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Abstract

In this paper, a new mining capability, called mining of
substitution rules, is explored. A substitution refers to the
choice made by a customer to replace the purchase of some
items with that of others. The process of mining substitution
rules can be decomposed into two procedures. The first pro-
cedure is to identify concrete itemsets among a large num-
ber of frequent itemsets, where a concrete itemset is a fre-
quent itemset whose items are statistically dependent. The
second procedure is then on the substitution rule genera-
tion. Two concrete itemsets X and Y form a substitution
rule, denoted by Xi>Y to mean that X is a substitute for ¥,
if and only if (1) X and Y are negatively correlated and (2)
the negative association rule X— Y exists. In this paper,
we derive theoretical properties for the model of substitu-
tion rule mining. Then, in light of these properties, algo-
rithm SRM (standing for substitution rule mining) is de-
signed and implemented to discover the substitution rules
efficiently while attaining good statistical significance. Em-
pirical studies are performed to evaluate the performance of
algorithm SRM proposed. It is shown that algorithm SRM
produces substitution rules of very high quality.

1. Introduction

Various data mining capabilities have been explored in
the literature [5, 7, 14]. Among them, the one receiving
a significant amount of research attention is on mining as-
sociation rules [2]. Given a database of sales transactions,
the goal of mining an association rule is to discover the rela-
tionship that the presence of some items in a transaction will
imply the presence of other items in the same transaction.
Note that in addition to the association rules, the data in
a transaction database also possesses some other consumer
purchase behaviors. Specifically, it is important to under-
stand the choice made by consumers, which, corresponding
to the purchase of some items instead of that of others, is
termed substitution in this paper. For example, in a grocery
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store, the purchase of apples may be substituted for that of
pears. Intuitively, the substitutes are of analogous proper-
ties and therefore are often possible choices for customers.
However, in some cases, the substitutes could be formed
due to purchasing purposes. For example, the purchase of
roses may be substituted for that of a Teddy bear and a box
of chocolates. The mining of substitution rules in a transac-
tion database, same as that of association rules, will lead to
very valuable knowledge in various aspects, including mar-
ket prediction, user behavior analysis and decision support,
to name a few. Despite of its importance, the mining of
substitution rules, unlike that of association rules, has been
little explored in the literature.

Mining negative association rules of the form X -+ Y,
where Y means the absence of itemset Y, is useful for the
mining of substitutive itemsets, since in a negative associa-
tion rule, the presence of the antecedent itemset implies the
absence of the positive counterpart of the consequent item-
set, meaning that X could be a substitute for Y. It is noted
that some efforts were elaborated upon the mining of nega-
tive association rules. In [15], the taxonomy of items is in-
troduced and a heuristic of using similarity among items in
the same category is utilized to facilitate the mining of nega-
tive association rules. On the other hand, a constraint-based
approach is adopted in [3]. Notice, however, that in the neg-
ative association rule mining, the dependency of items in an
itemset is not considered since the itemset frequency is the
only measurement when generating frequent itemsets. In
contrast, to discover substitution rules, one should first de-
termine possible itemsets which could be choices for cus-
tomers. The purchasing frequency, i.e., support of an item-
set, is not adequate to identify these possible substitutes.
The dependency of items has to be examined to identify
concrete sets of items which are really purchased together
by customers. Specifically, a frequent itemset whose items
are statistically dependent is called a concrete itemset in
this paper. Note that if a frequent itemset is not concrete,
that itemset is likely to consist of frequent items which,
though appearing together frequently due to their high in-
dividual occurrence counts, do not possess adequate depen-



dency among themselves and are thus of little practical im-
plication to be used as a whole in either the antecedent or
the consequent of a substitution rule. In addition, the neg-
ative comrelation of two itemsets should be verified if these
two itemsets are considered to be substitutes for each other.
Without considering these aspects, the mining of negative
association rules is not applicable to the mining of substitu-
tion rules.

Consequently, we develop in this paper a new model of
mining substitution rules, The process of mining substitu-
tion rules can be decomposed into two procedures. The first
procedure is to identify concrete itemsets among a large
number of frequent itemsets. The second procedure is on
the substitution rule generation, Two concrete itemsets X
and Y form a substitution rule, denoted by X>Y to mean
that X is a substitute for Y, if and only if (1) X and Y are
negatively correlated and (2) the negative association rule
X— Y exists. Without loss of generality, the chi-square test
{8] is employed to identify concrete itemsets by statistically
evaluating the dependency among items in individual item-
sets. Moreover, the Pearson product moment correlation
coefficient {8, 11] is utilized to measure the correlation be-
tween two itemsets. Explicitly, we derive theoretical prop-
erties for the model of mining substitution rules. Then, in
light of these properties, algorithm SRM (standing for sub-
stitution rule mining) is designed and implemented to dis-
cover the substitution rules efficiently while attaining good
statistical significance. For comparison purposes, a com-
panion method which is extended from algorithm Apriori,
called algorithm Apriori-Dual, is also implemented.

Extensive experimental studies have been conducted to
provide many insights into algorithm SRM proposed. The
quality of substitution rules in terms of statistical measure-
ments is also evaluated. It is shown by experiments that al-
gorithm SRM significantly outperforms algorithm Apriori-
Dual. It is noted that algorithm SRM produces substitution
rules of very high quality as measured by the correlation
and the violation ratio [1]. The advantage of SRM is even
more prominent when the transaction database is sparser.

The rest of the paper is organized as follows. The frame-
work of mining negative association rules is explored and
the model of substitution rule mining is presented in Section
2. Algorithm SRM and an illustrative example are described
in details in Section 3. Several experiments are conducted
in Section 4. This paper concludes with Section 5.

2. Mode! of Substitution Rule Mining

To facilitate our discussion, we shall first review the
framework of negative assoctation rules mining in Section
2.1. The model of substitution rule mining is then presented
in Section 2.2.
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2.1, Mining of Negative Association Rules

Same as in most prior work on mining association rules
[2, 5], an itemset is a set containing one or many items. The
support of an itemset X, denoted by Sx, is the fraction of
transactions containing X in the whole dataset. The item-
sets which meet the minimum support constraint are called
frequent itemsets or large itemsets [5]. An association rule
is an implication of the form X—Y with XNY=0, where X
and Y are both frequent itemsets. The support of the rule
XY, i.e., Sup(X—Y), is Sxyy, and the confidence of the
rule X—Y, ie., ConflX—Y), is %, Given a large data-
base of transactions, the goal of mining association rules
is to generate all rules that satisfy the user-specified con-
straints of minimum support and the minimum confidence,
i.e., Sup(X—Y)>MinSup and Conf{X—Y)>MinConf.

Definition 1: An itemset X is positive if and only if it con-
tains no complement items, i.e., X={iy, iy, ..., ix} where i;
is an item for 1 < j < k. On the other hand, the regative
itemset is an itemset containing one or more complement
items. If a negative itemset is composed by complement
iterns only, ie., {1, 2, ..., ix}, then this itemset is pure
negative and can be denoted by X.

A negative association rule refers to an association rule
of which either the antecedent itemset, the consequent item-
set, or both are negative. An example of mining negative
itemsets through a naive approach is given below for iflus-
trative purposes.

Example 1: Consider the transaction database in Table
1(a). We first append the complement items to each trans-
action as shown in Table 1(b). For example, the transaction
with TID=1, i.e., {a, ¢, d} in Table 1(a), becomes {a, b, ¢,
d, & T} in Table 1(b). The resulting database in Table 1{(b)
is the input to the itemset generation afgorithm.

Table 1. {(a) The original transaction database; (b}
After complement items are added

TID | Items TID | Ttems
1 a, ¢ d 1 abcdsf
2 b,c 2 & b,c,d, e f
3 c 3 b, d e £
4 a,b,f 4 a,b,E,d,E,f
5 ac,d| = 5 a,b,cd¥Ef
6 e 6 ab,c,de £
7 b, f 7 a,b,c,dFEf
8 b,e, f 8 a, b, dgf
9 a,b,e 9 a,bc,def
10 | a,d 10 | a,b,c,4d,@, £

(a) (b}

Given that MinSup=0.3, all the frequent itemsets can
then be discovered from Table 1(b) as summarized in Ta-
ble 2. Note that we are only interested in those complement
items whose positive counterparts are frequent for market
basket analysis. As a result, the complement item € is not
shown in Table 2, since the item e is not frequent.



Table 2. Frequent itemsets generated from the
database in Table 1{b) (MinSup=0.3)

L | S Is [ St [ & I3 St
a} 05 ad]03)d4d£f]03 adb 0.3
b 105 a5 |03 | Ld |03 adf |03
c |05 a,c |03 {adj05 a,b,f 03
d |03 af |04 7f] 03 b, fd 0.3
fio3 bf[03]|bt] 05 b, a,d 0.3
alos ba| 03] ¢€d| 04 b,c,d 0.3
b | 0.5 b,c| 03] < £]03 c,ad 0.3
<05 bd | 05| df]| 04 c, b f 03
d | 0.7 ¢,a |03 d b £ 0.3
(07 ¢,b |03 ad,f 0.3

c,d | 03

c,f |04 Iy S

db | 03 a,dbf |03

Clearly, with this straightforward addition of comple-
ment items into the database, the mining of negative asso-
ciation rules can be performed by directly using methods
devised for mining conventional association rules. How-
ever, this benefit may not be able to justify several draw-
backs of this naive approach in practice. First, excessive
storage space is required to store complement items and
also the additional itemsets resufted, Next, many of the
frequent itemsets generated are composed of complement
items only. These itemsets are usually of little use in real
applications. Finally, extra database scans are needed for
the mining process. In real applications, this naive approach
will suffer a prolonged execution time and make mining of
negative association rules an infeasible task.

Once the negative itemsets are generated, one can dis-
cover all negative association rules in a straightforward
manner. For two itemsets X and Y where YCX, the rule
Y—(X-Y) is output if the required MinConf is satisfied.
However, for our purpose of discovering substitution rules,
two positive itemsets are required to form a substitute pair.
Thus, the algorithm Apriori-Dual, i.e., a companion method
extended from algorithm Apriori, is proposed to generate
only rules whose antecedent is positive and consequent is
pure negative, i.e., X — Y where X and Y are positive item-
sets,

Algorithm Apriori-Dual

/! Input: MinSup and MinConf

/! Procedure of generating all frequent itemsets, including

/! the negative ones

1. append the complement items whose positive counterpart
is not original present to each transaction;

2, generate the set of frequent (positive and negative) items,
i.e., Ly;

3. remove the negative items whose positive counterpart is
not frequent from L,;

4. fork > 2 do{

5. generate the candidate set of k-itemsets from Ly, i.e.,

Cr = Lyt ® Ly
6. if (Cy is empty) then break;
7. scan the transactions to calculate supports of all candi-
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date k-itemsets;
8 Li={ccCi|S.>MinSup};
9.}

{/ Pracedure of negative association rule generation
10.foreach negative itemset X in Lys dof

11. letY be the largest pure negative itemset that YcX;
12, if (X-Y) is not an empty set // (X-Y) is positive

13. if (Conf{(X-Y) - Y) > MinConf)
14, output the rule (X-Y) — Y;
15}

As pointed out before, the problem formulation of the
negative association rule mining is different from that of
the substitution rule mining. In addition, since complement
items are appended to the original transaction database,
the computation cost of algorithm Apriori-Dual is, as con-
formed by our experimental results, very high. These draw-
backs reduce the practicability of using algorithm Apriori-
Dual for identifying substitute itemsets. Consequently, a
new algorithm for mining substitution rules is proposed and
will be described in later sections.

2.2. Mining of Substitution Rules

As mentioned before, the process of mining substitution
rules can be decomposed into two procedures. The first
ane is to identify concrete itemsets among large amounts of
itemsets. The second one is on the substitution rule gen-
eration. The chi-square test [8] is employed to identify
concrete itemsets by statistically evaluating the dependency
among items in individual itemsets. Also, the Pearson prod-
uct moment correlation coefficient {8, 11] is utilized to mea-
sure the correlation between two itemsets.

2.2.1. Identification of Concrete Itemsets. Concrete item-
sets are those possible itemsets which could be choices
for customers with some purchasing purposes. To qualify
an itemset as a concrete one, not only the purchasing fre-
quency, i.e., support of an itemset, but also the dependency
of items has to be examined to declare that these items are
purposely purchased together by customers. One common
approach is to evaluate the dependence among items in an
itemset by the chi-square test 14, 10, 13). Specifically, the
chi-square value for an itemset can be derived in terms of
supports and expected supports of its corresponding item-
sets, as stated in Theorem [ below.

Theorem 1: Let X={x, X2, ..., xx} be a positive k-itemset,
the chi-square value for X is computed as

i
> %)
TefY[Y=x

where n is the number of total transactions, Y* denotes
the positive itemset where all complement items in item-
set Y are replaced by their positive counterparts, e.g.,
{ab}*={a,b,c} where a, b and ¢ are positive items, and

E; = T] 5i is the expected support of 1.
i€l

Chi(X) = n x




Proof: Since the itemset X is of size k and the presence
of an item in each transaction is 0-1 valued, a correspond-
ing 2x2x -- . x2 k-dimensional contingency table can be
constructed. Each dimension of this contigency table cor-
responds to the presence of an item, i.e., x; € X, in each
transaction. The values of these 2 cells are exactly the sup-
ports of itemsets {X7, X3, .., Xk }s {X1s X25 vooy Xk }s - {X1,
X3, ..., Xi } and the summation of these values is n, i.e., the
number of transactions. Also, the corresponding itemsets
above can be formulated as {Y | Y*=X}. The chi-square
value is then computed by

Z (Oc Ec ,

cEcells
where O, is the observed value and E,, is the expected value
of cell ¢ in the contingency table. For any itemset I and its
corresponding cell ¢ that I'=X, we have

Chi(X) =

Oc=nxS$and B, =nx[]S.
iel

With some algebraic manipulations, we have

2 _ 2
I P
cEcells <
Z —_2 Z Oz:+ Z Ec
‘Eu“! cgcells rEcells
2
=(Z QE)‘” (+.Z.0=. 5, 7=")
cEcells 2 cEcells cEeells
_ E n? x §;2 o
ey ivex e/ S
=n x [( > E) -l]- QED.
Ey
1€ {Y]¥=X)

To utilize the chi-square test to verify whether the oc-
currences of given items are dependent, two contradictive
hypotheses are made

Hp: The oceurrences of all itemsix; ~x;) are independent,

H;: Hy is rejected.
With Theorem 1, to declare the dependency among itemns
in an itemset X, or to support hypothesis H,, the chi-square
value for X is required to be no less than a threshold, i.e.,

Chi(X) = ng(X),a
In addition, it follows from advanced statistics and infor-

mation theory [9] that corresponding degree of freedom for
this test can be denoted by

df(X) = [[e(w) - T le(os) = 1] =1 =2* -k -1

where c(v;) is the number of categories in dimension 4, i.e.,
o{v;)=2 for all dimensions since the presence of an item in
each transaction is 0-1 valued.
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We comment that the results derived in Theorem 1 are
essential for our mining of substitution rules and are not
subsumed by the work in [4]. In [4], it was stated that “if S
is correlated with significance level o, any superset of S is
also correlated with significance level o.” From Theorem 1
in {4], one may mistakenly assume that the chi-square test
for itemsets at a given significance level is upward ciosed
(as stated in Theorem 1 in [4].) However, as also noted in
[6], this upward closure property is not fully correct. Ex-
plicitly, the first statement of the proof of Theorem 1 in [4]
“The key observation in proving this is that not matter what
k is, the chi-squared statistic has only one degree of free-
dom” which its subsequent proof is based upon is not true,
thereby leading to incorrect conclusions. A counterexample
of Theorem 1 in [4] is given in the Appendix for interested
readers. Specifically, as opposed to what Theorem 1 in [4]
suggests, all correlated itemsets, rather than only minimally
correlated ones, should be discovered. This in turn justifies
the necessity of our development of the process to identify
concrete itemsets in this paper.

Without loss of generality, a concrete itemset is thus de-
fined to be a frequent itemset which is positively correlated
given a significance level o (usually o = 0.05), if it con-
tains more than one item. Note that the significance level
of a concrete itemset is expected to be at least no less than
that of its subsets. For example, if the itemset {flashlight,
battery} has a quite high chi-quare value, then its super-
set, e.g., {flashlight, battery, pencil), could still have a high
chi-square value (>de( X)a } even though pencil is not so
correlated with the other items.

Definition 2: A positive frequent itemset X={x;, X1, ...,
is called a corcrete itemset, if and only if

(1) k=1, or

2 k=2,

xk}

Sx > ] Sz and Chi(X) > x5(x) ar
2 €EX

where [] S:, corresponds to the expected support for
T eX
itemset X, and Xg,-( X),0 18 the value of chi-square distrib-
ution with degree of freedom df (X'} at probability . Note
that Sy, > H S.., is required to ensure that all x; € X are
;€
positively corre[atcd
The value of de( X),o €an be obtained by the table look-
up. As mentioned ear ler, the usual value & = 0.05 is used
in this stedy for statistical significance. Considering itemset
{a, d} in Table 2 for example, S,4 = 0.3 > S, x Sg =
0.6 x 0.3. Also, the chi-square value for {a, d} is

%)

+osxos P

S_

Sa
ud + d

Chif{ad))=n x K—-— o
0 5t

x 0.7

=429 > X405 = 3.34.

0.2’

=10 x G5 0.5x07

+04




Thus, {a, d} is a concrete itemset.

2.2.2. Testing of Negative Correlation. To evaluate the
correlation between two concrete itemsets, we adopt the
measurement of Pearson product moment cormelation coef-
ficient [8]. Theorem 2 states that the correlation coefficient
of two itemsets can be determined by their supports.
Theorem 2: Let X and Y be two itemsets with XNY=0 .
The correlation coefficient of X and Y can be formulated in
terms of their supports. Explicitly,

Cov(X,Y) Sxy — Sx - Sy

AX,Y)=

Proof: Since variables corresponding to occurrence of items
in a transaction database are all 0-1 valued, it follows that

EX=EX*=Sx, EY=EY?=8y and BE{(XY)=Sxy

where E stands for the expected value. According to the
definition of correlation coefficient, we have
Cov(X,Y)
V' Var(X) - Var(Y)
_ E[(X - EX)(Y - EY)]
~ VEX - EX)Y]- E(Y — EY)?]
_ E(XY)-(EX)(EY)
~ VIEX?Z - (EX)Y]-[BY? - (BY)]
_ Sxy — Sx - Sy
VI8x = (Sx 1Sy — (Sv)]
_ Sxy = 8x + Sy
T V/8x(1—-5x)Sv(l - Sv)

X, Y)=

Q.E.D.

Note that when both variables to be correlated are binary
as in this case, we may use the phi coefficient of correlation
as stated in [11, 12] instead of p{X,Y) in Theorem 2. How-
ever, the phi coefficient of correlation and the Pearson prod-
uct moment correlation coefficient are in fact aigebraically
equivalent and give identical numerical results, Therefore,
for notational simplicity, we employ p(X,Y) to express the
results of Theorem 2.

Consequently, a substitution rule can be defined as be-
low.

Definition 3: Given two itemsets X and Y and XNY=0,X

is a substitute for Y, denoted by XY, if and only if

(1) both X and Y are concrete,

(2)X and Y are negatively correlated, i.., p(X,Y)<-pri, <
0 (usually p_;,=0 for simplicity), and

(3) the negative association rule X— Y is valid, i.¢.,
Sup(X— Y)>MinSup and Conf(X— Y)>MinConf.

3. SRM: Substitution Rule Mining
Given the definitions of concrete itemsets and substitu-

tion rules, a detailed description of algorithm SRM for min-
ing substitution rules is given.

446

Var(X) var(¥)  v/Sx(l - Sx)Sv{l—Sv)

Algorithm SRM

Il Input: MinSup, MinConf, and p,,;,,

f Procedure of identifying concrete itemsets

1. generate the set of all frequent (positive) items, i.e., L1,

and assign L; to the set of concrete itemsets;

2. fork > 2 dof

3. generate the candidate set of k-itemsets from L.y, i.e.,
Cy = Ly ® L1

4. if (Cy is empty) then break;

5.  scan the transactions to calculate supports of all candi-
date k-itemsets;

6. Li={ceCx|S: > MinSup};

7. foreach frequent itemset X in Ly do{

8. if (Sx > [] Sz) && (Chi(X) > xﬁf(x),a)

xi eX
9, add X to the set of concrete itemsets;
10. }
1L}

{! Procedure of substitution rule generation

12.foreach pair of concrete itemsets X, Y dof

13, if(p(X,Y) < '&nin) _

14. if (Sup(X — Y) > MinSup) && (Conf(X— Y) >
MinConf) // X — Y is valid

15. output the substitution rule X > Y';

16.}

The execution of algorithm SRM can be best understood
by the example below.

Example 2: Consider the transaction database in Table
1(a). Algorithm SRM first performs the procedure of iden-
tifying concrete itemsets, i.e., operations from line 1 to
line i1 in algorithm SRM. Given MinSup=0.2 and Min-
Conf=0.7, the frequent itemsets can be first obtained as in
Table 3.

The dependency among items in these frequent itemsets
is then evaluated. By Definition 2, chi-square tests of con-
creteness are performed on each k-itemset for k>2. The
chi-square values of these frequent itemsets are also shown
in Tabie 3 where only two frequent 2-itemsets are found
concrete. Note that {a, ¢, d} fails to pass the test since df{{a,
¢, 4})=23-3-1=4 and Chi({a,c,d}) = 6.38 < Xf,o_os =
9.49.

Table 3: Frequent (positive) itemsets, their supports

and chi-square values generated from Table 1(a)

(concrete itemsets are in italics)

L | S Tz St | Chil(l)
al 05 a,b 0.2 0.4
b |05 ac |02 0.4
PR ad | 03] 429
d| 03 b,c |02 04
e | 0.2 bf [03] 429
703 e.d {02 048
I, | &1 | Chi(l)
a,¢cd| 02 6.38

Next, in the procedure of substitution rule generation,
i.e., operations from line 12 to line 16 in algorithm SRM,
the candidate substitution pairs can then be generated by



s ———SRM
o 40 L -+ -Apriori-Duzl
[=/]
7
o,
% 20 FRha T
o . S
.’ te
o _.-4'7# e s~ =B = 2
0.85 09 0.85 1 1.05 1.1
Violation Ratio
{a) Violation ratio distribution curve for results of Daense
80
—+—SRM

- =& = Apriori-Dual

Percentage (%)
&

20

0.85 0.8 0.85

1 1.06

Violation Ratio
() Violation ratio distribution curve for results of Dsparse

Figure 1. Violation ratio distribution curves

joining on these concrete itemsets. By examining the sup-
port, confidence and correlation of these candidate pairs,
substitution rules can be generated as in Table 4.

Table 4: Substitution rules discovered with
MinSup=0.2, MinConf=0.7, and p,,,=-0.5

Rule(X>Y) | Sup |{ Conf | Correlation(X, Y)
{bjr>{d} 0.5 1 -0.65
{6y [ 03] 1 0.65

fa, dj>{b} | 0.3 1 -0.65

4. Experimental Results

The simulation model of our experimental studies is de-
scribed in Section 4.1. The quality of substitution rules gen-
erated is evaluated in Section 4.2.

4.1. Simulation Model

As mentioned in Section 2.1, mining negative associa-
tion rules by appending complement items to the original
transaction database incur both an excessive storage space
and a huge computational cost. Without the process of gen-
erating rules with the required form as adopted by Apriori-
Dual, the computation time of the naive approach for gen-
erating negative association rules is shown by ocur exper-
iments to be longer, in several orders, than those of both
the algorithms Apriori-Dual and SRM. Therefore, only the
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algorithms Apriori-Dual and SRM are being compared in
following experiments.

We use two synthetic datasets, i.e., Dgense and Dypgrses
generated by a randomized transaction generation algorithm
in [16]. The values of parameters used to generate the
datasets are summarized in Table 5, where both the dense
and the sparse dataset distributions are considered.

Table 5. Parameter settings of the synthetic datasets

Ddenac Dapnree Meamng
T 10 5 Average size of transactions
| 50 100 Number of items
D | 10,000 | 10,000 | Number of transactions

4.2, Evaluation of Rule Quality

To evaluate the quality of a substitution rule, we may
count the number of transactions which contain only one of
the substitutive itemsets in the rule, i.e., the antecedent or
the consequent. Hence, the violation ratio proposed in [1]
is adopted. Specifically, a pair of substitutive itemsets is
said to be in violation if exactly only one of them is present
in a transaction. The violation ratio is defined as the ratio of
the number of real violations to the expected number of vi-
olations. Thus, the larger the value of the violation ratio of a
rule, the more likely its antecedent and consequent itemsets
are substitutes for each other. Note that the violation ratio
of an interesting substitution rule should be lager than one.
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SRM (Deense)

1.2 12
2 3 5
& e Bss
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. 0.8
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Figure 2. Quality matrix in the dense dataset
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-
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0
Correlation

0
Correlation

Figure 3. Quality matrix in the sparse dataset

Experiments on the two datasets are conducted with
MinSup=15% (Daense)s MinSup=10% (Dsparse} and Min-
Conf=50%. The distribution curves for results of both
sparse and dense datasets are depicted in Figure 1. Note
that the percentage of population rather than the actual num-
ber of rules is used as the measurement for vertical axes in
both charts. Also, to provide a remarkable index for eval-
uating the quality of rules, proportions of interesting rules,
i.e., whose violation ratios are larger than 1, to uninteresting
ones are also presented as pie charts in Figure 1. Note that
more than half of rules generated by algorithm Apriori-Dual
in both datasets have a violation ratio less than one. In con-
trast, more than 98% of rules generated by algorithm SRM
are interesting for both datasets. Also note that algorithm
Apriori-Dual favors dense databases while algorithm SRM
performs well in each dataset, showing that algorithm SRM
is more adaptive and robust.

The resulting rules by Apriori-Dual and SRM for both
datasets are plotied in Figure 2 and Figure 3, where each
point corresponds to a rule produced. The y-axis indicates
the violation ratio and the x-axis shows the correlation of the
antecedent and the consequent itemsets of the rule. Each
figure is divided into four areas. In the upper right area,

448

the rules are the most interesting ones among those in all
areas due to the negative correlation of the antecedent and
the consequent of each rule and high violation ratios.

Note that rules generated by algorithm Apriori-Dual and
algorithm SRM are subsets of negative association rules. It
can be seen from Figure 2 and Figure 3 that algorithm SRM
can generate the most appropriate ones on the basis of neg-
ative association rules.

5. Conclusions

In this paper, a new mining capability, called mining of
substitution rules, is explored. The notion of evaluating the
dependency among items in a concrete itemset proposed in
this paper offers another dimension for itemset selection (in
addition to the one of using the support threshold), thereby
being able to lead to more interesting results in the subse-
quent rule derivation based on these itemsets. We have de-
rived theoretical properties for the model of substitution rule
mining and devised a technique on the induction of positive
itemset supports to improve the efficiency of support count-
ing for negative itemsets. In light of these properties, al-
gorithm SRM is proposed to discover the substitution rules



efficiently while attaining good statistical significance. It
is shown by empirical studies that algorithm SRM not only
has very good execution efficiency but also produces sub-
stitution rules of very high quality.
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Appendix: A Counterexample to Theorem 1 in [4]

Theorem 1 in [4]: In the binomial case, the chi-square sta-
tistic is upward closed.

This theorem means that “if S is correlated with signifi-
cance level «, any superset of S is also correlated with sig-
nificance level o.” Consider a contingency table which is
slightly modified from the one provided in [4].

Table 6. An example contingency table of market

basket data for coffee (c), tea (t) and doughnuts (d)
d ¢ C| Zrow ¢ ¢ | Erow
t g8 2 10 t 10 2 12
t 40 2 42 1 34 2 36
Xcol | 48 4 52 Ycol | 44 4 48
From Theorem 1 in this paper, we have
Chit{e, )= (8 + 10)? (40 + 34)?
' (100)1481-3‘34! ”iint:gl (100)1454—441 42;3-361
. (2 +2)° (2+2)?
"'(100)(41:;)_ !“::tolﬁl (100) (¢+41 ;42+363
=3.98, and
2
Chi({d, e t})= 48444) (10412 52 ;::442 (42+36)
(100)100%0_“‘0'0') (100} 156 ““T55 T0G
22
NEED i—’sriLﬂ ¥ 100 5 o) T
+ 107 + 342
(x00) 5, T DT o gy Lo
2% 32
+ +
(100) 75, BEE 020 * (uog) g, gz
=4.49,

As mentioned in Section 2.2, the corresponding degrees of
freedom should increase with k, i.e., df({c, t})=1 and df{{d,
¢, t})=4, respectively. Given a significance leve] a=0,05,

it can be verified that Chi({c, t}) 3.98 > xi 05 = 3.84
and Chi({d, c, t}) = 449 < x4005 = 9.49. Note that {e,

t} passed the chi-square test and {d, c, t} did not, meaning
that the chi-square test is not upward ctosed. This leads to a
counterexample to Theorem 1 in [4].
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