possible frequent extensions of P.
Under MinSupold, the tree extensions of null node E(null) =
<3, 4, 5, 6, 7> (note that 2 is not frequent under MinSupold),
and the candidate extensions of node 3 C(3) = <4, 5, 6, 7>.

4.2. Extensions of lexicographic tree

This subsection extends the lexicographic tree with

some new conceptions, which will be used in our proposed
technique.

Definition 4.4 (Infrequent Borders) If a 1-extension i of
itemset P is not frequent, i is called an infrequent border.
The list of infrequent borders of a node P is denoted by
IB(P). We have the relationship: IB(P) = C(P) - E(P).

In Figure 1, under MinSupold, the infrequent borders of
node 3 IB(3) = <5, 7>.

Definition 4.5 (New Tree Extensions) If itemset P ∪
{i}, i ∈ IB(P), becomes frequent after MinSup is reduced
from MinSupold to MinSupnew, i is called a new tree
extension of node P w.r.t. MinSupnew. The list of new tree
extensions of node P w.r.t. MinSupnew is denoted by
NTE(P).

In Figure 1, the list of new tree extensions of node 3
w.r.t. MinSupnew NTE(3) = <5, 7>.

For any frequent itemset P (can be null) under
MinSupold, its tree extensions E(P) and infrequent borders
IB(P) are stored for mining under MinSupnew. Its new tree
extensions NTE(P) w.r.t. MinSupnew can be obtained by
checking the list of infrequent borders of P, IB(P). Under
MinSupold, the set of tree extensions of all frequent tree
nodes makes up Lf, and the set of infrequent borders of all
frequent nodes in the tree makes up Lif.

4.3. A naïve approach

With the two sets Lf and Lif from the mining under

MinSupold, we first look at a naïve approach to making use
of previous mining results for the new mining. We then
present the proposed approach based on tree boundary.

The naïve approach checks all itemsets in Lf and Lif one
by one to find the change of their candidate extensions
under MinSupnew, and to extend them to obtain the
complete set Fn (in which itemsets are frequent under
MinSupnew but not MinSupold). Figure 2(a) shows the
children itemsets of null node and the children itemsets of
itemset {3} in the naïve approach. To make the figure
manageable, we assume that itemset {3, 8} is frequent
under MinSupnew but {4, 8}, {5, 8}, {6, 8}, and {7, 8} are
not. Candidate extensions of each node are shown under
the node in Figure 2(a). The only saving in the new mining
is that we can utilize the count information saved
previously for those itemsets in Lf and Lif.

However, this saving in computation is very limited in
a tree-based algorithm. Thus, the computation is basically
the same as re-mining from scratch. In tree-based
algorithms, the main computation comes from the
generation of projected transactions for each node. Project
transactions for an itemset S are the set of transactions
containing S. Tree-based algorithms use this sub-
transaction set for counting support and for all subsequent
itemset (containing S) generations. This naïve approach
still requires the same computation to generate the
projected transactions as running a tree-based algorithm
from scratch. For instance in Figure 2(a), we still need to
create projected transactions for {3} to count the support
for itemset {3, 8} although the supports of its other
children itemsets {3, 4}, {3, 5}, {3, 6} and {3, 7} are
known previously (the projected transactions for {3} are
also used to generate the projected transactions for
children itemsets of {3}). Similar computation is required
for creating projected transactions for {2}, {3}, {4}, {5},
{6} and {7}.

Another shortcoming of the naive approach is that it
cannot avoid re-generating itemsets in Lf because they
need to be extended in the new mining. For example, in
Figure 2(a), itemsets {3}, {4}, {5}, {6} and {7} still need
to be generated to check whether item 8 is in their tree
extensions although their supports are already counted in
previous mining.

��������	�
�����
�������
��������������	�
�����
�������
��������������	�
�����
�������
��������������	�
�����
�������
����������

{3,4} {3,6} {4,5} {4,6} {4,7}

{5} {4} {3}

{4,5,7}

{5,7} {3,5}

 {2}

{3,7} {5,6}

{4,5,6}

{8}
{1}

{3,4,6}

{6}

{6,7}

{4,6,7}

{7}

null

Based on the above discussion, we see that saving by
the naive approach is limited. It is thus not efficient.

4.4. The proposed approach

Definition 4.6 (Tree Boundary) A tree boundary w.r.t.

MinSupnew is defined to be the set of itemsets TB = {tb | tb
∈ Lif, Support(tb) ≥ MinSupnew}, where Lif is the set of
counted but infrequent itemsets under MinSupold, and
Support(tb) is the support of itemset tb.

For example, the itemsets on the dotted line shown in
Figure 1 make up the tree boundary w.r.t. MinSupnew.
Itemsets {1} and {3, 4, 6} are not in TB although they are
in Lif because they are not frequent under MinSupnew.

Our proposed approach discovers the complete set of Fn
by extending only the itemsets on the tree boundary. The
basic idea is to eliminate the effect of MinSup decrease on
itemsets in Lf, i.e., no itemset will be extended if it has
been extended in previous mining. This is achieved by
changing the order of tree extensions of every node
(including the null node) in Lf (under MinSupold).

Let Sp be null node or any itemset in Lf. Tree extensions
of Sp under MinSupnew, denoted by Enew(Sp), contains two
parts:

• tree extensions of Sp under MinSupold, Eold(Sp),
e.g., Eold(3) = <4, 6>, and

• new tree extensions of Sp (w.r.t. MinSupnew),
NTE(Sp), e.g., NTE(3) = <5, 7>.

We change the item order of Enew(Sp) as follows: move
items from the new tree extensions, NTE(Sp), to the front
of the (old) tree extensions of Sp under MinSupold, Eold(Sp).
For example, in Figure 1, we change the tree extensions of
null under MinSupnew from <2, 3, 4, 5, 6, 7, 8> to <2, 8, 3,
4, 5, 6, 7>.

With the new ordering, for a child itemset of Sp such
that Sc = Sp ∪ {i}, where i ∈ Eold(Sp) (Sc ∈ Lf), the
candidate extensions of Sc are the same under MinSupold
and MinSupnew. For a child itemset of Sp such that Sn = Sp ∪
{i}, where i ∈ NTE(Sp), the candidate extensions of Sn
consists of :

(1) those items j such that i ≤L j, where j ∈ NTE(Sp),

and (2) those items j, j ∈ Eold(Sp).
Due to the re-ordering, candidate extensions of the

itemsets in Lf are not affected. For instance, after we
change the tree extensions of null node under MinSupnew
into <2, 8, 3, 4, 5, 6, 7>, the tree extensions of itemsets
{3}, {4}, {5}, {6} and {7} under MinSupnew are the same
with those under MinSupold. The tree extensions of itemset
{8} become <3, 4, 5, 6, 7> from ∅ under MinSupold. We
compute the projected transactions for itemset {8} to
decide whether items 3, 4, 5, 6, and 7 are tree extensions of
{8}. There is no need to compute projected transactions for
{3}, {4}, {5}, {6} and {7} (they were computed in
previous mining).

Another example is given in Figure 2(b), which shows
the corresponding part of Figure 2(a) in our approach.
After we change the order of tree extensions of null node,
there is no need to extend itemsets {3}, {4}, {5}, {6} and
{7} with 8. We change tree extensions of itemset {3} from
<4, 5, 6, 7> to <5, 7, 4, 6>. The candidate extensions of
node {3, 5} are <4, 6, 7>. The candidate extensions of
node {3, 7} are <4, 6>. As a result, we only need to
compute projected transactions for itemsets {3, 5} and {3,
7} (which are not computed in previous mining) while the
naïve approach needs to compute projected transactions for
itemsets {3, 4}, {3, 5}, {3, 6} and {3, 7}.

Notice that those itemsets on the tree boundary whose
candidate extensions are empty can be removed from the
tree boundary, e.g., itemsets {4, 5, 7} and {5, 7} in Figure 1.

Let us summarize the advantages of our tree boundary
based extension with ordering change.

1) Our approach is able to avoid the computation of
counting the supports of itemsets in Lf and Lif. We do not
re-generate the itemsets in Lf to extend them in the new
mining process.

2) Our approach is able to avoid the generation of
projected transactions that were done in previous mining
while the naïve approach is unable to.

The ordering change is the key of our technique. It also
brings some additional benefits when integrating tree-
based algorithms with tree boundary. Refer to [7].

Now, let us prove the correctness and completeness of
tree boundary approach.

� �������	��
���
 �	��������� �����	�� �������	��
���
 �	��������� �����	�� �������	��
���
 �	��������� �����	�� �������	��
���
 �	��������� �����	� ������������������� �����	���! "��������������������� �����	���! "��������������������� �����	���! "��������������������� �����	���! "��$# %'&�&)(�*�+�,�-�.�% /# %'&�&)(�*�+�,�-�.�% /# %'&�&)(�*�+�,�-�.�% /# %'&�&)(�*�+�,�-�.�% /

�������� 	��� �������� �� �� ����������� 	��� �������� �� �� ����������� 	��� �������� �� �� ����������� 	��� �������� �� �� ����� ���� ��� � ����� ���� ��� � ����� ���� ��� � ����� ���� ��� � ��������������������������� 02143021430214302143 ����

{3,5} {3,7} {3,8}

{5} {4} {3}

null

 {2} {6} {7}

{3,4} {3,6}

 {8}
<3,4,5,6,7,8> <4,5,6,7,8> <5,6,7,8> <6,7,8> <7,8> <8>

<5,6,7,8> <6,7,8> <7,8> <8>

{8} {2}

null

{3,5} {3,7} {8,3}

<3,4,5,6,7,8> <3,4,5,6,7>

<4,6,7> <4,6>

… …

… …

…
… … … …

… … … …

Property 4.1 Given tree boundary TB w.r.t. MinSupnew,
extending the itemsets in TB is able to generate the
complete set of itemsets Fn (frequent under MinSupnew but
not MinSupold).

Interested readers can refer to [7] for proof.
Remark: In Apriori-like algorithms, previous mining

results under MinSupold do not provide sufficient
information to build the tree boundary for re-mining under
MinSupnew. Moreover, even if we could build a tree
boundary, Apriori-like algorithms could not be easily
modified to extend itemsets on tree boundary to discover Fn.

Interested readers can refer to [7] for proof.

5. Tree boundary based re-mining

We realized the proposed technique using the FP-tree

frequent itemset mining and the Tree Projection
algorithms. The algorithm using FP-tree is called Re-
Mining using FP-tree (in short RM-FP), and the algorithm
using Tree Projection is called RM-TP (Re-Mining using
Tree Projection). Interested readers can refer to [7] for the
algorithms RM-FP and RM-TP.

6. Experimental evaluation

This section presents performance comparison of FP-

tree algorithm with RM-FP on both synthetic and real-life
data sets. The comparison of Tree Projection algorithm
with RM-TP achieves similar results, and is given in [7].
All experiments are performed on a 750-Mhz Pentium PC
with 512 MB main memory, running on Microsoft
Windows 2000. All the programs are written in Microsoft
Visual C++ 6.0.

The synthetic datasets were generated using the
procedure described in [3]. We report experiments results
on two synthetic datasets: One is T25.I20.D200k [9] with
1K items, which is denoted as D1. In D1, the average
transaction size and the average maximal potentially
frequent itemset size are 25 and 20 respectively. The
number of transactions is 200k. The other dataset is
T20.I6.D100k [3] also with 1K items, denoted as D2.

We also tested our approaches on two real-life datasets
obtained from the UC-Irvine Machine Learning Database
Repository(http://www.ics.uci.edu/~mlearn/MLRepository.html
). One is the Connect-4 dataset the other is the Mushroom
dataset.

Figures 3 and 5 show the comparisons of RM-FP with
FP-tree algorithm on datasets D1 and Connect-4. In the
curves for RM-FP, the CPU time for each point (except the
first point) is obtained by running RM-FP (with the value
of that point as MinSupnew) based on the previous mining
results under MinSupold just before that point. For example
in Figure 3, the CPU time of RM-FP at MinSupnew = 1.75%
is based on the old mining results with MinSupold = 2%,
and the CPU time for RM-FP at MinSupnew = 1.5% is

based on the old mining results with MinSupold = 1.75%,
and so on. Note that when MinSupnew of RM-FP is the
same as MinSupold of the previous mining, e.g., at MinSup
= 2% in Figure 3, the extra running time of RM-FP against
FP-tree shows the overhead of RM-FP to output itemsets
in Lif. The time is very small as shown in Figures 3-9. The
results on D2 and Mushroom are not shown due to space
limitations. Actually, readers can see them based on
Figures 7 and 9.

From Figures 3 and 5, we observe that RM-FP is able to
save more than 40% running time of FP-tree in each
iteration. The saving is very significant in practice. In fact,
RM-FP can achieve even better results if the decrease of
MinSup is smaller in each iteration as shown in Figure 4.
In Figure 4, the MinSup is reduced by 10% each time (the
decrease is smaller than that in Figures 3 and 5). At each
point, again RM-FP is run based on the mining results of
the previous point except for 2%. In each iteration, we can
save more than 70% of the running time.

More performance curves on datasets D1, D2,
Mushroom and Connect-4 are given in Figure 6, 7, 8 and 9
respectively. In Figure 6, RM-FP was run based on the
initial mining results of the FP-tree algorithm with
MinSupold = 2%, 1.5% and 0.75%. In each case, a few
decreased MinSupnew values are used. In Figure 7, RM-FP
was run based on the mining results of MinSupold = 2%,
1% and 0.5%. In Figure 8, RM-FP was run based on the
mining results of MinSupold = 60%, 50%, and 45% (we use
very high minimum support because the dataset is very
dense). In Figure 9, RM-FP was run based on the mining
results at MinSupold = 2%, 1%, and 0.5%. In each of these
figures, we show results with different MinSupnew values.

All the experiments show that RM-FP consistently
outperforms the FP-tree algorithm even when MinSup
drops to a very low level from a very high level. Using the
same initial (old) mining results, we observe that the lower
the MinSupnew is in the new mining, the smaller is the
percentage of saving in computation. This is clear because
the number of frequent itemsets at MinSupnew is much
larger than the number of itemsets in Lf from old mining.
For example, for D2, the discovered frequent itemsets at
2% is 381 while the number at 0.15% is 558,834.
However, in practice, the user typically will not reduce the
MinSup so drastically from one mining process to the next.
For example, in most cases, it is quite unlikely that the user
uses MinSupold = 2% first, and then changes it to
MinSupnew = 0.15% suddenly for the next mining. Instead,
the decrease each time is usually small as in the cases of
Figures 3, 4, and 5.

Note that in Figure 9, RM-FP based on 1% support
takes more time than RM-FP based on 2% support at
MinSupnew = 0.75%. This is because the time used to check
previous mining results offsets part of the benefit from
utilizing previous mining results when the previous mining
results are very large.

The scalability experiments are conducted by increasing
the number of transactions on dataset D1. As shown in
Figure 10, both FP-tree and RM-FP have linear scalability
with the number of transactions, but RM-FP is more
scalable.

7. Application to other constraints

This section shows that the proposed approach is also

applicable to discovering the set Fn when any other single
or multiple constraints are changed. The detailed
techniques for handing changes of these constraints differ.
We only present methods for dealing with the change of
individual constraints and multiple constraints intuitively.
Interested readers may refer to our technical report [7] for
additional details and examples.

7.1. Dealing with Individual Constraint Changes

We discuss the methods for discovering the set Fn when

a single constraint is changed.
Method 1: Filtering previous mining results

The set Fn can be obtained by filtering previous results
in the following two cases: (1) tightening of a constraint of
any kind; (2) relaxation of a convertible monotone or
monotone constraint.
Method 2: Tree boundary based re-mining

This method as discussed in Section 4 applies to the
relaxation of a convertible anti-monotone or anti-
monotone constraint although it is a bit different when
applying to anti-monotone constraint relaxation due to the
special property of convertible constraints [7].
Method 3: Simpler tree boundary based re-mining

Tree boundary in this method is easier to devise than

 5	6 7�8:9 ;=<	>@? ACB ;�9 D:EFB 6 G4;=H=6 A:6 A47@I�A=JLKNM	6 7�8O9 ;QP�>R? ACB ;�9 D:EFB 6 G4;�HR6 A:6 A47RI�ARJSKCT UOHQD�V V ;�9�W:;:EO9 ;OD:U4;�X6 7�8:9 ;=<	>@? ACB ;�9 D:EFB 6 G4;=H=6 A:6 A47@I�A=JLKNM	6 7�8O9 ;QP�>R? ACB ;�9 D:EFB 6 G4;�HR6 A:6 A47RI�ARJSKCT UOHQD�V V ;�9�W:;:EO9 ;OD:U4;�X6 7�8:9 ;=<	>@? ACB ;�9 D:EFB 6 G4;=H=6 A:6 A47@I�A=JLKNM	6 7�8O9 ;QP�>R? ACB ;�9 D:EFB 6 G4;�HR6 A:6 A47RI�ARJSKCT UOHQD�V V ;�9�W:;:EO9 ;OD:U4;�X6 7�8:9 ;=<	>@? ACB ;�9 D:EFB 6 G4;=H=6 A:6 A47@I�A=JLKNM	6 7�8O9 ;QP�>R? ACB ;�9 D:EFB 6 G4;�HR6 A:6 A47RI�ARJSKCT UOHQD�V V ;�9�W:;:EO9 ;OD:U4;�X�M	6 7�8:9 ;=Y	>@? ACB ;�9 D:EFB 6 G4;=H=6 A:6 A47@I�AM	6 7�8:9 ;=Y	>@? ACB ;�9 D:EFB 6 G4;=H=6 A:6 A47@I�AM	6 7�8:9 ;=Y	>@? ACB ;�9 D:EFB 6 G4;=H=6 A:6 A47@I�AM	6 7�8:9 ;=Y	>@? ACB ;�9 D:EFB 6 G4;=H=6 A:6 A47@I�A!Z�[O\:\:]:^:_Z�[O\:\:]:^:_Z�[O\:\:]:^:_Z�[O\:\:]:^:_ `` `` PP PP

 M	6 7�8:9 ;=a	>Qb�cM	6 7�8:9 ;=a	>Qb�cM	6 7�8:9 ;=a	>Qb�cM	6 7�8:9 ;=a	>Qb�cQ````dMM MM�e)f4;�9 g I�9 HQD�A4EC;RI�ARJSKe)f4;�9 g I�9 HQD�A4EC;RI�ARJSKe)f4;�9 g I�9 HQD�A4EC;RI�ARJSKe)f4;�9 g I�9 HQD�A4EC;RI�ARJSK M	6 7�8:9 ;=h	>Qb�cM	6 7�8:9 ;=h	>Qb�cM	6 7�8:9 ;=h	>Qb�cM	6 7�8:9 ;=h	>Qb�cQ````dM	e)f4;�9 g I�9 HQD�A4EC;RI�ARJjikM	6 7�8:9 ;Rl	>@b�cM	e)f4;�9 g I�9 HQD�A4EC;RI�ARJjikM	6 7�8:9 ;Rl	>@b�cM	e)f4;�9 g I�9 HQD�A4EC;RI�ARJjikM	6 7�8:9 ;Rl	>@b�cM	e)f4;�9 g I�9 HQD�A4EC;RI�ARJjikM	6 7�8:9 ;Rl	>@b�c@````mM�e�f4;�9 g I�9 H@D�A4EC;@I�AM�e�f4;�9 g I�9 H@D�A4EC;@I�AM�e�f4;�9 g I�9 H@D�A4EC;@I�AM�e�f4;�9 g I�9 H@D�A4EC;@I�A!Z�[O\:\�]:^O_Z�[O\:\�]:^O_Z�[O\:\�]:^O_Z�[O\:\�]:^O_ `` `` PP PP

M	6 7�8:9 ;=n	>Qb�cM	6 7�8:9 ;=n	>Qb�cM	6 7�8:9 ;=n	>Qb�cM	6 7�8:9 ;=n	>Qb�cQ````dM	e)f4;�9 g I�9 HQD�A4EC;RI�AM	e)f4;�9 g I�9 HQD�A4EC;RI�AM	e)f4;�9 g I�9 HQD�A4EC;RI�AM	e)f4;�9 g I�9 HQD�A4EC;RI�A=oRp4qOr:st[:[OuoRp4qOr:st[:[OuoRp4qOr:st[:[OuoRp4qOr:st[:[Ou M	6 7�8:9 ;�KFv	>xw�ECD�V D�y:6 V 6 B zS{|6 B }|B }4;�A:8OH=y4;�9�I4g�B 9 D�A4UCD:EFB 6 I�A4UM	6 7�8:9 ;�KFv	>xw�ECD�V D�y:6 V 6 B zS{|6 B }|B }4;�A:8OH=y4;�9�I4g�B 9 D�A4UCD:EFB 6 I�A4UM	6 7�8:9 ;�KFv	>xw�ECD�V D�y:6 V 6 B zS{|6 B }|B }4;�A:8OH=y4;�9�I4g�B 9 D�A4UCD:EFB 6 I�A4UM	6 7�8:9 ;�KFv	>xw�ECD�V D�y:6 V 6 B zS{|6 B }|B }4;�A:8OH=y4;�9�I4g�B 9 D�A4UCD:EFB 6 I�A4U

0

20

40

60

80

100

120

140

100 300 500 800 1000

Number of transactions(K)

FP-tree--1%
FP-tree--1.5%
RM-FP--2%--1%
RM-FP--2%-1.5%

0

50

100

150

200

250

100 300 500 800 1000
Number of transactions(K)

FP-tree--0.5%
FP-tree--0.75%
RM-FP--1%-0.5%
RM-FP--1%-0.75%

0

5

10

15

20

25

2 1.5 1 0.75 0.5 0.33 0.25 0.15
Minimum Support(%)

FP-tree
RM-FP--2%
RM-FP--1%
RM-FP--0.5%

0

20

40

60

80

100

120

140

160

180

200

2 1.5 1 0.75 0.5 0.33 0.2 0.1

Minimum Support(%)

FP-Tree

RM-FP--2%
RM-FP--1%

RM-FP--0.5%

0

50

100

150

200

250

300

350

400

450

60 55 50 48 45 42 40 38
Minimum Support(%)

FP-tree

RM-FP

0

50

100

150

200

250

300

350

400

450

60 55 50 48 45 42 40 38
Minimum Support(%)

FP-Tree
RM-FP--60%
RM-FP--50%
RM-FP--45%

0

5

10

15

20

25

30

2 1.8 1.6 1.5 1.3 1.2 1 0.9 0.8
Minimum Support(%)

FP-tree

RM-FP

0

10

20

30

40

50

60

2 1.75 1.5 1 0.75 0.5 0.33
Minimum Support(%)

FP-tree

RM-FP

0

10

20

30

40

50

60

2 1.75 1.5 1 0.75 0.5 0.33
Minimum Support(%)

FP-tree
RM-FP--2%
RM-FP--1.5%
RM-FP--0.75%

that for Method 2 and usually contains only 1-itemsets. It
applies to the relaxation of a succinct and anti-monotone
constraint, or a succinct and monotone constraint. When
one of such constraints is relaxed, it can be dealt with as
follows: Let E(null) be the list of frequent items that
satisfy the old constraint. By checking the old mining
results, we first find the list of frequent items NTE(null)
that satisfy the new constraint but not the old constraint.
Itemsets made of individual items in NTE(null) make up
the tree boundary.

7.2. Dealing with multiple constraint changes

Although users usually change one constraint at a time

to see the effect of the change, it is also possible that
multiple constraints are changed at the same time. Table 1
shows the methods for discovering Fn when two
constraints are changed at the same time. Most of the
combined cases can be handled by combining the
approaches to handling the change of individual
constraints. For example, tightening a succinct & anti-
monotone constraint and relaxing a succinct & monotone
constraint requires Method 1 (handling the tightening) and
3 (handling the relaxation). Interested readers can refer to
[7] for the meanings of those exceptional cases including
“Adapted”, “Violates”, “Depends” and “–”.

 Finally, when more than two constraints are changed at
the same time, they can be handled by combining the
methods for their respective changes in consideration of
the exceptional cases in table 1.

8. Conclusions

Practical data mining is often a highly interactive and

iterative process. Users change constraints and run the
mining algorithm many times before satisfied with the
final results. Current mining algorithms are unable to take
advantage of the previous mining results to speed up the
new mining process. Motivated by this problem and using
the minimum support constraint as an example, this paper
first proposed the concept of tree boundary to summarize
and reorganize the previous mining results. It then presents
an effective and efficient framework for re-mining under
the reduced minimum support. Experiment results
demonstrate that the proposed technique is highly
effective. Finally, we also show that when any other
individual constraint is changed or multiple constraints are
changed at the same time, the new set of frequent itemsets
can also be mined efficiently using the proposed technique.

References
[1] R. Agarwal, C. Aggarwal, and V. Prasad. A Tree Projection

algorithm for generation of frequent itemsets. In J. Parallel
and Distributed Computing, 2000.

[2] C. Aggarwal and P. Yu. Online generation of association
rules. In Proc. of 14th ICDE, 1998.

[3] R. Agrawal and R. Srikant. Fast algorithm for mining
association rules. In Proc. of the 20th VLDB, 1994.

[4] R. J. Bayardo. Efficiently mining long patterns from
database. In Proc. of the SIGMOD, 1998.

[5] A. Bykowski, C. Rigotti. A condensed representation to find
frequent patterns. In Proc. of PODS, 2001.

[6] D. W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance
of discovered association rules in large databases: An
incremental updating technique. In Proc. of ICDE, 1996

[7] G. Cong, B. Liu, Interactive mining of frequent itemsets
with constraint changes. Technical report, National Univ. of
Singapore, 2002.

[8] R. Feldman, Y. Aumann, A. Amir, and H. Manila. Efficient
algorithm for discovering frequent sets in incremental
databases. In 2nd SIGMOD workshop DMKD, 1997.

[9] J. Han, J. Pei, and Y.Yin. Mining Frequent Patterns without
Candidate Generation. In SIGMOD, 2000.

[10] R. Ng, L.V.S. Lakshmanan, J.Han, and A.Pang. Exploratory
mining and pruning optimizations of constrained association
rules. In Proc. of SIGMOD, 1998.

[11] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas.
Incremental and interactive sequence mining. In Proc. of the
8th CIKM, Kansas City, MO, USA, November 1999.

[12] J. Pei, J. Han, and L.V.S.Lakshmanan. Mining frequent
itemsets with convertible constraints. In Proc. ICDE, 2001.

[13] R. Srikant, Q, Vu, and R. Agrawal. Mining association rules
with item constraints. In Proc. of KDD, CA, 1997.

[14] S. Thomas, S. Chakravarthy. Incremental mining of
constrained associations. In HiPC2000.

[15] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An
efficient algorithm for the incremental updation of
association rules in large databases. In Proc. KDD, 1997.

[16] H. Toivonen. Sampling large databases for association rules.
In Proc. of the 22th VLDB, 1996.

Constraint 1 Constraint 2 Tighten 1&2 Relax 1 tighten 2 Tighten 1 relax 2 Relax 1&2

Succ. & Anti. M1 M1&M3 M1&M3 M3
Succ. & Mono. M1 M1&adapted M3 M1&M3 adapted M3
Anti. M1 M1&M3 M1&M2 M2&M3
Mono. M1 M1&M3 M1 M1&M3
Convert. Anti. M1 depends M1&M2 depends

Succinct &
Anti-mono.

Convert. Mono. M1 depends M1 depends
Succ. & Mono. M1 M1&M3 M1&M3 M3
Anti. M1 M1&M3 M1&M2 M2&M3
Mono. M1 M1&M3 M1 M1&M3
Convert. Anti. – \ M1 – \ M1&M3 – \ M1&M2 – \ M2&M3

Succ.&Mono.

Convert. Mono. – \ M1 – \ M1&M3 – \ M1 – \ M1&M3
Anti. M1 M1&M2 M1&M2 adapted M2
Mono. M1 M1&M2 M1 M1&M2
Convert. Anti. M1 violates M1&M2 violates

Anti-mono.

Convert. Mono. M1 violates M1 violates
Mono. M1 M1 M1 M1
Convert. Anti. M1 M1 M1&M2 M1&M2

Monotone

Convert. Mono. M1 M1 M1 M1
Convert. Anti. – \ M1 – \ M1&M2 – \ M1&M2 – \ M2 Convertible

Anti-mono. Convert. Mono. – \ M1 – \ M1&M2 – \ M1 – \ M1&M2
Convert. Mono. Convert. Mono. – \ M1 – \ M1 – \ M1 – \ M1

 ~������ �������x���	��� � �	���~������ �������x���	��� � �	���~������ �������x���	��� � �	���~������ �������x���	��� � �	���m�	���	�	������������� �=����������� �	�����������:��� ��� ��� ��	���	�	������������� �=����������� �	�����������:��� ��� ��� ��	���	�	������������� �=����������� �	�����������:��� ��� ��� ��	���	�	������������� �=����������� �	�����������:��� ��� ��� �

