
Mining Motifs in Massive Time Series Databases

Pranav Patel Eamonn Keogh Jessica Lin Stefano Lonardi
University of California - Riverside

Computer Science & Engineering Department
Riverside, CA 92521, USA

 {prpatel, eamonn, jessica, stelo}@cs.ucr.edu

Abstract

The problem of efficiently locating previously known
patterns in a time series database (i.e., query by content) has
received much attention and may now largely be regarded
as a solved problem. However, from a knowledge discovery
viewpoint, a more interesting problem is the enumeration of
previously unknown, frequently occurring patterns. We call
such patterns “motifs”, because of their close analogy to
their discrete counterparts in computation biology. An
efficient motif discovery algorithm for time series would be
useful as a tool for summarizing and visualizing massive
time series databases. In addition it could be used as a
subroutine in various other data mining tasks, including the
discovery of association rules, clustering and classification.

In this work we carefully motivate, then introduce, a non-
trivial definition of time series motifs. We propose an
efficient algorithm to discover them, and we demonstrate the
utility and efficiency of our approach on several real world
datasets.

1. Introduction

The problem of efficiently locating previously defined
patterns in a time series database (i.e., query by content) has
received much attention and may now be essentially regarded
as a solved problem [1, 8, 13, 21, 22, 23, 35, 40]. However,
from a knowledge discovery viewpoint, a more interesting
problem is the detection of previously unknown, frequently
occurring patterns. We call such patterns motifs, because of
their close analogy to their discrete counterparts in
computation biology [11, 16, 30, 34, 36]. Figure 1 illustrates
an example of a motif discovered in an astronomical
database. An efficient motif discovery algorithm for time
series would be useful as a tool for summarizing and
visualizing massive time series databases. In addition, it
could be used as subroutine in various other data mining
tasks, for instance:
• The discovery of association rules in time series first

requires the discovery of motifs (referred to as “primitive
shapes” in [9] and “frequent patterns” in [18]). However
the current solution to finding the motifs is either high
quality and very expensive, or low quality but cheap [9].

• Several researchers have advocated K-means clustering of
time series databases [14], without adequately addressing
the question of how to seed the initial points, or how to
choose K. Motifs could potentially be used to address
both problems. In addition, seeding the algorithm with
motifs rather than random points could speed up

convergence [12].
• Several time series classification algorithms work by

constructing typical prototypes of each class [24]. While
this approach works for small datasets, the construction of
the prototypes (which we see as motifs) requires quadratic
time, as is thus unable to scale to massive datasets.
In this work we carefully motivate, then introduce a non-

trivial definition of time series motifs. We further introduce
an efficient algorithm to discover them.

Figure 1: An astronomical time series (above) contains 3
near identical subsequences. A “zoom-in” (below) reveals
just how similar to each other the 3 subsequences are.

 The rest of this paper is organized as follows. In Section 2
we formally define the problem at hand and consider related
work. In Section 3 we introduce a novel low-dimensional
discrete representation of time series, and prove that it can be
used to obtain a lower bound on the true Euclidean distance.
Section 4 introduces our motif-finding algorithm, which we
experimentally evaluate in Section 5. In Section 6 we
consider related work, and finally in Section 7 we draw some
conclusions and highlight directions for future work.

2. Background and Related Work

The following section is rather dense on terminology and
definitions. These are necessary to concretely define the
problem at hand, and to explain our proposed solution. We
begin with a definition of our data type of interest, time
series:

Definition 1. Time Series: A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Time series can be very long, sometimes containing
billions of observations [15]. We are typically not interested
in any of the global properties of a time series; rather, data

0
 500 1000 1500 2000

 2500

A B C

A

0 20 40 60 80 100 120

B
C

miners confine their interest to subsections of the time series
[1, 20, 23], which are called subsequences.

Definition 2. Subsequence: Given a time series T of length
m, a subsequence C of T is a sampling of length n < m of
contiguous position from T, that is, C = tp,…,tp+n-1 for 1≤ p ≤
m – n + 1.

A task associated with subsequences is to determine if a
given subsequence is similar to other subsequences [1, 2, 3,
8, 13, 19, 21, 22, 23, 24, 25, 27, 29, 35, 40]. This idea is
formalized in the definition of a match.

Definition 3. Match: Given a positive real number R (called
range) and a time series T containing a subsequence C
beginning at position p and a subsequence M beginning at q,
if D(C, M) ≤ R, then M is called a matching subsequence of
C.

The first three definitions are summarized in Figure 2,
illustrating a time series of length 500, and two subsequences
of length 128.

Figure 2: A visual intuition of a time series T (light line), a
subsequence C (bold line) and a match M (bold gray line)
For the time being we will ignore the question of what

distance function to use to determine whether two
subsequences match. We will address this in Section 3.3.

The definition of a match is rather obvious and intuitive;
but it is needed for the definition of a trivial match. One can
observe that the best matches to a subsequence (apart from
itself) tend to be the subsequences that begin just one or two
points to the left or the right of the subsequence in question.
Figure 3 illustrates the idea.

Figure 3: For almost any subsequence C in a time series, the
best matches are the trivial subsequences immediately to the
left and right of C
Intuitively, any definition of motif should exclude the

possibility of over-counting these trivial matches, which we
define more concretely below.
Definition 4. Trivial Match: Given a time series T,
containing a subsequence C beginning at position p and a
matching subsequence M beginning at q, we say that M is a
trivial match to C if either p = q or there does not exist a
subsequence M’ beginning at q’ such that D(C, M’) > R, and
either q < q’< p or p < q’< q.

We can now define the problem of enumerating the K
most significant motifs in a time series.

Definition 5. K-Motifs: Given a time series T, a subsequence
length n and a range R, the most significant motif in T (called
thereafter 1-Motif) is the subsequence C1 that has the highest
count of non-trivial matches (ties are broken by choosing the
motif whose matches have the lower variance). The Kth most
significant motif in T (called thereafter K-Motif) is the
subsequence CK that has the highest count of non-trivial
matches, and satisfies D(CK, Ci) > 2R, for all 1 ≤ i < K .

 Note that this definition forces the set of subsequences in
each motif to be mutually exclusive. This is important
because otherwise two motifs might share the majority of
their elements, and thus be essentially the same.

Having carefully defined the necessary terminology, we
now introduce a brute force algorithm to locate 1-motif. The
generalization of this algorithm to finding K-motifs is
obvious and omitted for brevity.

Algorithm Find-1-Motif-Brute-Force(T,n,R)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

best_motif_count_so_far = 0;
best_motif_location_so_far = null;
for i = 1 to length(T)- n + 1
 count = 0;
 pointers = null;
 for j = 1 to length(T)- n + 1
 if non_trivial_match(T[i:i+n-1],T[j:j+n-1],R)
 count = count + 1;
 pointers = append(pointers,j);
 end;
 end;
 if count > best_motif_count_so_far
 best_motif_count_so_far = count;
 best_motif_location_so_far = i;
 motif_matches = pointers;
 end;
end;

Table 1: The Find-1-Motif-Brute-Force algorithm
The algorithm requires O(m2) calls to the distance

function. Since the Euclidean distance is symmetric [22], one
could theoretically cut in half the CPU time by storing
D(A,B) and re-using the value when it is necessary to find
D(B,A), however, this would require storing m(m-1)/2
values, which is clearly untenable for even moderately sized
datasets.

We will introduce our sub-quadratic algorithm for finding
motifs in Section 4. Our method requires a discrete
representation of the time series that is reduced in
dimensionality and upon which a lower bounding distance
measure can be defined. Since no representation in the
literature fulfills all these criteria, we will introduce such a
representation in the next section.

3. Dimensionality Reduction and Discretization

Our discretization technique allows a time series of
arbitrary length n to be reduced to a string of arbitrary length
w, (w < n, typically w << n). The alphabet size is also an
arbitrary integer a, where a > 2.

As an intermediate step between the original time series
and our discrete representation of it, we must create a
dimensionality-reduced version of the data. We will utilize
the Piecewise Aggregate Approximation (PAA) [22, 40],
which we review in the next section.

0
 50 100 150 200 250 300 350 400

 450 500

C

T

M

0
 50 100 150 200 250 300 350 400

 450 500

C

Trivial
M atch

Trivial
M atch

3.1 Dimensionality Reduction
A time series C of length n can be represented in a w-

dimensional space by a vector wccC ,,1 �= . The ith

element of C is calculated by the following equation:

�
+−=

=
i

ij
jn

w
i

w
n

w
n

cc
1)1(

 (1)

 Simply stated, to reduce the time series from n
dimensions to w dimensions, the data is divided into w equal
sized “frames”. The mean value of the data falling within a
frame is calculated and a vector of these values becomes the
data-reduced representation. The representation can be
visualized as an attempt to approximate the original time
series with a linear combination of box basis functions as
shown in Figure 4.

Figure 4: The PAA representation can be readily visualized
as an attempt to model a sequence with a linear combination
of box basis functions. In this case, a sequence of length 128
is reduced to 8 dimensions
The PAA dimensionality reduction is intuitive and simple,

yet has been shown to rival more sophisticated
dimensionality reduction techniques like Fourier transforms
and wavelets [8, 22, 40]. In addition it has several
advantages over its rivals, including being much faster to
compute, and being able to support many different distance
functions, including weighted distance functions [24],
arbitrary Minkowski norms [40], and dynamic time warping
[13].

3.2 Discretization
Having transformed a time series database into the PAA

we can apply a further transformation to obtain a discrete
representation. For reasons that will become apparent in
Section 4, we require a discretization technique that will
produce symbols with equiprobability. This is easily
achieved since normalized time series have a Gaussian
distribution. To illustrate this, we extracted subsequences of
length 128 from 8 different time series and plotted a normal
probability plot of the data as shown in Figure 5.

Given that the normalized time series have highly
Gaussian distribution, we can simply determine the
“breakpoints” that will produce a equal-sized areas under
Gaussian curve.

Figure 5: A normal probability plot of the distribution of
values from subsequences of length 128 from 8 different
datasets. The highly linear nature of the plot strongly
suggests that the data came from a Gaussian distribution.

Definition 6. Breakpoints: breakpoints are a sorted list of
numbers Β = β1,…,βa-1 such that the area under a N(0,1)
Gaussian curve from βi to βi+1 = 1/a (β0 and βa are defined
as -∞ and ∞, respectively).

 These breakpoints may be determined by looking them up
in a statistical table. For example Table 2 gives the
breakpoints for values of a from 3 to 10.

a
βi

3 4 5 6 7 8 9 10

β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84

β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52

β4 0.84 0.43 0.18 0 -0.14 -0.25

β5 0.97 0.57 0.32 0.14 0

β6 1.07 0.67 0.43 0.25

β7 1.15 0.76 0.52

β8 1.22 0.84

β9 1.28

Table 2: A lookup table that contains the breakpoints that
divide a Gaussian distribution in an arbitrary number (from
3 to 10) of equiprobable regions

Once the breakpoints have been obtained we can
discretize a time series in the following manner. We first
obtain a PAA of the time series. All PAA coefficients that
are below the smallest breakpoint are mapped to the symbol
“a”, all coefficients greater than or equal to the smallest
breakpoint and less than the second smallest breakpoint are
mapped to the symbol “b”, etc. Figure 6 illustrates the idea.

Figure 6: A time series is discretized by first obtaining a
PAA approximation and then using predetermined
breakpoints to map the PAA coefficients into symbols. In
the example above, with n = 128, w = 8 and a = 3, the time
series is mapped to the word baabccbc

0 20 40 60 80 100 120
- 1.5
- 1
- 0.5
0
0.5
1
1.5

b

a a

b

c c

b

c

-10 0 10

0.001
0.003

0.01
0.02

0.05
0.10

0.25

0.50

0.75

0.90
0.95

0.98
0.99

0.997
0.999

P
ro

ba
bi

lit
y

0 20 40 60 80 100 120

- 1.5
- 1
- 0.5
0
0.5
1
1.5

C

C

c0

c1

c2

c3

c4

c5

c6

c7

Note that in this example the 3 symbols, “a”, “b” and “c”
are approximately equiprobable as we desired. We call the
concatenation of symbols that represent a subsequence a
word.

Definition 7. Word: A subsequence C of length n can be
represented as a word wccC ˆ,,ˆˆ

1 �= as follows. Let alphai

denote the ith element of the alphabet, i.e., alpha1 = a and
alpha2 = b. Then the mapping from a PAA approximation C

to a word Ĉ is obtained as follows:

jijji ciifalphac ββ ≤<= −1,ˆ (2)

We have now defined the two representations required for
our motif search algorithm (the PAA representation is merely
an intermediate step required to obtain the symbolic
representation).

3.3 Distance Measures

Having considered various representations of time series
data, we can now define distance measures on them. By far
the most common distance measure for time series is the
Euclidean distance [8, 22, 23, 32, 40]. Given two time series
Q and C of the same length n, Eq. 3 defines their Euclidean
distance, and Figure 7.A illustrates a visual intuition of the
measure.

() ()� −≡
=

n

i
ii cqCQD

1

2, (3)

If we transform the original subsequences into PAA
representations, Q and C , using Eq. 1, we can then obtain a
lower bounding approximation of the Euclidean distance
between the original subsequences by:

()� =
−≡ w

i iiw
n cqCQDR

1

2),((4)

This measure is illustrated in Figure 7.B. A proof that
DR(Q ,C) lower bounds the true Euclidean distance
appears in [22] (an alterative proof appears in [40]).

If we further transform the data into the symbolic
representation, we can define a MINDIST function that
returns the minimum distance between the original time
series of two words:

()� =
≡ w

i iiw
n cqdistCQMINDIST

1

2)ˆ,ˆ()ˆ,ˆ((5)

The function resembles Eq. 4 except for the fact that the
distance between the two PAA coefficients has been
replaced with the sub-function dist(). The dist() function can
be implemented using a table lookup as illustrated in Table
3.

 a b c
a 0 0 0.86

b 0 0 0

c 0.86 0 0

Table 3: A lookup table used by the MINDIST function.
This table is for an alphabet of cardinality, i.e. a = 3. The
distance between two symbols can be read off by examining
the corresponding row and column. For example dist(a,b) =
0 and dist(a,c) = 0.86.

The value in cell (r,c) for any lookup table of can be
calculated by the following expression.

�
�
�

−
≤−

=
− otherwise

crif
cell

crcr
cr

,
1,0

),min(1),max(
, ββ

(6)

For a given value of the alphabet size a, the table need
only be calculated once, then stored for fast lookup. The
MINDIST function can be visualized is Figure 7.C.

Figure 7: A visual intuition of the three representations
discussed in this work, and the distance measures defined
on them. A) The Euclidean distance between two time
series can be visualized as the square root of the sum of the
squared differences of each pair of corresponding points.
B) The distance measure defined for the PAA
approximation can be seen as the square root of the sum of
the squared differences between each pair of corresponding
PAA coefficients, multiplied by the square root of the
compression rate. C) The distance between two symbolic
representations of a time series requires looking up the
distances between each pair of symbols, squaring them,
summing them, taking the square root and finally
multiplying by the square root of the compression rate.

4. Efficient Motif Discovery

Recall that the brute force motif discovery algorithm
introduced Table 1 requires O(m2) calculations of the
distance function. As previously mentioned, the symmetric
property of the Euclidean distance measure could be used to
half the number of calculations by storing D(Q,C) and re-
using the value when it is necessary to find D(C,Q). In fact,
further optimizations would be possible under this scenario.
We now give an example of such optimization.

Suppose we are in the innermost loop of the algorithm,
attempting to enumerate all possible matches within R = 1, to
a particular subsequence Q. Further suppose that in previous
iterations we had already discovered that D(Ca,Cb) = 2. As

0 20 40 60 80 100 120
- 1.5
- 1
- 0.5
0
0.5
1
1.5

0 20 40 60 80 100 120
- 1.5
- 1
- 0.5
0
0.5
1
1.5

C

= b aabccbc

= babcacca

Q

C

Q

C ˆ

Q ˆ

(A)

(B)

(C)

we go through the innermost loop we first calculate the
distance D(Q,Ca) and discover it to be 7. At this point we
should continue on to measure D(Q,Cb), but in fact we don’t
have to do this calculation! We can use the triangular
inequality to discover that D(Q,Cb) could not be a match to
Q. The triangular inequality requires that [2, 22, 33]:

D(Q,Ca) ≤ D(Q,Cb) + D(Ca,Cb) (7)

Filling in the known values give us

7 ≤ D(Q,Cb) + 2 (8)

 Rearranging the terms gives us

5 ≤ D(Q,Cb) (9)
But since we are only interested in subsequences that are a

distance less than 1 unit away, there is no point in
determining the exact value of D(Q,Cb), which we now know
to be at least 5 units away.

The first formalization of this idea for fast searching of
nearest neighbors in matrices is generally credited to
Burkhard and Keller [5]. More efficient implementations are
possible; for example, Shasha and Wang [33] introduced the
Approximation Distance Map (ADM) algorithm that pre-
computes an arbitrary set of distances instead of using just
one randomly chosen reference point.

For the problem at hand, however, the techniques
discussed above seem of little utility, since as previously
noted, we are unlikely to have O(m2) space in which to store
the entire matrix. We propose to use just such a technique as
a subroutine in our motif discovery algorithm. Our idea is to
create only a small portion of the matrix at a time, and
exploit the techniques above to search it. Our contribution
comes from the method we use to construct the small matrix.
As we will demonstrate, we can use our MINDIST function
to create a matrix, much smaller than O(m2), which is
guaranteed to contain all the subsequences which are within
R of a promising candidate for a motif.

In addition to all the matching sequences to a promising
candidate, the small matrix will generally contain some non-
matching subsequences, or “false hits”. We use Shasha and
Wang’s ADM algorithm to efficiently separate the true
matches to the false hits.

There is a possibility that a promising candidate for a
motif will pan out. That is, after searching the small matrix
we will discover that most or all of the subsequences don’t
match. In this case we will have to construct a new small
matrix and continue the search with the next most promising
motif. If the new small matrix has any overlap with the
previous matrix, we reuse the calculated values rather than
recalculating them.

Constructing these small matrices would be of limited
utility if their total size added up to O(m2). While this is
possible in pathological cases, we can generally search a
space much smaller in total size, and still guarantee that we
have returned the true best K-Motifs.

This, in essence, is the intuition behind our motif
discovery algorithm. We will achieve speed up by:
• Searching a set of smaller matrices, whose total size is

much less than the naïve O(m2) matrix.
• Within the smaller matrices, using ADM to prune away

a large fraction of the search space.
We will concretely define our algorithm, which we call

EMMA (Enumeration of Motifs through Matrix
Approximation), in the next section.

4.1 The EMMA Algorithm

As before, we only discuss the algorithm for finding the 1-
Motif. The generalization of the algorithm to finding K-
motifs is obvious and omitted for brevity and clarity of
presentation. The pseudocode for the algorithm is introduced
in Table 4. The line numbers in the table are used in the
discussion of the algorithm that follows.

The algorithm begins by sliding a moving window of
length n across the time series (line 4). The hash function h()
(line 5), normalizes the time series, converts it to the
symbolic representation and computes an address:

1
1

)1)ˆ((1),,(−
=

×−+= � iw

i i acordawCh (10)

Where ord(iĉ) is the ordinal value of iĉ , i,e., ord(a) = 1,
ord(b) = 2, and so on. The hash function computes an integer
in the range 1 to wa, and a pointer to the subsequence is
placed in the corresponding bucket (line 6).

Algorithm Find-1-Motif-Index(T,n,R,w,a)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

best_motif_count = 0;

best_motif_location = null;

finished = FALSE;
for i = 1 to length(T)- n + 1 // Hash pointers
 hash_val = h(T[i:i+n-1],w,a); // to subsequences

 append(bucket(hash_val).pointers, i);

end;
 MPC = address(largest(bucket)); // Find MPC
 neighborhood = bucket(MPC).pointers;
while not(finished)
 for i = 1 to wa // Build neighborhood
 if MINDIST(MPC, bucket(i)) < R // around
 temp = bucket(i).pointers; // the MPC

 neighborhood = append(neighborhood,temp)

 end;
 end; // Search neighborhood for motifs
 [motif_cntr,count]= ADM(T,neighborhood,R);

 if count > largest_unexplored_neighborhood
 best_motif_location = motif_cntr;

 best_motif_count = count;

 finished = TRUE;
 else // Create the next neighborhood to search
 MPC = address(largest_unexplored(bucket));
 neighborhood = bucket(MPC).pointers;
 end;
end;

Table 4: The Find-1-Motif-Index algorithm
At this point we have simply rearranged the data into a

hash table with wa addresses, and a total of size O(m). This
arrangement of the data has the advantage of approximately
grouping similar subsequences (more accurately, pointers to
similar subsequences) together. We can use this information
as a heuristic for motif search, since if there is a truly over-
represented pattern in the time series, we should expect that
most, if not all, copies of it hashed to the same location. We
call the address with the most hits the Most Promising
Candidate (MPC) (line 8). We can build a list of all
subsequences that mapped to this address (line 9), but it is
possible that some subsequences that hashed to different
addresses are also within R of the subsequences contained in
MPC. We can use the MINDIST function that we defined in
Section 3.3 to determine which addresses could possibly
contain such subsequences (line 12). All such subsequences
are added to the list of subsequences that need to be
examined in our small matrix (line 14). We call the contents

of a promising address, together with the contents of all the
addresses within a MINDIST of R to it, a neighborhood.

At this point we can pass the list of similar subsequences
into the ADM subroutine (line 17). We will elucidate this
algorithm later, in Section 4.2. For the moment we just note
that the algorithm will return the best motif from the original
MPC subset, with a count of the number of matching
subsequences.

If we wish to implement the algorithm as an online
algorithm, then at this point we can report the current motif
as a tentative answer, before continuing the search. Such
“anytime” behavior is very desirable in a data-mining
algorithm [7].

Next, a simple test is performed. If the number of matches
to the current best-so-far motif is greater than the largest
unexplored neighborhood (line 18), we are done. We can
record the best so far motif as the true best match (line 19),
note the number of matching subsequences (line 20), and
then abandon the search (line 21).

If the test fails, however, we must set the most promising
candidate to be the next largest bucket (line 23), initialize the
new neighborhood with the contents of the bucket (line 24),
and loop back to line 11, where the full neighborhood is
discovered (lines 13 and 14) and the search continues.

For simplicity the pseudocode for the algorithm ignores
the following possible optimization, it is possible (in fact,
likely), that the neighborhood in one interaction will overlap
with the neighborhood in the next. In this case, we can reuse
the subset of calculated values from iteration to iteration.

4.2 The ADM Algorithm

The algorithm we use for searching the small
neighborhood matrix is a minor modification of the Shasha
and Wang’s ADM algorithm [33]. The algorithm begins by
pre-computing an arbitrary set of distances. A matrix ADM
is maintained, of which each entry [i,j] is either the exact
distance between objects i and j (i.e. those that are pre-
computed), or the lower bound for the distance between i
and j. The algorithm utilizes the property of triangle
inequality to find the lower-bound distances. Details on how
to construct the matrix ADM can be found in [33].

After the matrix ADM is constructed, we scan the matrix
and compute the actual distance between i and j if ADM[i,j]
is a lower bound that is smaller than R (because the true
distance might be greater than R), and omit it if it’s greater
than R. For each object, we keep track of the number of
items smaller than R. Finally, the algorithm returns the best-
matching motif (i.e. one with the most items within R), with
a count of number of matching subsequences.

5. Experimental Evaluation

We begin by showing some motifs discovered in a variety
of time series. We deliberately consider time series with very
different properties of noise, autocorrelation, stationarity etc.
Figure 8 shows the 1-Motif discovered in various datasets,
together with a much larger subsequence of the time series to
give context. Although the subsequences are normalized [22]
before testing to see if they match, we show the
unnormalized subsequences for clarity.

We next turn our attention to evaluating the efficiency of
the proposed algorithm. For simplicity we have only
considered the problem of speeding up motif search when

Figure 8: The 1-Motif discovered in various publicly available
datasets. From top to bottom, “Network” and “Burst”. Details
about the datasets are available from the UCR time series data
mining archive. The small inset boxes show a subsequence of
length 500 to give context to the motif

the whole time series fits in main memory (we intend to
address efficient disk-based algorithms in future work). So
we can evaluate the efficiency of the proposed algorithm by
simply considering the ratio of how many times the
Euclidean distance function must be evaluated by EMMA,
over the number of times it must be evaluated by the brute
force algorithm described in Table 1.

distEuclideancallsforcebrutetimesofnumber
distEuclideancallsEMMAtimesofnumberefficiency −= (11)

 This measure ignores the cost of building the hash table,
but this needs be done only once (even if the user wishes to
try several values of R), and is in any case linear in m.

The efficiency depends on the value of R used in the
experiments. In the pathological case of R = ∞, only one
“small” matrix would be created, but it would be O(m2), even
if we could fit such a large matrix in main memory, the only
speed-up would come from ADM algorithm. The other
pathological case of R = 0 would make our algorithm behave
very well, because only a few very small matrices would be
created, and the triangular inequality pruning of ADM
algorithm would be maximally efficient. Of course, neither
of these scenarios is meaningful, the former would result in a
Motif with every (non-trivial) subsequence in the time series
included, and the latter case would almost certainly result in
no motif being found (since we are dealing with real
numbers).

 In order to test with realistic values of R we will consider
the efficiency achieved when using the values used to create
the results shown in Figure 8. The results are shown in Table 5.

Dataset Network Burst
efficiency 0.0018 0.0192

Table 5: The efficiency of the EMMA algorithm on
various datasets

These results indicate a one to two order of magnitude
speedup over the brute force algorithm.

0 10 20 30 40

70
80
90

100
110
120

0 40 80 120
 160 200

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

6. Related work

To the best of our knowledge, the problem of finding
repeated patterns in time series has not been addressed (or
even formulated) in the literature.

Several researchers in data mining have addressed the
discovery of reoccurring patterns in event streams [39],
although such data sources are often referred to as time
series [38]. The critical difference is that event streams are
sequentially ordered variables that are nominal (have no
natural ordering) and thus these researchers are concerned
with similar subsets, not similar subsequences. Research by
Indyk et. al. [20], has addressed the problem of finding
representative trends in time series, this work is more similar
in spirit to our work. However, they only consider trends, not
more general patterns, and they only consider locally
representative trends, not globally occurring motifs as in our
approach.

While there has been enormous interest in efficiently
locating previously known patterns in time series [1, 2, 3, 8,
13, 19, 22, 23, 24, 27, 29, 32, 35, 40], our focus on the
discovery of previously unknown patterns is more similar to
(and was inspired by) work in computational biology, which
we briefly review below.

In the context of computational biology, “pattern
discovery'” refers to the automatic identification of
biologically significant patterns (or motifs) by statistical
methods. The underlying assumption is that biologically
significant words show distinctive distribution patterns
within the genomes of various organisms, and therefore they
can be distinguished from the others. During the
evolutionary process, living organisms have accumulated
certain biases toward or against some specific motifs in their
genomes. For instance, highly recurring oligonucleotides are
often found in correspondence to regulatory regions or
protein binding sites of genes. Vice versa, rare
oligonucleotide motifs may be discriminated against due to
structural constraints of genomes or specific reservations for
global transcription controls.

Pattern discovery in computational biology originated
with the work of Rodger Staten [34]. Along this research
line, a multitude of patterns have been variously
characterized, and criteria, algorithms and software have
been developed in correspondence. We mention a few
representatives of this large family of methods, without
claiming to be exhaustive: CONSENSUS [16], GIBBS SAMPLER
[26], WINNOWER [30], PROJECTION [36], VERBUMCULUS [4,
28] These methods have been studied from a rigorous
statistical viewpoint (see, e.g., [31] for a review) and also
employed successfully in practice (see, e.g., [17] and
references therein).

While there are literally hundreds of papers on discretizing
(symbolizing, tokenizing) time series [2, 3, 9, 13, 19, 25, 27]
(see [10] for an extensive survey), and dozens of distance
measures defined on these representations, none of the
techniques allows a distance measure which lower bounds a
distance measure defined on the original time series.

7. Conclusions

We have formalized the problem of finding repeated
patterns in time series, and introduced an algorithm to

efficiently locate them1. In addition, a minor contribution of
this paper is to introduce the first discrete representation of
time series that allows a lower bounding approximation of
the Euclidean distance. This representation may be of
independent interest to researchers who use symbolic
representations for similarity search [3, 19, 25, 27, 29],
change point detection [13], and extracting rules from time
series [9, 18].

There are several directions in which we intend to extend
this work.
• As previously noted, we only considered the problem of

speeding up main memory search. Techniques for dealing
with large disk resident data are highly desirable [6].

• On large datasets, the number of returned motifs may be
intimidating; we plan to investigate tools for visualizing
and navigating the results of a motif search.

• Our motif search algorithm utilizes the Euclidean
metric, and can be trivially modified to use any
Minkowski metric [40]. However, recent work by
several authors has suggested that the Euclidean may be
inappropriate in some domains [21, 29]. We hope to
generalize our results to work with other more robust
distance measures, such as Dynamic Time Warping [29].

• It may be possible to extend our work to multi-
dimensional time series (i.e., trajectories) [37].

8. References

[1] Agrawal, R., Faloutsos, C. & Swami, A. (1993). Efficient

similarity search in sequence databases. In proceedings of the
4th Int'l Conference on Foundations of Data Organization and
Algorithms. Chicago, IL, Oct 13-15. pp 69-84.

[2] Agrawal, R., Psaila, G., Wimmers, E. L. & Zait, M. (1995).
Querying shapes of histories. In proceedings of the 21st Int'l
Conference on Very Large Databases. Zurich, Switzerland,
Sept 11-15. pp 502-514.

[3] André-Jönsson, H. & Badal. D. (1997). Using signature files
for querying time-series data. In proceedings of Principles of
Data Mining and Knowledge Discovery, 1st European
Symposium. Trondheim, Norway, Jun 24-27. pp 211-220.

[4] Apostolico, A., Bock, M. E. & Lonardi, S. (2002). Monotony
of surprise and large-scale quest for unusual words (extended
abstract). Myers, G., Hannenhalli, S., Istrail, S., Pevzner, P. &
Waterman, M. editors. In proceedings of the 6th Int’l
Conference on Research in Computational Molecular
Biology. Washington, DC, April 18-21. pp 22-31.

[5] Burkhard, W. A. & Keller, R. M. (1973). Some approaches to
best-match file searching. Commun. ACM, April. Vol. 16(4),
pp 230-236.

[6] Böhm, C., Braunmüller, B., Krebs, F. & Kriegel, H. P. (2002).
Epsilon grid order: An algorithm for the similarity join on
massive high-dimensional data. In proceedings of ACM
SIGMOD Int. Conf. on Management of Data, Santa Barbara.

[7] Bradley, P. S., Fayyad, U. M. & Reina, C. A. (1998). Scaling
clustering algorithms to large databases. In proceedings of the
4th Int’l Conference on Knowledge Discovery and Data
Mining. New York, NY, Aug 27-31. pp 9-15.

[8] Chan, K. & Fu, A. W. (1999). Efficient time series matching
by wavelets. In proceedings of the 15th IEEE Int'l Conference

1 A slightly expanded version of this paper is available by
emailing the authors.

on Data Engineering. Sydney, Australia, Mar 23-26. pp 126-
133.

[9] Das, G., Lin, K., Mannila, H., Renganathan, G. & Smyth, P.
(1998). Rule discovery from time series. In proceedings of the
4th Int'l Conference on Knowledge Discovery and Data
Mining. New York, NY, Aug 27-31. pp 16-22.

[10] Daw, C. S., Finney, C. E. A. & Tracy, E. R. (2001). Symbolic
analysis of experimental data. Review of Scientific
Instruments. To appear.

[11] Durbin, R., Eddy, S., Krogh, A. & Mitchison, G. (1998).
Biological sequence analysis: probabilistic models of proteins
and nucleic acids. Cambridge University Press.

[12] Fayyad, U., Reina, C. &. Bradley. P (1998). Initialization of
iterative refinement clustering algorithms. In Proceedings of
the 4th International Conference on Knowledge Discovery and
Data Mining. New York, NY, Aug 27-31. pp 194-198.

[13] Ge, X. & Smyth, P. (2000). Deformable Markov model
templates for time-series pattern matching. In proceedings of
the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Boston, MA, Aug 20-23. pp 81-
90.

[14] Goutte, C. Toft, P., Rostrup, E.,. Nielsen F.Å & Hansen L.K.
(1999). On clustering fMRI time series, NeuroImage, 9(3): pp
298-310.

[15] Hegland, M., Clarke, W. & Kahn, M. (2002). Mining the
MACHO dataset, Computer Physics Communications, Vol
142(1-3), December 15. pp. 22-28.

[16] Hertz, G. & Stormo, G. (1999). Identifying DNA and protein
patterns with statistically significant alignments of multiple
sequences. Bioinformatics, Vol. 15, pp 563-577.

[17] van Helden, J., Andre, B., & Collado-Vides, J. (1998)
Extracting regulatory sites from the upstream region of the
yeast genes by computational analysis of oligonucleotides. J.
Mol. Biol., Vol. 281, pp 827-842.

[18] Höppner, F. (2001). Discovery of temporal patterns -- learning
rules about the qualitative behavior of time series. In
Proceedings of the 5th European Conference on Principles
and Practice of Knowledge Discovery in Databases. Freiburg,
Germany, pp 192-203.

[19] Huang, Y. & Yu, P. S. (1999). Adaptive query processing for
time-series data. In proceedings of the 5th Int'l Conference on
Knowledge Discovery and Data Mining. San Diego, CA, Aug
15-18. pp 282-286.

[20] Indyk, P., Koudas, N. & Muthukrishnan, S. (2000). Identifying
representative trends in massive time series data sets using
sketches. In proceedings of the 26th Int'l Conference on Very
Large Data Bases. Cairo, Egypt, Sept 10-14. pp 363-372.

[21] Kalpakis, K., Gada, D. & Puttagunta, V. (2001). Distance
measures for effective clustering of ARIMA time-series. In
proceedings of the 2001 IEEE International Conference on
Data Mining, San Jose, CA, Nov 29-Dec 2. pp 273-280.

[22] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2000).
Dimensionality reduction for fast similarity search in large
time series databases. Journal of Knowledge and Information
Systems. pp 263-286.

[23] Keogh, E., Chakrabarti, K., Pazzani, M. & Mehrotra, S.
(2001). Locally adaptive dimensionality reduction for indexing
large time series databases. In proceedings of ACM SIGMOD
Conference on Management of Data. Santa Barbara, CA, May
21-24. pp 151-162.

[24] Keogh, E. & Pazzani, M. (1998). An enhanced representation
of time series which allows fast and accurate classification,
clustering and relevance feedback. In proceedings of the 4th

Int'l Conference on Knowledge Discovery and Data Mining.
New York, NY, Aug 27-31. pp 239-241.

[25] Koski, A., Juhola, M. & Meriste, M. (1995). Syntactic
recognition of ECG signals by attributed finite automata.
Pattern Recognition, 28 (12), pp. 1927-1940.

[26] Lawrence, C.E., Altschul, S. F., Boguski, M. S., Liu, J. S.,
Neuwald, A. F. & Wootton, J. C. (1993). Detecting subtle
sequence signals: A Gibbs sampling strategy for multiple
alignment. Science, Oct. Vol. 262, pp 208-214.

[27] Li, C., Yu, P. S. & Castelli, V. (1998). MALM: a framework
for mining sequence database at multiple abstraction levels. In
proceedings of the 7th ACM CIKM International Conference
on Information and Knowledge Management. Bethesda, MD.
pp 267-272.

[28] Lonardi, S. (2001). Global Detectors of Unusual Words:
Design, Implementation, and Applications to Pattern
Discovery in Biosequences. PhD thesis, Department of
Computer Sciences, Purdue University, August, 2001.

[29] Perng, C., Wang, H., Zhang, S., & Parker, S. (2000).
Landmarks: a new model for similarity-based pattern querying
in time series databases. In proceedings of 16th International
Conference on Data Engineering.

[30] Pevzner, P. A. & Sze, S. H. (2000). Combinatorial approaches
to finding subtle signals in DNA sequences. In proceedings of
the 8th International Conference on Intelligent Systems for
Molecular Biology. La Jolla, CA, Aug 19-23. pp 269-278.

[31] Reinert, G., Schbath, S. & Waterman, M. S. (2000).
Probabilistic and statistical properties of words: An overview.
J. Comput. Bio., Vol. 7, pp 1-46.

[32] Roddick, J. F., Hornsby, K. & Spiliopoulou, M. (2001). An
Updated Bibliography of Temporal, Spatial and Spatio-
Temporal Data Mining Research. In Post-Workshop
Proceedings of the International Workshop on Temporal,
Spatial and Spatio-Temporal Data Mining. Berlin, Springer.
Lecture Notes in Artificial Intelligence. 2007. Roddick, J. F.
and Hornsby, K., Eds. 147-163.

[33] Shasha, D. & Wang, T. (1990). New techniques for best-match
retrieval. ACM Trans. on Information Systems, Vol. 8(2). pp
140-158.

[34] Staden, R. (1989). Methods for discovering novel motifs in
nucleic acid sequences. Comput. Appl. Biosci., Vol. 5(5). pp
293-298.

[35] Struzik, Z. R. & Siebes, A. (1999). Measuring time series
similarity through large singular features revealed with wavelet
transformation. In proceedings of the 10th International
Workshop on Database & Expert Systems Applications. pp
162-166.

[36] Tompa, M. & Buhler, J. (2001). Finding motifs using random
projections. In proceedings of the 5th Int’l Conference on
Computational Molecular Biology. Montreal, Canada, Apr
22-25. pp 67-74.

[37] Vlachos, M., Kollios, G. & Gunopulos, G. (2002). Discovering
similar multidimensional trajectories. In proceedings 18th
International Conference on Data Engineering. pp 673-684.

[38] Wang. W., Yang, J. and Yu., P. (2001). Meta-patterns:
revealing hidden periodical patterns. In Proceedings of the 1st
IEEE International Conference on Data Mining. pp. 550-557.

[39] Yang, J., Yu, P., Wang, W. and Han. J. (2002). Mining long
sequential patterns in a noisy environment. In proceedings
SIGMOD International. Conference on Management of Data.
Madison, WI.

[40] Yi, B, K., & Faloutsos, C. (2000). Fast time sequence
indexing for arbitrary Lp norms. In proceedings of the 26st Intl
Conference on Very Large Databases. pp 385-394.

