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Abstract 
 

The problem of efficiently locating previously known 
patterns in a time series database (i.e., query by content) has 
received much attention and may now largely be regarded 
as a solved problem. However, from a knowledge discovery 
viewpoint, a more interesting problem is the enumeration of 
previously unknown, frequently occurring patterns. We call 
such patterns “motifs”, because of their close analogy to 
their discrete counterparts in computation biology. An 
efficient motif discovery algorithm for time series would be 
useful as a tool for summarizing and visualizing massive 
time series databases. In addition it could be used as a 
subroutine in various other data mining tasks, including the 
discovery of association rules, clustering and classification. 

In this work we carefully motivate, then introduce, a non-
trivial definition of time series motifs. We propose an 
efficient algorithm to discover them, and we demonstrate the 
utility and efficiency of our approach on several real world 
datasets.    

 
 

1. Introduction 
 

The problem of efficiently locating previously defined 
patterns in a time series database (i.e., query by content) has 
received much attention and may now be essentially regarded 
as a solved problem [1, 8, 13, 21, 22, 23, 35, 40]. However, 
from a knowledge discovery viewpoint, a more interesting 
problem is the detection of previously unknown, frequently 
occurring patterns. We call such patterns motifs, because of 
their close analogy to their discrete counterparts in 
computation biology [11, 16, 30, 34, 36]. Figure 1 illustrates 
an example of a motif discovered in an astronomical 
database. An efficient motif discovery algorithm for time 
series would be useful as a tool for summarizing and 
visualizing massive time series databases. In addition, it 
could be used as subroutine in various other data mining 
tasks, for instance: 
• The discovery of association rules in time series first 

requires the discovery of motifs (referred to as “primitive 
shapes” in [9] and “frequent patterns” in [18]). However 
the current solution to finding the motifs is either high 
quality and very expensive, or low quality but cheap [9]. 

• Several researchers have advocated K-means clustering of 
time series databases [14], without adequately addressing 
the question of how to seed the initial points, or how to 
choose K. Motifs could potentially be used to address 
both problems. In addition, seeding the algorithm with 
motifs rather than random points could speed up 

convergence [12].  
• Several time series classification algorithms work by 

constructing typical prototypes of each class [24]. While 
this approach works for small datasets, the construction of 
the prototypes (which we see as motifs) requires quadratic 
time, as is thus unable to scale to massive datasets.  
In this work we carefully motivate, then introduce a non-

trivial definition of time series motifs. We further introduce 
an efficient algorithm to discover them. 

 

Figure 1: An astronomical time series (above) contains 3 
near identical subsequences. A “zoom-in” (below) reveals 
just how similar to each other the 3 subsequences are. 

 The rest of this paper is organized as follows. In Section 2 
we formally define the problem at hand and consider related 
work. In Section 3 we introduce a novel low-dimensional 
discrete representation of time series, and prove that it can be 
used to obtain a lower bound on the true Euclidean distance. 
Section 4 introduces our motif-finding algorithm, which we 
experimentally evaluate in Section 5. In Section 6 we 
consider related work, and finally in Section 7 we draw some 
conclusions and highlight directions for future work. 
 
2. Background and Related Work 
 

The following section is rather dense on terminology and 
definitions. These are necessary to concretely define the 
problem at hand, and to explain our proposed solution. We 
begin with a definition of our data type of interest, time 
series: 

Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 

Time series can be very long, sometimes containing 
billions of observations [15]. We are typically not interested 
in any of the global properties of a time series; rather, data 
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miners confine their interest to subsections of the time series 
[1, 20, 23], which are called subsequences.   

Definition 2. Subsequence: Given a time series T of length 
m, a subsequence C of T is a sampling of length n < m of 
contiguous position from T, that is, C = tp,…,tp+n-1 for  1≤ p ≤ 
m – n + 1. 

A task associated with subsequences is to determine if a 
given subsequence is similar to other subsequences [1, 2, 3, 
8, 13, 19, 21, 22, 23, 24, 25, 27, 29, 35, 40]. This idea is 
formalized in the definition of a match. 

Definition 3. Match: Given a positive real number R (called 
range) and a time series T containing a subsequence C 
beginning at position p and a subsequence M beginning at q, 
if D(C, M) ≤ R, then M is called a matching subsequence of 
C. 

The first three definitions are summarized in Figure 2, 
illustrating a time series of length 500, and two subsequences 
of length 128. 

  

Figure 2: A visual intuition of a time series T (light line), a 
subsequence C (bold line) and a match M (bold gray line) 
For the time being we will ignore the question of what 

distance function to use to determine whether two 
subsequences match. We will address this in Section 3.3. 

The definition of a match is rather obvious and intuitive; 
but it is needed for the definition of a trivial match. One can 
observe that the best matches to a subsequence (apart from 
itself) tend to be the subsequences that begin just one or two 
points to the left or the right of the subsequence in question. 
Figure 3 illustrates the idea. 

 

Figure 3: For almost any subsequence C in a time series, the 
best matches are the trivial subsequences immediately to the 
left and right of C 
Intuitively, any definition of motif should exclude the 

possibility of over-counting these trivial matches, which we 
define more concretely below.      
Definition 4. Trivial Match: Given a time series T, 
containing a subsequence C beginning at position p and a 
matching subsequence M beginning at q, we say that M is a 
trivial match to C if either p = q or there does not exist a 
subsequence M’ beginning at q’ such that D(C, M’) > R, and 
either q < q’< p or p < q’< q. 

We can now define the problem of enumerating the K 
most significant motifs in a time series.  

Definition 5. K-Motifs: Given a time series T, a subsequence 
length n and a range R, the most significant motif in T (called 
thereafter 1-Motif) is the subsequence C1 that has the highest 
count of non-trivial matches (ties are broken by choosing the 
motif whose matches have the lower variance). The Kth most 
significant motif in T (called thereafter K-Motif) is the 
subsequence CK that has the highest count of non-trivial 
matches, and satisfies D(CK, Ci) > 2R, for all  1 ≤  i < K . 

 Note that this definition forces the set of subsequences in 
each motif to be mutually exclusive. This is important 
because otherwise two motifs might share the majority of 
their elements, and thus be essentially the same.  

Having carefully defined the necessary terminology, we 
now introduce a brute force algorithm to locate 1-motif. The 
generalization of this algorithm to finding K-motifs is 
obvious and omitted for brevity. 

Algorithm Find-1-Motif-Brute-Force(T,n,R) 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

best_motif_count_so_far = 0; 
best_motif_location_so_far = null; 
for i = 1 to length(T)- n + 1 
 count    = 0; 
 pointers = null;  
 for j = 1 to length(T)- n + 1 
   if non_trivial_match(T[i:i+n-1],T[j:j+n-1],R) 
     count = count + 1; 
     pointers = append(pointers,j); 
   end;   
 end; 
 if count > best_motif_count_so_far 
   best_motif_count_so_far = count; 
   best_motif_location_so_far = i; 
   motif_matches = pointers; 
 end; 
end; 

Table 1: The Find-1-Motif-Brute-Force algorithm 
The algorithm requires O(m2) calls to the distance 

function. Since the Euclidean distance is symmetric [22], one 
could theoretically cut in half the CPU time by storing 
D(A,B)  and re-using the value when it is necessary to find 
D(B,A), however, this would require storing m(m-1)/2 
values, which is clearly untenable for even moderately sized 
datasets. 

We will introduce our sub-quadratic algorithm for finding 
motifs in Section 4. Our method requires a discrete 
representation of the time series that is reduced in 
dimensionality and upon which a lower bounding distance 
measure can be defined. Since no representation in the 
literature fulfills all these criteria, we will introduce such a 
representation in the next section.  

 
3. Dimensionality Reduction and Discretization  
 

Our discretization technique allows a time series of 
arbitrary length n to be reduced to a string of arbitrary length 
w, (w < n, typically w << n). The alphabet size is also an 
arbitrary integer a, where a > 2.  

As an intermediate step between the original time series 
and our discrete representation of it, we must create a 
dimensionality-reduced version of the data. We will utilize 
the Piecewise Aggregate Approximation (PAA) [22, 40], 
which we review in the next section.  
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3.1 Dimensionality Reduction 
A time series C of length n can be represented in a w-

dimensional space by a vector wccC ,,1 �= . The ith 

element of C is calculated by the following equation: 
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 Simply stated, to reduce the time series from n 
dimensions to w dimensions, the data is divided into w equal 
sized “frames”. The mean value of the data falling within a 
frame is calculated and a vector of these values becomes the 
data-reduced representation. The representation can be 
visualized as an attempt to approximate the original time 
series with a linear combination of box basis functions as 
shown in Figure 4. 

 

Figure 4: The PAA representation can be readily visualized 
as an attempt to model a sequence with a linear combination 
of box basis functions. In this case, a sequence of length 128 
is reduced to 8 dimensions 
The PAA dimensionality reduction is intuitive and simple, 

yet has been shown to rival more sophisticated 
dimensionality reduction techniques like Fourier transforms 
and wavelets [8, 22, 40]. In addition it has several 
advantages over its rivals, including being much faster to 
compute, and being able to support many different distance 
functions, including weighted distance functions [24], 
arbitrary Minkowski norms [40], and dynamic time warping 
[13].   

3.2 Discretization 
Having transformed a time series database into the PAA 

we can apply a further transformation to obtain a discrete 
representation. For reasons that will become apparent in 
Section 4, we require a discretization technique that will 
produce symbols with equiprobability. This is easily 
achieved since normalized time series have a Gaussian 
distribution. To illustrate this, we extracted subsequences of 
length 128 from 8 different time series and plotted a normal 
probability plot of the data as shown in Figure 5.  

Given that the normalized time series have highly 
Gaussian distribution, we can simply determine the 
“breakpoints” that will produce a equal-sized areas under 
Gaussian curve. 

 

Figure 5: A normal probability plot of the distribution of 
values from subsequences of length 128 from 8 different 
datasets. The highly linear nature of the plot strongly 
suggests that the data came from a Gaussian distribution. 

Definition 6. Breakpoints: breakpoints are a sorted list of 
numbers Β = β1,…,βa-1 such that the area under a N(0,1) 
Gaussian curve from βi  to βi+1 = 1/a (β0  and βa  are defined 
as -∞ and ∞, respectively). 

 These breakpoints may be determined by looking them up 
in a statistical table. For example Table 2 gives the 
breakpoints for values of a from 3 to 10.  

a  
βi  

3 4 5 6 7 8 9 10 

β1  -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28 

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84 

β3  0.67 0.25 0 -0.18 -0.32 -0.43 -0.52 

β4   0.84 0.43 0.18 0 -0.14 -0.25 

β5    0.97 0.57 0.32 0.14 0 

β6     1.07 0.67 0.43 0.25 

β7      1.15 0.76 0.52 

β8       1.22 0.84 

β9        1.28 

Table 2: A lookup table that contains the breakpoints that 
divide a Gaussian distribution in an arbitrary number (from 
3 to 10) of equiprobable regions 

Once the breakpoints have been obtained we can 
discretize a time series in the following manner. We first 
obtain a PAA of the time series. All PAA coefficients that 
are below the smallest breakpoint are mapped to the symbol 
“a”, all coefficients greater than or equal to the smallest 
breakpoint and less than the second smallest breakpoint are 
mapped to the symbol “b”, etc. Figure 6 illustrates the idea. 
 

Figure 6: A time series is discretized by first obtaining a 
PAA approximation and then using predetermined 
breakpoints to map the PAA coefficients into symbols. In 
the example above, with n = 128, w = 8 and a = 3, the time 
series is mapped to the word baabccbc   
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Note that in this example the 3 symbols, “a”, “b” and “c” 
are approximately equiprobable as we desired. We call the 
concatenation of symbols that represent a subsequence a 
word. 

Definition 7. Word: A subsequence C of length n can be 
represented as a word wccC ˆ,,ˆˆ

1 �= as follows. Let alphai 

denote the ith element of the alphabet, i.e., alpha1 = a and 
alpha2 = b. Then the mapping from a PAA approximation C  

to a word Ĉ  is obtained as follows: 

jijji ciifalphac ββ ≤<= −1,ˆ         (2) 

We have now defined the two representations required for 
our motif search algorithm (the PAA representation is merely 
an intermediate step required to obtain the symbolic 
representation).  

3.3 Distance Measures 

Having considered various representations of time series 
data, we can now define distance measures on them. By far 
the most common distance measure for time series is the 
Euclidean distance [8, 22, 23, 32, 40]. Given two time series 
Q and C of the same length n, Eq. 3 defines their Euclidean 
distance, and Figure 7.A illustrates a visual intuition of the 
measure. 
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If we transform the original subsequences into PAA 
representations, Q and C , using Eq. 1, we can then obtain a 
lower bounding approximation of the Euclidean distance 
between the original subsequences by: 

( )� =
−≡ w
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1

2),(   (4) 

This measure is illustrated in Figure 7.B. A proof that 
DR(Q ,C ) lower bounds the true Euclidean distance 
appears in [22] (an alterative proof appears in [40]). 

If we further transform the data into the symbolic 
representation, we can define a MINDIST function that 
returns the minimum distance between the original time 
series of two words: 

( )� =
≡ w

i iiw
n cqdistCQMINDIST

1

2)ˆ,ˆ()ˆ,ˆ(   (5) 

The function resembles Eq. 4 except for the fact that the 
distance between the two PAA coefficients has been 
replaced with the sub-function dist(). The dist() function can 
be implemented using a table lookup as illustrated in Table 
3.   

 a b c 
a 0 0 0.86 

b 0 0 0 

c 0.86 0 0 

Table 3: A lookup table used by the MINDIST function. 
This table is for an alphabet of cardinality, i.e. a = 3. The 
distance between two symbols can be read off by examining 
the corresponding row and column. For example dist(a,b) = 
0 and dist(a,c) = 0.86.  

The value in cell (r,c) for any lookup table of can be 
calculated by the following expression.  
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For a given value of the alphabet size a, the table need 
only be calculated once, then stored for fast lookup. The 
MINDIST function can be visualized is Figure 7.C.  

 

Figure 7: A visual intuition of the three representations 
discussed in this work, and the distance measures defined 
on them. A) The Euclidean distance between two time 
series can be visualized as the square root of the sum of the 
squared differences of each pair of corresponding points. 
B) The distance measure defined for the PAA 
approximation can be seen as the square root of the sum of 
the squared differences between each pair of corresponding 
PAA coefficients, multiplied by the square root of the 
compression rate. C) The distance between two symbolic 
representations of a time series requires looking up the 
distances between each pair of symbols, squaring them, 
summing them, taking the square root and finally 
multiplying by the square root of the compression rate. 
     

4. Efficient Motif Discovery  
 

Recall that the brute force motif discovery algorithm 
introduced Table 1 requires O(m2) calculations of the 
distance function. As previously mentioned, the symmetric 
property of the Euclidean distance measure could be used to 
half the number of calculations by storing D(Q,C)  and re-
using the value when it is necessary to find D(C,Q). In fact, 
further optimizations would be possible under this scenario. 
We now give an example of such optimization. 

Suppose we are in the innermost loop of the algorithm, 
attempting to enumerate all possible matches within R = 1, to 
a particular subsequence Q. Further suppose that in previous 
iterations we had already discovered that D(Ca,Cb)  = 2. As 
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we go through the innermost loop we first calculate the 
distance D(Q,Ca) and discover it to be 7. At this point we 
should continue on to measure D(Q,Cb), but in fact we don’t 
have to do this calculation! We can use the triangular 
inequality to discover that D(Q,Cb) could not be a match to 
Q. The triangular inequality requires that [2, 22, 33]: 

D(Q,Ca) ≤  D(Q,Cb) + D(Ca,Cb)        (7) 

Filling in the known values give us 

7 ≤  D(Q,Cb) + 2                   (8) 

    Rearranging the terms gives us 

5 ≤  D(Q,Cb)                      (9) 
But since we are only interested in subsequences that are a 

distance less than 1 unit away, there is no point in 
determining the exact value of D(Q,Cb), which we now know 
to be at least 5 units away.  

The first formalization of this idea for fast searching of 
nearest neighbors in matrices is generally credited to 
Burkhard and Keller [5]. More efficient implementations are 
possible; for example, Shasha and Wang [33] introduced the 
Approximation Distance Map (ADM) algorithm that pre-
computes an arbitrary set of distances instead of using just 
one randomly chosen reference point. 

For the problem at hand, however, the techniques 
discussed above seem of little utility, since as previously 
noted, we are unlikely to have O(m2) space in which to store 
the entire matrix. We propose to use just such a technique as 
a subroutine in our motif discovery algorithm. Our idea is to 
create only a small portion of the matrix at a time, and 
exploit the techniques above to search it. Our contribution 
comes from the method we use to construct the small matrix. 
As we will demonstrate, we can use our MINDIST function 
to create a matrix, much smaller than O(m2), which is 
guaranteed to contain all the subsequences which are within 
R of a promising candidate for a motif. 

In addition to all the matching sequences to a promising 
candidate, the small matrix will generally contain some non-
matching subsequences, or “false hits”. We use Shasha and 
Wang’s ADM algorithm to efficiently separate the true 
matches to the false hits. 

There is a possibility that a promising candidate for a 
motif will pan out. That is, after searching the small matrix 
we will discover that most or all of the subsequences don’t 
match. In this case we will have to construct a new small 
matrix and continue the search with the next most promising 
motif. If the new small matrix has any overlap with the 
previous matrix, we reuse the calculated values rather than 
recalculating them.  

Constructing these small matrices would be of limited 
utility if their total size added up to O(m2). While this is 
possible in pathological cases, we can generally search a 
space much smaller in total size, and still guarantee that we 
have returned the true best K-Motifs.  

This, in essence, is the intuition behind our motif 
discovery algorithm. We will achieve speed up by: 
• Searching a set of smaller matrices, whose total size is 

much less than the naïve O(m2) matrix. 
• Within the smaller matrices, using ADM to prune away 

a large fraction of the search space. 
We will concretely define our algorithm, which we call 

EMMA (Enumeration of Motifs through Matrix 
Approximation), in the next section.     

4.1 The EMMA Algorithm 

As before, we only discuss the algorithm for finding the 1-
Motif. The generalization of the algorithm to finding K-
motifs is obvious and omitted for brevity and clarity of 
presentation. The pseudocode for the algorithm is introduced 
in Table 4. The line numbers in the table are used in the 
discussion of the algorithm that follows. 

The algorithm begins by sliding a moving window of 
length n across the time series (line 4). The hash function h() 
(line 5), normalizes the time series, converts it to the 
symbolic representation and computes an address: 

1
1

)1)ˆ((1),,( −
=

×−+= � iw

i i acordawCh    (10)      

Where ord( iĉ ) is the ordinal value of iĉ , i,e., ord(a) = 1, 
ord(b) = 2, and so on. The hash function computes an integer 
in the range 1 to wa, and a pointer to the subsequence is 
placed in the corresponding bucket (line 6).  
 

Algorithm Find-1-Motif-Index(T,n,R,w,a) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

best_motif_count = 0; 

best_motif_location = null; 

finished = FALSE; 
for i = 1 to length(T)- n + 1  // Hash pointers 
   hash_val = h(T[i:i+n-1],w,a);  // to subsequences  

   append(bucket(hash_val).pointers, i);    

end; 
 MPC = address(largest(bucket));   // Find MPC 
 neighborhood = bucket(MPC).pointers;  
while not(finished) 
 for i = 1 to wa             // Build neighborhood  
  if MINDIST(MPC, bucket(i) ) < R   // around 
   temp = bucket(i).pointers;       // the MPC 

   neighborhood = append(neighborhood,temp) 

  end; 
 end;              // Search neighborhood for motifs 
 [motif_cntr,count]= ADM(T,neighborhood,R); 

 if count > largest_unexplored_neighborhood 
   best_motif_location = motif_cntr; 

   best_motif_count = count; 

   finished = TRUE;  
 else         // Create the next neighborhood to search 
   MPC = address(largest_unexplored(bucket)); 
   neighborhood = bucket(MPC).pointers; 
 end; 
end; 

Table 4: The Find-1-Motif-Index algorithm 
At this point we have simply rearranged the data into a 

hash table with wa addresses, and a total of size O(m). This 
arrangement of the data has the advantage of approximately 
grouping similar subsequences (more accurately, pointers to 
similar subsequences) together. We can use this information 
as a heuristic for motif search, since if there is a truly over-
represented pattern in the time series, we should expect that 
most, if not all, copies of it hashed to the same location. We 
call the address with the most hits the Most Promising 
Candidate (MPC) (line 8). We can build a list of all 
subsequences that mapped to this address (line 9), but it is 
possible that some subsequences that hashed to different 
addresses are also within R of the subsequences contained in 
MPC. We can use the MINDIST function that we defined in 
Section 3.3 to determine which addresses could possibly 
contain such subsequences (line 12). All such subsequences 
are added to the list of subsequences that need to be 
examined in our small matrix (line 14). We call the contents 



of a promising address, together with the contents of all the 
addresses within a MINDIST of R to it, a neighborhood. 

At this point we can pass the list of similar subsequences 
into the ADM subroutine (line 17). We will elucidate this 
algorithm later, in Section 4.2. For the moment we just note 
that the algorithm will return the best motif from the original 
MPC subset, with a count of the number of matching 
subsequences. 

If we wish to implement the algorithm as an online 
algorithm, then at this point we can report the current motif 
as a tentative answer, before continuing the search. Such 
“anytime” behavior is very desirable in a data-mining 
algorithm [7].  

Next, a simple test is performed. If the number of matches 
to the current best-so-far motif is greater than the largest 
unexplored neighborhood (line 18), we are done. We can 
record the best so far motif as the true best match (line 19), 
note the number of matching subsequences (line 20), and 
then abandon the search (line 21). 

If the test fails, however, we must set the most promising 
candidate to be the next largest bucket (line 23), initialize the 
new neighborhood with the contents of the bucket (line 24), 
and loop back to line 11, where the full neighborhood is 
discovered (lines 13 and 14) and the search continues.  

For simplicity the pseudocode for the algorithm ignores 
the following possible optimization, it is possible (in fact, 
likely), that the neighborhood in one interaction will overlap 
with the neighborhood in the next. In this case, we can reuse 
the subset of calculated values from iteration to iteration. 

4.2 The ADM Algorithm 

The algorithm we use for searching the small 
neighborhood matrix is a minor modification of the Shasha 
and Wang’s ADM algorithm [33].  The algorithm begins by 
pre-computing an arbitrary set of distances.  A matrix ADM 
is maintained, of which each entry [i,j] is either the exact 
distance between objects i and j (i.e. those that are pre-
computed), or the lower bound for the distance between i 
and j.  The algorithm utilizes the property of triangle 
inequality to find the lower-bound distances.  Details on how 
to construct the matrix ADM can be found in [33]. 

After the matrix ADM is constructed, we scan the matrix 
and compute the actual distance between i and j if ADM[i,j] 
is a lower bound that is smaller than R (because the true 
distance might be greater than R), and omit it if it’s greater 
than R.  For each object, we keep track of the number of 
items smaller than R.  Finally, the algorithm returns the best-
matching motif (i.e. one with the most items within R), with 
a count of number of matching subsequences.  

 
5. Experimental Evaluation 
 

We begin by showing some motifs discovered in a variety 
of time series. We deliberately consider time series with very 
different properties of noise, autocorrelation, stationarity etc. 
Figure 8 shows the 1-Motif discovered in various datasets, 
together with a much larger subsequence of the time series to 
give context. Although the subsequences are normalized [22] 
before testing to see if they match, we show the 
unnormalized subsequences for clarity. 

We next turn our attention to evaluating the efficiency of 
the proposed algorithm. For simplicity we have only 
considered the problem of speeding up motif search when 

 

Figure 8: The 1-Motif discovered in various publicly available 
datasets. From top to bottom, “Network” and “Burst”. Details 
about the datasets are available from the UCR time series data 
mining archive. The small inset boxes show a subsequence of 
length 500 to give context to the motif 

 
the whole time series fits in main memory (we intend to 
address efficient disk-based algorithms in future work). So 
we can evaluate the efficiency of the proposed algorithm by 
simply considering the ratio of how many times the 
Euclidean distance function must be evaluated by EMMA, 
over the number of times it must be evaluated by the brute 
force algorithm described in Table 1. 

distEuclideancallsforcebrutetimesofnumber
distEuclideancallsEMMAtimesofnumberefficiency −=   (11) 

 This measure ignores the cost of building the hash table, 
but this needs be done only once (even if the user wishes to 
try several values of R), and is in any case linear in m.  

The efficiency depends on the value of R used in the 
experiments. In the pathological case of R = ∞, only one 
“small” matrix would be created, but it would be O(m2), even 
if we could fit such a large matrix in main memory, the only 
speed-up would come from ADM algorithm. The other 
pathological case of R = 0 would make our algorithm behave 
very well, because only a few very small matrices would be 
created, and the triangular inequality pruning of ADM 
algorithm would be maximally efficient. Of course, neither 
of these scenarios is meaningful, the former would result in a 
Motif with every (non-trivial) subsequence in the time series 
included, and the latter case would almost certainly result in 
no motif being found (since we are dealing with real 
numbers). 

 In order to test with realistic values of R we will consider 
the efficiency achieved when using the values used to create 
the results shown in Figure 8. The results are shown in Table 5. 

Dataset Network Burst 
efficiency 0.0018 0.0192 

Table 5:  The efficiency of the EMMA algorithm on 
various datasets 

These results indicate a one to two order of magnitude 
speedup over the brute force algorithm. 
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6. Related work  
 

To the best of our knowledge, the problem of finding 
repeated patterns in time series has not been addressed (or 
even formulated) in the literature. 

Several researchers in data mining have addressed the 
discovery of reoccurring patterns in event streams [39], 
although such data sources are often referred to as time 
series [38]. The critical difference is that event streams are 
sequentially ordered variables that are nominal (have no 
natural ordering) and thus these researchers are concerned 
with similar subsets, not similar subsequences. Research by 
Indyk et. al. [20], has addressed the problem of finding 
representative trends in time series, this work is more similar 
in spirit to our work. However, they only consider trends, not 
more general patterns, and they only consider locally 
representative trends, not globally occurring motifs as in our 
approach. 

While there has been enormous interest in efficiently 
locating previously known patterns in time series [1, 2, 3, 8, 
13, 19, 22, 23, 24, 27, 29, 32, 35, 40], our focus on the 
discovery of previously unknown patterns is more similar to 
(and was inspired by) work in computational biology, which 
we briefly review below. 

In the context of computational biology, “pattern 
discovery'” refers to the automatic identification of 
biologically significant patterns (or motifs) by statistical 
methods. The underlying assumption is that biologically 
significant words show distinctive distribution patterns 
within the genomes of various organisms, and therefore they 
can be distinguished from the others. During the 
evolutionary process, living organisms have accumulated 
certain biases toward or against some specific motifs in their 
genomes. For instance, highly recurring oligonucleotides are 
often found in correspondence to regulatory regions or 
protein binding sites of genes.  Vice versa, rare 
oligonucleotide motifs may be discriminated against due to 
structural constraints of genomes or specific reservations for 
global transcription controls. 

Pattern discovery in computational biology originated 
with the work of Rodger Staten [34]. Along this research 
line, a multitude of patterns have been variously 
characterized, and criteria, algorithms and software have 
been developed in correspondence. We mention a few 
representatives of this large family of methods, without 
claiming to be exhaustive: CONSENSUS [16], GIBBS SAMPLER 
[26], WINNOWER [30], PROJECTION [36], VERBUMCULUS [4, 
28] These methods have been studied from a rigorous 
statistical viewpoint (see, e.g., [31] for a review) and also 
employed successfully in practice (see, e.g., [17] and 
references therein). 

While there are literally hundreds of papers on discretizing 
(symbolizing, tokenizing) time series [2, 3, 9, 13, 19, 25, 27] 
(see [10] for an extensive survey), and dozens of distance 
measures defined on these representations, none of the 
techniques allows a distance measure which lower bounds a 
distance measure defined on the original time series.  
 
7. Conclusions  
 

We have formalized the problem of finding repeated 
patterns in time series, and introduced an algorithm to 

efficiently locate them1. In addition, a minor contribution of 
this paper is to introduce the first discrete representation of 
time series that allows a lower bounding approximation of 
the Euclidean distance. This representation may be of 
independent interest to researchers who use symbolic 
representations for similarity search [3, 19, 25, 27, 29], 
change point detection [13], and extracting rules from time 
series [9, 18].   

There are several directions in which we intend to extend 
this work. 
• As previously noted, we only considered the problem of 

speeding up main memory search. Techniques for dealing 
with large disk resident data are highly desirable [6]. 

• On large datasets, the number of returned motifs may be 
intimidating; we plan to investigate tools for visualizing 
and navigating the results of a motif search. 

• Our motif search algorithm utilizes the Euclidean 
metric, and can be trivially modified to use any 
Minkowski metric [40]. However, recent work by 
several authors has suggested that the Euclidean may be 
inappropriate in some domains [21, 29]. We hope to 
generalize our results to work with other more robust 
distance measures, such as Dynamic Time Warping [29].  

• It may be possible to extend our work to multi-
dimensional time series (i.e., trajectories) [37]. 
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