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Abstract 
 
Mining of frequent itemsets is a fundamental data 

mining task. Past research has proposed many efficient 
algorithms for the purpose. Recent work also highlighted 
the importance of using constraints to focus the mining 
process to mine only those relevant itemsets. In practice, 
data mining is often an interactive and iterative process. 
The user typically changes constraints and runs the mining 
algorithm many times before satisfied with the final 
results. This interactive process is very time consuming. 
Existing mining algorithms are unable to take advantage 
of this iterative process to use previous mining results to 
speed up the current mining process. This results in 
enormous waste in time and in computation. In this paper, 
we propose an efficient technique to utilize previous 
mining results to improve the efficiency of current mining 
when constraints are changed. We first introduce the 
concept of tree boundary to summarize the useful 
information available from previous mining. We then show 
that the tree boundary provides an effective and efficient 
framework for the new mining. The proposed technique 
has been implemented in the contexts of two existing 
frequent itemset mining algorithms, FP-tree and Tree 
Projection. Experiment results on both synthetic and real-
life datasets show that the proposed approach achieves 
dramatic saving in computation. 

 
  

1.  Introduction 
 

Frequent itemset mining plays an essential role in 
mining association rules [3], correlations, sequential 
patterns, maximal patterns [4], etc. Although many 
efficient algorithms [3, 16, 1, 9] have been developed, 
mining of frequent itemsets remains to be a time 
consuming process [10], especially when the data size is 
large. To make the matter worse, in most practical 
applications, the user often needs to run the mining 
algorithm many times before satisfied with the final 
results. In each process, the user typically changes some 
parameters or constraints.  

Considering a mining task with only the minimum 
support constraint (also called the frequency constraint), 
the user may initially set the minimum support to 5% and 
run a mining algorithm. After inspecting the returned 

results, s/he finds that 5% is too high. S/he then decides to 
reduce the minimum support to 3% and runs the algorithm 
again. Usually, this process is repeated many times before 
s/he is satisfied with the final mining results.   

This interactive and iterative mining process is very 
time consuming. Mining the dataset from scratch in each 
iteration is clearly inefficient because a large portion of the 
computation from previous mining is repeated in the new 
mining process. This results in enormous waste in 
computation and time. So far, limited work has been done 
to address this problem, and to the best of our knowledge 
there is still no effective and efficient solution.  

In recent years, many constraints (apart from the 
traditional support and confidence constraints) are 
introduced into frequent itemset mining in order to find 
only those relevant itemsets [13, 10, 12]. On one hand, 
these additional constraints give the user more freedom to 
express his/her preferences. On the other hand, however, it 
often prolongs the mining process because the user may 
want to see the results of various combinations of 
constraint changes by running the mining algorithm more 
times. This makes mining using previous results for 
efficiency even more important.   

Constraint changes can mean tightening constraints and 
relaxing constraints. Let us use an example to start the 
discussion.    

Example: Consider that one sets the constraint that the 
average price of the items in an itemset is less than $100 in 
the old mining process (for a market basket problem). 
After inspecting the mining results, one finds that the 
results are not satisfactory. There are possible two reasons: 
(1) $100 is too low (many useful itemsets may not be 
discovered), and (2) $100 is too high (too many itemsets 
are generated). One may wish to change the average price 
to $150 or to $80 for the new mining. The question is “can 
we make use of the results from the old mining to speed up 
the new mining?”  

It is straightforward to answer part of the question, i.e., 
when constraints are tightened (the solution space is 
reduced), e.g., when the average price of frequent itemsets 
is decreased. To obtain the new set of frequent itemsets 
under the new constraints, we can simply check the 
frequent itemsets from the old mining to filter out those 
itemsets that do not satisfy the new constraints. This 
filtering process is sufficient because the set of new 
frequent itemsets is only a subset of the old set.  

When constraints are relaxed (the solution space is 



expanded), the problem becomes non-trivial as re-running 
the mining algorithm is needed to find those additional 
frequent itemsets. For instance, in the above example, 
when the average price of frequent itemsets is increased, 
more itemsets may be generated. The problem becomes 
even more complicated when multiple constraints are 
changed at the same time. The objective of this work is to 
study how to make use of the previous mining results to 
speed up re-mining when constraints are changed.  

In this paper, we propose a novel technique to solve this 
problem. Using the relaxation of frequency constraint (the 
decrease of minimum support) as an example, we first 
propose the concept of tree boundary to summarize and to 
reorganize the previous mining results. We then show that 
the additional frequent itemsets can be generated in the 
new mining process by extending only the itemsets on the 
tree boundary without re-generating the frequent itemsets 
produced in the previous mining (note that our tree 
boundary based technique is quite different from the 
incremental mining approaches based on negative border). 
The proposed technique has been implemented in the 
contexts of two frequent itemset mining algorithms, FP-
tree [9] and Tree Projection [1]. This results in two 
augmented itemset mining algorithms RM-FP (re-mining 
using FP-tree) and RM-TP (re-mining using Tree 
Projection). Extensive experiments on both synthetic data 
and real-life data show that RM-FP and RM-TP 
dramatically outperform FP-tree and Tree Projection 
algorithm respectively. Finally, we also address how the 
proposed technique can be applied to handle the changes 
of other types of constraints given in previous studies [13, 
10, 12].  

 

2. Related work 
 
Frequent itemset mining has been studied extensively in 

the past e.g. in [3, 16, 1, 9, 15, 4, 5]. Most current algorithms 
are variations of the Apriori algorithm [3]. They use 
support-based generate-and-test approach to find all the 
frequent itemsets. Recently, some tree-based algorithms 
were also proposed, e.g., the FP-tree algorithm [9], which is 
based on the frequent pattern tree, and Tree Projection 
algorithm [1], which is based on the lexicographic tree. 
Both algorithms do not strictly follow the Apriori-like 
candidate generate-and-test approach and were shown to 
be more efficient than the Apriori algorithm [3].  

Since [13] first introduced item constraints to produce 
only those useful itemsets, many other types of constraints 
have been integrated into itemset mining algorithms [10, 
12]. Although many efficient algorithms for mining 
frequent itemsets with constraints exist, user interaction is 
at the minimum level. To remedy this situation, [10] 
proposes to establish breakpoints in the mining process to 
accept user feedback to guide the mining. Furthermore, 
online association rule mining also allows the user to 

increase minimum support during the mining process [2]. 
However, [2] does not allow decreasing of minimum 
support. Similarly, the support threshold used in [11] for 
incremental and interactive sequence pattern mining can 
also be increased but not decreased.  

The closely related work to ours is the incremental 
mining, where the concept of negative border (proposed in 
[16]) is utilized to update the mining results when 
additional data becomes available [14, 15, 8, 11]. A 
negative border consists of all the itemsets that are 
candidates of the Apriori algorithm that do not have 
sufficient support. Although the methods in [14, 15, 8] 
only need one scan of the updated dataset, they could not 
avoid the disadvantage of negative border, i.e., maintaining 
a negative border is very memory consuming and is not 
well adapted for very large databases [11].  

The approach in [14, 15, 8] seemingly can be adapted 
for handling constraint relaxation. [15] actually mentions 
the possibility but no detailed algorithm is proposed. 
However, one significant shortcoming of the approach is 
that generating candidates under new constraints using the 
negative border under old constraints usually result in 
over-generation of a huge number of useless candidates. 
This makes the approach in [14, 15, 8] impractical for our 
constraint relaxation problem for large datasets, especially 
when the minimum support is low. For example, if 105 
frequent itemsets are obtained given minimum support of 
1% and 50 1-itemsets become frequent after minimum 
support is reduced to 0.9%, the number of candidate 
itemsets generated using the above approach is (250-1)*105 

≈ 1020 even if we do not consider the expansions of 105 
frequent itemsets themselves. This is clearly impractical.  

FUP in [6] is another incremental mining method that 
follows the Apriori framework. FUP is not for mining with 
constraint changes. If it is applied to our task, it basically 
re-runs the Apriori algorithm without re-counting the 
supports of those itemsets generated previously (they still 
need to be re-generated). The computation saving is thus 
very limited, if any, because of some overheads (see [7] 
for more details).  

 
3. Problem statement 
 

Let I be the set of all items, and Γ be a transaction 
database. Each transaction in Γ consists of a subset of 
items in I. Let S (⊆ I) be an itemset. The support of S 
(denoted by Support(S)) is defined as in [3]. Given a 
minimum support MinSup, an itemset S is frequent in Γ if 
Support(S) ≥ MinSup. With a transaction set Γ and a 
MinSup, the problem of frequent itemset mining is to find 
the complete set of frequent itemsets in Γ.  

Constraints can be imposed on both itemset S itself and 
its attributes (e.g., price, type, etc) in frequent itemset 
mining. There are many types of constraints that can be 
imposed on frequent itemset mining. Four categories of 



constraints: anti-monotone, monotone, succinct, and 
convertible constraints have been effectively integrated 
into some mining algorithms [10, 12].  

Iterative mining of frequent itemsets with constraint 
changes: Given a transaction database Γ, the whole 
process of iterative (and interactive) mining of frequent 
itemsets with constraint changes is captured with the 
following iterative steps:  

(1) specify the initial set of constraints SC. 
(2)   run the mining algorithm 
(3)  check the returned results to determine whether 

they are satisfactory. If so, the mining process ends. 
Otherwise, the user changes one or more constraints in SC 
(including deletion and addition of constraints), and the 
process then goes to (2).  

(1) and (3) will not be discussed further in the paper as 
it is the user’s responsibility to devise and to change 
constraints. Our objective is to design a framework for the 
mining algorithm in (2) so that it is able to leverage on the 
mining results from the previous mining iteration to 
improve the efficiency of the current mining, and 
consequently speed up the whole data mining process.  

Constraint changes: Change of a constraint includes 
two cases:  

(1) Tighten the constraint: The solution space is 
reduced. For example, when the minimum support is 
increased.  

(2) Relax the constraint: The solution space is 
expanded. For example, the minimum support is decreased.  

Constraint changes mean changes to one or several 
constraints in a set of pre-defined constraints. The changes 
cover deletion or addition of constraints. Adding a new 
constraint corresponds to tightening the constraint, while 
deleting an existing constraint corresponds to relaxing the 
constraint.  

As discussed earlier, if a constraint C is tightened to C′, 
the set of itemsets that satisfy the new constraint C′ is only 
a subset of the itemsets that satisfy the old constraint C. 
Thus, the set of itemsets that satisfy C′ can be obtained by 
filtering the set of itemsets that satisfy C. The challenge 
comes when a constraint C is relaxed to C′. The set of 
itemsets that satisfy the old constraint C is only a subset of 
the itemsets that satisfy the new constraint C′. The problem 
is how to efficiently discover the set of itemsets Fn that 
satisfy the new constraint C′ but not the old constraint C. 
The rest of the paper focuses on this problem. We also 
study how to utilize the previous mining results to 
efficiently discover the set of itemsets when multiple 
constraints are changed at the same time. 

 
4. The proposed technique 

 
We use the minimum support constraint as an example 

to present the proposed technique for finding the set of 
itemsets Fn that satisfy the new but not the old minimum 

support when the minimum support is reduced (relaxed) 
from one mining process to the next. The relaxation 
problems of the other constraints can be solved within the 
proposed framework (to be discussed in Section 7), 
although the technical details may vary.  

Let MinSupold be the minimum support used in the 
previous (or old) mining, and MinSupnew be the relaxed (or 
new) minimum support. This section first introduces the 
useful information that can be obtained from the previous 
mining process using a tree-based itemset mining 
framework. The reason that we use a tree-based framework 
will become clear later. We then describe a method to 
represent the old information for the purpose of mining 
under MinSupnew. Next, we present a naïve approach and 
the proposed technique for discovering the set of itemsets 
Fn that are frequent under MinSupnew but not MinSupold.  

 
4.1. Useful information from previous mining  

 
After running a mining algorithm using MinSupold, we 

find the set of frequent itemsets. One byproduct of the 
process is the set of itemsets that are checked against 
MinSupold (supports are counted) but are not frequent. Let 
Lf be the set of frequent itemsets under MinSupold, and Lif 
be the set of itemsets that are counted, but found infrequent 
(the byproduct). Although all frequent itemset mining 
algorithms generate the same set Lf, the set of infrequent 
itemsets Lif checked in the process varies according to 
algorithms.  

Algorithms, such as those in [4, 1, 9], do not strictly 
follow the candidate generation of Apriori-like algorithms 
[3, 16, 10]. Instead, they are based on some kinds of tree. 
We classify these algorithms as tree-based algorithms. 
Tree-based algorithms will count the support of an itemset 
S = {i1, i2, …, ik} if two proper subsets of S, namely S1 = 
{i1, …, ik-2, ik-1} and S2 = {i1,… , ik-2, ik}, are frequent.  

We use tree-based mining algorithms as the underlying 
mining framework of our proposed technique because tree-
based mining algorithms give us sufficient information, 
while Apriori-like algorithms do not (see the end of the 
Section). [1,9] also show that tree-based algorithms are 
actually more efficient in many cases.   

As in [1], we use a lexicographic tree to represent the 
set of frequent itemsets Lf. Given the set of items I, it is 
assumed that a lexicographic order R exists among the 
items in I. The order R is important for efficiency and for 
the organization of mining results. We use the notation i ≤L 

j to denote that item i occurs lexicographically earlier than j.  
Definition 4.1 (Lexicographic Tree) A node in a 

lexicographic tree corresponds to a frequent itemset. The 
root of the tree corresponds to the null itemset.  

We extend Definition 4.1 to also represent those 
itemsets in Lif with a lexicographic tree.  An example 
lexicographic tree is shown in Figure 1. Those nodes 
enclosed in circles are frequent itemsets under MinSupnew 



but not MinSupold, which are in Fn. Those nodes enclosed 
by dotted squares are the itemsets in Lif that are not 
frequent under either MinSupold or MinSupnew. The other 
nodes are itemsets that are frequent under both MinSupold 
and MinSupnew. Let P and Q be two itemsets and Q be the 
parent of P. 

Definition 4.2 (Tree Extensions) A frequent 1-
extension of an itemset such that the last item is the 
contributor to the extension is called a tree extension. The 
list of tree extensions of a node P is denoted by E(P).  

In Figure 1, under MinSupold, the list of tree extensions 
of node 3 E(3) = <4, 6>. 

Definition 4.3 (Candidate Extensions) The list of 
candidate extensions of a node P is defined to be those 
items in E(Q) that occur lexicographically after the node P. 
We denote the list by C(P). Note that E(P) is a subset of 
C(P). 

Items in C(P) are possible frequent extensions of P. 
Under MinSupold, the tree extensions of null node E(null) = 
<3, 4, 5, 6, 7> (note that 2 is not frequent under MinSupold), 
and the candidate extensions of node 3 C(3) = <4, 5, 6, 7>. 

 
4.2. Extensions of lexicographic tree  

 
This subsection extends the lexicographic tree with 

some new conceptions, which will be used in our proposed 
technique. 

Definition 4.4 (Infrequent Borders) If a 1-extension i of 
itemset P is not frequent, i is called an infrequent border. 
The list of infrequent borders of a node P is denoted by 
IB(P). We have the relationship: IB(P) = C(P) - E(P). 

In Figure 1, under MinSupold, the infrequent borders of 
node 3 IB(3) = <5, 7>. 

Definition 4.5 (New Tree Extensions) If itemset P ∪ 
{i}, i ∈ IB(P), becomes frequent after MinSup is reduced 
from MinSupold to MinSupnew, i is called a new tree 
extension of node P w.r.t. MinSupnew. The list of new tree 
extensions of node P w.r.t. MinSupnew is denoted by 
NTE(P).  

In Figure 1, the list of new tree extensions of node 3 
w.r.t. MinSupnew NTE(3) = <5, 7>. 

For any frequent itemset P (can be null) under 
MinSupold, its tree extensions E(P) and infrequent borders 
IB(P) are stored for mining under MinSupnew. Its new tree 
extensions NTE(P) w.r.t. MinSupnew can be obtained by 
checking the list of infrequent borders of P, IB(P). Under 
MinSupold, the set of tree extensions of all frequent tree 
nodes makes up Lf, and the set of infrequent borders of all 
frequent nodes in the tree makes up Lif. 

 
4.3. A naïve approach  

 
With the two sets Lf and Lif from the mining under 

MinSupold, we first look at a naïve approach to making use 
of previous mining results for the new mining. We then 
present the proposed approach based on tree boundary.  

The naïve approach checks all itemsets in Lf and Lif one 
by one to find the change of their candidate extensions 
under MinSupnew, and to extend them to obtain the 
complete set Fn (in which itemsets are frequent under 
MinSupnew but not MinSupold). Figure 2(a) shows the 
children itemsets of null node and the children itemsets of 
itemset {3} in the naïve approach. To make the figure 
manageable, we assume that itemset {3, 8} is frequent 
under MinSupnew but {4, 8}, {5, 8}, {6, 8}, and {7, 8} are 
not. Candidate extensions of each node are shown under 
the node in Figure 2(a). The only saving in the new mining 
is that we can utilize the count information saved 
previously for those itemsets in Lf and Lif. 

However, this saving in computation is very limited in 
a tree-based algorithm. Thus, the computation is basically 
the same as re-mining from scratch. In tree-based 
algorithms, the main computation comes from the 
generation of projected transactions for each node. Project 
transactions for an itemset S are the set of transactions 
containing S. Tree-based algorithms use this sub-
transaction set for counting support and for all subsequent 
itemset (containing S) generations. This naïve approach 
still requires the same computation to generate the 
projected transactions as running a tree-based algorithm 
from scratch. For instance in Figure 2(a), we still need to 
create projected transactions for {3} to count the support 
for itemset {3, 8} although the supports of its other 
children itemsets {3, 4}, {3, 5}, {3, 6} and {3, 7} are 
known previously (the projected transactions for {3} are 
also used to generate the projected transactions for 
children itemsets of {3}). Similar computation is required 
for creating projected transactions for {2}, {3}, {4}, {5}, 
{6} and {7}. 

Another shortcoming of the naive approach is that it 
cannot avoid re-generating itemsets in Lf because they 
need to be extended in the new mining. For example, in 
Figure 2(a), itemsets {3}, {4}, {5}, {6} and {7} still need 
to be generated to check whether item 8 is in their tree 
extensions although their supports are already counted in 
previous mining. 
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Based on the above discussion, we see that saving by 
the naive approach is limited. It is thus not efficient.  

 
4.4.  The proposed approach  

 
Definition 4.6 (Tree Boundary) A tree boundary w.r.t. 

MinSupnew is defined to be the set of itemsets TB = {tb | tb 
∈ Lif, Support(tb) ≥ MinSupnew}, where Lif is the set of 
counted but infrequent itemsets under MinSupold, and 
Support(tb) is the support of itemset tb. 

For example, the itemsets on the dotted line shown in 
Figure 1 make up the tree boundary w.r.t. MinSupnew. 
Itemsets {1} and {3, 4, 6} are not in TB although they are 
in Lif because they are not frequent under MinSupnew.  

Our proposed approach discovers the complete set of Fn 
by extending only the itemsets on the tree boundary. The 
basic idea is to eliminate the effect of MinSup decrease on 
itemsets in Lf, i.e., no itemset will be extended if it has 
been extended in previous mining. This is achieved by 
changing the order of tree extensions of every node 
(including the null node) in Lf (under MinSupold). 

Let Sp be null node or any itemset in Lf. Tree extensions 
of Sp under MinSupnew, denoted by Enew(Sp), contains two 
parts:  

• tree extensions of Sp under MinSupold, Eold(Sp), 
e.g., Eold(3) = <4, 6>, and  

• new tree extensions of Sp (w.r.t. MinSupnew), 
NTE(Sp), e.g., NTE(3) = <5, 7>. 

We change the item order of Enew(Sp) as follows: move 
items from the new tree extensions, NTE(Sp), to the front 
of the (old) tree extensions of Sp under MinSupold, Eold(Sp). 
For example, in Figure 1, we change the tree extensions of 
null under MinSupnew from <2, 3, 4, 5, 6, 7, 8> to <2, 8, 3, 
4, 5, 6, 7>.  

With the new ordering, for a child itemset of Sp such 
that Sc = Sp ∪ {i}, where i ∈ Eold(Sp) (Sc ∈ Lf), the 
candidate extensions of Sc are the same under MinSupold 
and MinSupnew. For a child itemset of Sp such that Sn = Sp ∪ 
{i}, where i ∈ NTE(Sp), the candidate extensions of Sn 
consists of : 

(1) those items j such that  i ≤L j, where j ∈ NTE(Sp), 

and (2) those items j, j ∈ Eold(Sp). 
Due to the re-ordering, candidate extensions of the 

itemsets in Lf are not affected. For instance, after we 
change the tree extensions of null node under MinSupnew 
into <2, 8, 3, 4, 5, 6, 7>, the tree extensions of itemsets 
{3}, {4}, {5}, {6} and {7} under MinSupnew are the same 
with those under MinSupold. The tree extensions of itemset 
{8} become <3, 4, 5, 6, 7> from ∅ under MinSupold. We 
compute the projected transactions for itemset {8} to 
decide whether items 3, 4, 5, 6, and 7 are tree extensions of 
{8}. There is no need to compute projected transactions for 
{3}, {4}, {5}, {6} and {7} (they were computed in 
previous mining).  

Another example is given in Figure 2(b), which shows 
the corresponding part of Figure 2(a) in our approach. 
After we change the order of tree extensions of null node, 
there is no need to extend itemsets {3}, {4}, {5}, {6} and 
{7} with 8. We change tree extensions of itemset {3} from 
<4, 5, 6, 7> to <5, 7, 4, 6>. The candidate extensions of 
node {3, 5} are <4, 6, 7>. The candidate extensions of 
node {3, 7} are <4, 6>. As a result, we only need to 
compute projected transactions for itemsets {3, 5} and {3, 
7} (which are not computed in previous mining) while the 
naïve approach needs to compute projected transactions for 
itemsets {3, 4}, {3, 5}, {3, 6} and {3, 7}. 

Notice that those itemsets on the tree boundary whose 
candidate extensions are empty can be removed from the 
tree boundary, e.g., itemsets {4, 5, 7} and {5, 7} in Figure 1. 

Let us summarize the advantages of our tree boundary 
based extension with ordering change.  

1) Our approach is able to avoid the computation of 
counting the supports of itemsets in Lf and Lif. We do not 
re-generate the itemsets in Lf to extend them in the new 
mining process.  

2) Our approach is able to avoid the generation of 
projected transactions that were done in previous mining 
while the naïve approach is unable to.  

The ordering change is the key of our technique. It also 
brings some additional benefits when integrating tree-
based algorithms with tree boundary. Refer to [7]. 

Now, let us prove the correctness and completeness of 
tree boundary approach.  
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Property 4.1 Given tree boundary TB w.r.t. MinSupnew, 
extending the itemsets in TB is able to generate the 
complete set of itemsets Fn (frequent under MinSupnew but 
not MinSupold).  

Interested readers can refer to [7] for proof.  
Remark: In Apriori-like algorithms, previous mining 

results under MinSupold do not provide sufficient 
information to build the tree boundary for re-mining under 
MinSupnew. Moreover, even if we could build a tree 
boundary, Apriori-like algorithms could not be easily 
modified to extend itemsets on tree boundary to discover Fn. 

Interested readers can refer to [7] for proof.  
 

5. Tree boundary based re-mining  
 
We realized the proposed technique using the FP-tree 

frequent itemset mining and the Tree Projection 
algorithms. The algorithm using FP-tree is called Re-
Mining using FP-tree (in short RM-FP), and the algorithm 
using Tree Projection is called RM-TP (Re-Mining using 
Tree Projection). Interested readers can refer to [7] for the 
algorithms RM-FP and RM-TP. 

 
6. Experimental evaluation 

 
This section presents performance comparison of FP-

tree algorithm with RM-FP on both synthetic and real-life 
data sets. The comparison of Tree Projection algorithm 
with RM-TP achieves similar results, and is given in [7]. 
All experiments are performed on a 750-Mhz Pentium PC 
with 512 MB main memory, running on Microsoft 
Windows 2000. All the programs are written in Microsoft 
Visual C++ 6.0.  

The synthetic datasets were generated using the 
procedure described in [3]. We report experiments results 
on two synthetic datasets: One is T25.I20.D200k [9] with 
1K items, which is denoted as D1. In D1, the average 
transaction size and the average maximal potentially 
frequent itemset size are 25 and 20 respectively. The 
number of transactions is 200k. The other dataset is 
T20.I6.D100k [3] also with 1K items, denoted as D2.  

We also tested our approaches on two real-life datasets 
obtained from the UC-Irvine Machine Learning Database 
Repository(http://www.ics.uci.edu/~mlearn/MLRepository.html
). One is the Connect-4 dataset the other is the Mushroom 
dataset.  

Figures 3 and 5 show the comparisons of RM-FP with 
FP-tree algorithm on datasets D1 and Connect-4. In the 
curves for RM-FP, the CPU time for each point (except the 
first point) is obtained by running RM-FP (with the value 
of that point as MinSupnew) based on the previous mining 
results under MinSupold just before that point. For example 
in Figure 3, the CPU time of RM-FP at MinSupnew = 1.75% 
is based on the old mining results with MinSupold = 2%, 
and the CPU time for RM-FP at MinSupnew = 1.5% is 

based on the old mining results with MinSupold = 1.75%, 
and so on. Note that when MinSupnew of RM-FP is the 
same as MinSupold of the previous mining, e.g., at MinSup 
= 2% in Figure 3, the extra running time of RM-FP against 
FP-tree shows the overhead of RM-FP to output itemsets 
in Lif. The time is very small as shown in Figures 3-9. The 
results on D2 and Mushroom are not shown due to space 
limitations. Actually, readers can see them based on 
Figures 7 and 9. 

From Figures 3 and 5, we observe that RM-FP is able to 
save more than 40% running time of FP-tree in each 
iteration. The saving is very significant in practice. In fact, 
RM-FP can achieve even better results if the decrease of 
MinSup is smaller in each iteration as shown in Figure 4. 
In Figure 4, the MinSup is reduced by 10% each time (the 
decrease is smaller than that in Figures 3 and 5). At each 
point, again RM-FP is run based on the mining results of 
the previous point except for 2%. In each iteration, we can 
save more than 70% of the running time.  

More performance curves on datasets D1, D2, 
Mushroom and Connect-4 are given in Figure 6, 7, 8 and 9 
respectively. In Figure 6, RM-FP was run based on the 
initial mining results of the FP-tree algorithm with 
MinSupold = 2%, 1.5% and 0.75%. In each case, a few 
decreased MinSupnew values are used. In Figure 7, RM-FP 
was run based on the mining results of MinSupold = 2%, 
1% and 0.5%. In Figure 8, RM-FP was run based on the 
mining results of MinSupold = 60%, 50%, and 45% (we use 
very high minimum support because the dataset is very 
dense). In Figure 9, RM-FP was run based on the mining 
results at MinSupold = 2%, 1%, and 0.5%. In each of these 
figures, we show results with different MinSupnew values. 

All the experiments show that RM-FP consistently 
outperforms the FP-tree algorithm even when MinSup 
drops to a very low level from a very high level. Using the 
same initial (old) mining results, we observe that the lower 
the MinSupnew is in the new mining, the smaller is the 
percentage of saving in computation. This is clear because 
the number of frequent itemsets at MinSupnew is much 
larger than the number of itemsets in Lf from old mining. 
For example, for D2, the discovered frequent itemsets at 
2% is 381 while the number at 0.15% is 558,834. 
However, in practice, the user typically will not reduce the 
MinSup so drastically from one mining process to the next. 
For example, in most cases, it is quite unlikely that the user 
uses MinSupold = 2% first, and then changes it to 
MinSupnew = 0.15% suddenly for the next mining. Instead, 
the decrease each time is usually small as in the cases of 
Figures 3, 4, and 5. 

Note that in Figure 9, RM-FP based on 1% support 
takes more time than RM-FP based on 2% support at 
MinSupnew = 0.75%. This is because the time used to check 
previous mining results offsets part of the benefit from 
utilizing previous mining results when the previous mining 
results are very large. 



The scalability experiments are conducted by increasing 
the number of transactions on dataset D1. As shown in 
Figure 10, both FP-tree and RM-FP have linear scalability 
with the number of transactions, but RM-FP is more 
scalable. 

 
7. Application to other constraints 

 
This section shows that the proposed approach is also 

applicable to discovering the set Fn when any other single 
or multiple constraints are changed. The detailed 
techniques for handing changes of these constraints differ. 
We only present methods for dealing with the change of 
individual constraints and multiple constraints intuitively. 
Interested readers may refer to our technical report [7] for 
additional details and examples. 

 

7.1. Dealing with Individual Constraint Changes  
 
We discuss the methods for discovering the set Fn when 

a single constraint is changed. 
Method 1: Filtering previous mining results 

The set Fn can be obtained by filtering previous results 
in the following two cases: (1) tightening of a constraint of 
any kind; (2) relaxation of a convertible monotone or 
monotone constraint. 
Method 2: Tree boundary based re-mining 

This method as discussed in Section 4 applies to the 
relaxation of a convertible anti-monotone or anti-
monotone constraint although it is a bit different when 
applying to anti-monotone constraint relaxation due to the 
special property of convertible constraints [7]. 
Method 3: Simpler tree boundary based re-mining 

Tree boundary in this method is easier to devise than 
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that for Method 2 and usually contains only 1-itemsets. It 
applies to the relaxation of a succinct and anti-monotone 
constraint, or a succinct and monotone constraint. When 
one of such constraints is relaxed, it can be dealt with as 
follows: Let E(null) be the list of frequent items that 
satisfy the old constraint. By checking the old mining 
results, we first find the list of frequent items NTE(null) 
that satisfy the new constraint but not the old constraint. 
Itemsets made of individual items in NTE(null) make up 
the tree boundary.  

 
7.2. Dealing with multiple constraint changes 

 
Although users usually change one constraint at a time 

to see the effect of the change, it is also possible that 
multiple constraints are changed at the same time. Table 1 
shows the methods for discovering Fn when two 
constraints are changed at the same time. Most of the 
combined cases can be handled by combining the 
approaches to handling the change of individual 
constraints. For example, tightening a succinct & anti-
monotone constraint and relaxing a succinct & monotone 
constraint requires Method 1 (handling the tightening) and 
3 (handling the relaxation). Interested readers can refer to 
[7] for the meanings of those exceptional cases including 
“Adapted”, “Violates”, “Depends” and “–”. 

 Finally, when more than two constraints are changed at 
the same time, they can be handled by combining the 
methods for their respective changes in consideration of 
the exceptional cases in table 1. 

 
8. Conclusions 

 
Practical data mining is often a highly interactive and 

iterative process. Users change constraints and run the 
mining algorithm many times before satisfied with the 
final results. Current mining algorithms are unable to take 
advantage of the previous mining results to speed up the 
new mining process. Motivated by this problem and using 
the minimum support constraint as an example, this paper 
first proposed the concept of tree boundary to summarize 
and reorganize the previous mining results. It then presents 
an effective and efficient framework for re-mining under 
the reduced minimum support. Experiment results 
demonstrate that the proposed technique is highly 
effective. Finally, we also show that when any other 
individual constraint is changed or multiple constraints are 
changed at the same time, the new set of frequent itemsets 
can also be mined efficiently using the proposed technique.  
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Constraint 1 Constraint 2 Tighten 1&2 Relax 1 tighten 2 Tighten 1 relax 2 Relax 1&2 

Succ. & Anti. M1 M1&M3 M1&M3 M3 
Succ. & Mono. M1 M1&adapted M3 M1&M3 adapted M3 
Anti. M1 M1&M3 M1&M2 M2&M3 
Mono. M1 M1&M3 M1 M1&M3 
Convert. Anti. M1 depends M1&M2 depends 

Succinct & 
Anti-mono. 

Convert. Mono. M1 depends M1 depends 
Succ. & Mono. M1 M1&M3 M1&M3 M3 
Anti. M1 M1&M3 M1&M2 M2&M3 
Mono. M1 M1&M3 M1 M1&M3 
Convert. Anti. – \ M1 – \ M1&M3 – \ M1&M2 – \ M2&M3 

Succ.&Mono. 

Convert. Mono. – \ M1 – \ M1&M3 – \ M1 – \ M1&M3 
Anti. M1 M1&M2 M1&M2 adapted M2 
Mono. M1 M1&M2 M1 M1&M2 
Convert. Anti. M1 violates M1&M2 violates 

Anti-mono. 

Convert. Mono. M1 violates M1 violates 
Mono. M1 M1 M1 M1 
Convert. Anti. M1 M1 M1&M2 M1&M2 

Monotone 

Convert. Mono. M1 M1 M1 M1 
Convert. Anti. – \ M1 – \ M1&M2 – \ M1&M2 – \ M2 Convertible  

Anti-mono. Convert. Mono. – \ M1 – \ M1&M2 – \ M1 – \ M1&M2 
Convert. Mono. Convert. Mono. – \ M1 – \ M1 – \ M1 – \ M1 
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