
SmartMiner: A Depth First Algorithm Guided by Tail
Information for Mining Maximal Frequent Itemsets

Qinghua Zou
Computer Science Department

University of California-Los Angeles

zou@cs.ucla.edu

Wesley W. Chu
Computer Science Department

University of California-Los Angeles

wwc@cs.ucla.edu

Baojing Lu
Computer Science Department
North Dakota State University

baojing.lu@ndsu.nodak.edu

ABSTRACT
Maximal frequent itemsets (MFI) are crucial to many tasks in data
mining. Since the MaxMiner algorithm first introduced
enumeration trees for mining MFI in 1998, there have been
several methods proposed to use depth first search to improve
performance. To further improve the performance of mining MFI,
we proposed a technique to gather and pass tail (of a node)
information to determine the next node to explore during the
mining process. Our algorithm uses an augmented dynamic
reordering heuristic with considering of the tail information.
Compared with Mafia and GenMax, SmartMiner generates a
much smaller search tree, requires a smaller number of support
counting, and does not require superset checking. Using the
datasets Mushroom and Connect, our experimental study reveals
that SmartMiner generates the same MFI as Mafia and GenMax,
but yields an order of magnitude improvement in speed.

Keywords
Data mining, frequent patterns, maximal frequent pattern, tail
information, search space pruning.

1. INTRODUCTION
Mining frequent itemsets in large datasets is an important problem
in the data mining field since it enables essential data mining tasks
such as discovering association rules, data correlations, sequential
patterns, etc. The problem of finding frequent itemsets was
originally proposed by Agrawal [1] in his association rule model
and the support confidence framework. It can be formally stated
as following:

Let I be a set of items and D be a set of transactions, where a
transaction is an itemset. The support of an itemset is the number
of transactions containing the itemset. An itemset is frequent if its
support is at least a user specified minimum support value,
minSup. Let FI denote the set of all frequent itemsets. An itemset
is closed if there is no superset that has the same support. The set
of all frequent closed itemsets is denoted by FCI. A frequent
itemset is called maximal if it is not a subset of any other frequent
itemset. We denote MFI as the set of all maximal frequent
itemsets. Any maximal frequent itemset X is a frequent closed
itemset since no nontrivial superset of X is frequent. Thus we
have FIFCIMFI ⊆⊆ .

There are three different approaches for generating FI. First,
candidate set generate-and-test approach [1,11,14,8,12,7]: most
previous algorithms belong to this group. The basic idea is to
generate and then test the candidate set. This process is repeated

in a bottom up fashion until no candidate set can be formed.
Second, sampling approach [7]: it selects samples of a dataset to
form the candidate set. The candidate set is tested in the entire
dataset to identify frequent itemsets. Sampling reduces
computation complexity but the result is incomplete. Third, data
transformation approach [6,16,17]: it transforms a dataset for
efficient mining. For example, the FP-tree [6] builds up a
compressed data representation called FP-tree from a dataset and
then mines frequent itemsets directly from the FP-tree. The
pattern decomposition algorithm (PDA) [16,17] decomposes
transactions and shrinks the dataset in each pass. Both FP-tree and
PDA greatly reduce the original dataset and also do not need to
generate candidate sets.

When the frequent patterns are long, mining FI is infeasible
because of the exponential number of frequent itemsets. Thus,
algorithms mining FCI [9,15,10] are proposed since FCI is
enough to generate association rules. However, FCI could also be
exponentially large as the FI. As a result, researchers now turn to
find MFI. Given the set of MFI, it is easy to analyze many
interesting properties of the dataset, such as the longest pattern,
the overlap of the MFI, etc. All FI can be built up from MFI and
can be counted for support in a single scan of the database.
Moreover, we can focus on part of the MFI to do supervised data
mining.

In this paper we introduce the SmartMiner that at each step passes
tail information (defined in section 2) to guide the search for new
MFI. SmartMiner using an augmented heuristic and tail
information has many benefits: it does not require superset
checking, reduces the computation for counting support, and
yields a small search tree. Our experimental results reveal that
SmartMiner is an order of magnitude faster than Mafia [4] and
GenMax [5] in generating MFI on the same datasets.

1.1 Related works
We first introduce an enumeration tree for an itemset I. Assume
there is a total ordering L≤ over the items I in the database. We

say kLj ii ≤ if item ji occurs before item ji in the ordering.

This ordering can be used to enumerate the item subset lattice
(search space). Each node composed of head and tail represents a
state in the search space. The head is a candidate for FI while the
tail contains candidate items to form new heads. For example,
Figure 1 shows a complete enumeration tree over five items abcde
with the ordering a,b,c,d,e. Each node is written as head:tail. It
begins with root node :abcde. For each item ai in the tail of a
node X:Y, a sub node is created with Xai as its head and the items

a c

eb c

d d c e

d ee ee

ee

ee

e

d e

b

dc

d e ee

ee

d

ee

e

d

ee

e

Figure 3: The tree for counting
support used by Mafia

after ai in Y as its tail. For instance, the head of the node :abcde is
empty and its tail is abcde; the head of b:cde is b and its tail is
cde.

The problem of mining frequent itemsets is to find a cut through
this lattice such that all itemsets above the cut are frequent, and
those below the cut are infrequent (see Figure 1). A node is called
a frequent node if its head is frequent. The positive border
consists of the frequent nodes directly above the cut, while the
negative border is the set of infrequent nodes directly below the
cut. With a simple traversal without pruning, we need to count
the supports of all nodes above the cut and also the negative
border.

Using the enumeration tree as shown in Figure 1, we can describe
recent approaches to the problem of mining MFI. MaxMiner [3]
uses a breadth-first search and performs look-ahead pruning on
tree branches. The look-ahead use superset pruning, i.e., if the
head of a node with its tail is frequent, there is no need to further
process the node since all descents of the node will be frequent.
MaxMiner also first introduced the heuristic that is to reorder
items in the tail of a node in the increasing order of their support.
This technique is known as dynamic reordering. In general,
however, superset pruning works better with a depth-first
approach since many long frequent itemsets may already have
been discovered. But MaxMiner uses a breadth-first approach to
limit the number of passes over the database. Since large main
memory size is available (in Gigabyte), depth first search is used
to efficiently find long patterns.
DepthProject [2] uses depth first search on a lexicographic tree of
itemsets to find MFI, and projects transactions database on the
current node to speed counting the support of itemsets.
DepthProject also use the look-ahead pruning and dynamic
reordering. With dynamic reordering, infrequent items at the
current node can be deleted from the tail so that the size of the
search space can be greatly reduced.
Mafia [4] proposes parent equivalence pruning (PEP) and
differentiates superset pruning into two classes FHUT and
HUTMFI. For a given node X:aY, the idea of PEP is that if
sup(X)=sup(Xa), i.e. every transaction containing X also contains
the item a, then the node can simply replaced by Xa:Y. The
FHUT is to use leftmost tree to prune its sister, i.e., if the entire
tree with root Xa:Y is frequent, then we do not need to explore the
sisters of the node Xa:Y. The HUTMFI is to use the known MFI
set to prune a node, i.e., if itemset of XaY is subsumed by some
itemset in the MFI set, the node Xa:Y can be pruned. Mafia also
uses dynamic reordering to reduce the search space. The results
show that PEP has the biggest effect of the above pruning

methods (PEP, FHUT, and HUTMFI) and dynamically reordering
the tail also has dramatic savings.
Both DepthProject and Mafia mine a superset of the MFI, and
require a post-pruning to eliminate non-maximal patterns [5].
Algorithm GenMax [5] integrates pruning with mining and
returns the exact MFI by using two strategies. First, just like
transaction database is projected on current node, the discovered
MFI set can also be projected on the node and thus yields fast
superset checking. Second, GenMax uses Diffset propagation to
perform fast frequency computation. Experimental results show
that GenMax has comparable performance with Mafia.

1.2 Limitations of Previous Algorithms
For simplicity, we use Mafia as an example to illustrate problems
that existed in previous approaches. For the example in Figure 1,
Mafia will generate a search tree, as shown in Figure 2, assuming
that frequent itemsets have different support and the nodes are
already sorted in the order of increasing support. In the figure, the

shaded nodes will be removed by superset pruning. The node
abcde: in dotted box is not a part of the search tree since dynamic
reordering is used. The nodes with lines crossing through are
tested and found to be infrequent.
First, the size of the tree is too big and can be reduced. Although
the shaded nodes can be pruned away, a more efficient strategy is
not to generate those nodes in the search tree. In Figure 2, Mafia
traverses 31 nodes. SmartMiner uses such a strategy and traverses
only 9 nodes (see section 3.2) for the same example.
Second, there exists too much support counting for determining
the frequency of tail items. Figure 3 shows the tree for counting
support for Figure 2. Let X be an itemset and T(X) be the set of
transactions than contains X. For the root node at the top level,
the transaction set is

)(φT since the head of the

node is empty φ . For the
node, the supports of a,b,c,d,e
are counted and found to be
above minsup. In the
transaction set)(aT , we
found b,c,d,e to be frequent.
Items c,d,e are frequent in)(abT . Item d is frequent and e

infrequent in)(abcT . Mafia requires total 30 frequency
testing. Using tail information to augment dynamic reordering,
SmartMiner needs only 23 such frequency testing.
Finally, all previous approaches require superset checking for two
purposes: pruning nodes and removing non-maximal itemsets in

Figure 1: An enumeration tree for abcde for the given
order of a, b, c, d, e

e:

:abcde

a:bcde b:cde c:de d:e

ab:cde

abc:de

abcd:e

abcde:

ac:de ad:e ae:

abce:

abd:e

abde:

abe: acd:e

acde:

bc:de

bcd:e

bcde:

bd:e

bce:

cd:e be:

ace: ade:

ce: de:

bde: cde:

Cut

Figure 2: The search tree for Mifia with dynamic
reordering and the three pruning techniques.

e:

:abcde

a:bcde b:cde c:de d:e

ab:cde

abc:de

abcd:e

abcde:

ac:de ad:e ae:

aabbccee::

abd:e

aabbddee::

abe: acd:e

aaccddee::

bc:de

bcd:e

bbccddee::

bd:e

bce:

cd:ebe:

ace: aaddee::

ce: de:

bde: ccddee::

Cut

MFI. If the set of MFI is large, as in most real dataset, the
superset checking can be very expensive. In above example,
Mafia performs 30 superset checking. As will be discuss later,
SmartMiner does not require any superset checking.

2. Partition and Pruning Properties
In this section, we define some concepts for SmartMiner.

2.1 Partitioning a search space
Let N=X:Y be a node where X is the head of N and Y is the tail of
N. All possible subsets of Y is called the power set of Y, denoted
by P(Y).
Definition 1 For a node N=X:Y, the set of all the itemsets
obtained by concatenating X with the itemsets in P(Y) is called
the search space of N, denoted as {X:Y}. That is

)}(|{}:{ YPVVXYX ∈∪= .

For example, the search space {b:cd} includes four itemsets b, bc,
bd, and bcd. The search space {:abcde} includes all subsets of
abcde.
By definition 1, we have {X:Y}={X:Z} where Z=Y-Z. Thus we
will assume Y does not contain any item in X when {X:Y} is
mentioned in this paper.
Definition 2 Let S, S1, and S2 be search spaces. The set {S1, S2} is
a partition of S if and only if S= S1 ∪ S2 and S1 ∩ S2=φ . The
relationship is denoted by S=S1+S2 or S1= S-S2 or S2= S-S1. We
say S is partitioned into S1 and S2. Similarly, a set {S1, S2, …, Sk}
is a partition of S if and only if S= S1 ∪ S2 ∪ … ∪ Sk and
Si ∩ Sj=φ for i,j∈ [1..k] and i ≠ j. We denote it as
S=S1+S2+…+Sk.
Let a be an item, aX is an itemset by adding a to X.

Theorem 1 For a∉ X,Y, the search space {X:aY} can be
partitioned into {Xa:Y} and {X:Y} by item a, i.e.,
{X:aY}={Xa:Y}+{X:Y}.
Proof: It follows from the fact that each itemset of {X:aY} either
contains a or does not.
For example, we have {b:cd}={bc:d}+{b:d}.
In general, suppose a1,a2,…,ak be distinct items and a1a2…akY be
an itemset.
Theorem 2 Partition search space: the search space of {X:
a1a2…akY} can be partitioned into

,}:{}:{
1

1∑
=

+ +
k

i
kii YXYaaXa � where .,YXai ∉

Proof: It follows by partitioning the search space via items
a1,a2,…,ak sequentially as in theorem 1.
For example, we have {b:cd}={bc:d}+{bd:}+{b:} and
{a:bcde}= {ab:cde} +{ac:de}+{a:de}.

Let {X:Y} be a search space and Z be a known frequent itemset.
Since Z is frequent, all subset of Z will be frequent, i.e. every
itemset of {:Z} is frequent. Theorem 3 shows how to prune the
space {X:Y} by Z.
Theorem 3 Pruning search space: if Z does not contain the head
X, the space {X:Y} can not be pruned by Z, i.e., {X:Y}-
{:Z}={X:Y}. Otherwise, the space can be pruned as

{X:Y}-{:Z} =∑
=

+ ∩
k

i
kii ZYaaXa

1
1)}(...:{ , a1a2…ak=Y-Z.

Proof: If Z does not contain X, no itemset in {X:Y} is subsumed
by Z. Therefore, knowing Z frequent can not prune away any part
of the search space {X:Y}. Otherwise X is a subset of Z, we have

{X:Y}= VXVaaXa
k

i
kii :}...:{

1
1 +∑

=
+ , where V=Y ∩ Z.

The head in the first part is Xai. Since Z does not contain ai, the
first part can not be pruned. For the second part, we have {X:V}-
{:Z}={X:V}-{X:(Z-X)}. Since X ∩ Y=φ , we have V ⊆ Z-X.
Therefore {X:V} can be pruned away entirely.
For example, we have {:bcde}-{:abcd}={:bcde}-{:bcd}=
{e:bcd}. And {e:bcd}-{:abe}={e:bcd}-{:be}= {e:bcd}-{e:b} =
{ec:bd}+{ed:b}.

2.2 Evaluating Tail Information
Definition 3 Let M be known frequent itemsets and N=X:Y be a
node. The tail information of M to N, TInf (N|M), is the tail parts
of the frequent itemsets in {X:Y} that can be inferred from M,i.e.,

},|{)|(ZXMZZYMNTInf ⊆∈∀∩=
For example, TInf (e:bcd|{abcd,abe,ace})={b,c}, which means
that eb and ec are frequent given {abcd,abe,ace} frequent.
Inf(e:bcd|{abcd,abe,ace,bce})={b,c,bc}. For simplicity we call
tail information as information.
Definition 4 The value of tail information W is all itemsets that
are subsets of some member of W. That is,

},|{)(ZXWZXWVTI ⊆∈∀=

For example, VTI({b,c,bc})={φ ,b,c,bc}=VTI({bc}). Notice that
removing non-maximal itemsets from information set does not
decrease its value. Therefore whenever we found a non-maximal
itemset in the information set, we deleted it.

3. The Strategy of SmartMiner
3.1 Tail information guided depth-first search
Assume the tail of a node may contain many infrequent items,
pure depth-first search is inefficient. Hence dynamic reordering is
used to prune away infrequent items from the tail of a node before
exploring its sub nodes.

SmartMiner uses tail information to guide depth-first search. We
illustrate the strategy for a given node Ni=X:Y as shown in Figure
4. The purpose of the node Ni=X:Y is to compute maximal
frequent itemsets in the transaction set T(X). The inputs for node
Ni=X:Y are transaction set T(X), the tail Y, and the tail information
for Ni known so far, Ginf, is called global tail information for
node Ni. The outputs of the node are the updated GInf and
discovered maximal frequent itemsets Mfi. Upon calling the node
Ni, we count the supports for the items in the tail Y. By removing
infrequent items from Y, we have Y0.
The time sequence at node Ni in Figure 4 is t0,t1,…,tn. At the
moment t0, item a0 is selected from Y0 to be the head of next state
S1 and Y1= Y0- a0 is the tail of S1. The tail information Inf1-0 is
computed by Inf(a0:Y1 |GInf). We then create node Ni+1=Xa1:Y1.
The call for node Ni+1 returns Mfi0 and updated Inf1-0 in which the
members subsumed by Mfi0 are marked deleted. At t1, we
calculate the tail information Inf0-1 for Y1 from Inf0-0, Inf1-0, and
Mfi0. The information from Inf0-0 and Inf1-0 is updated global
information. The information from Mfi0 is local information.
Using information Inf0-1, item a1 is selected from Y1 to be the head
of the next state S1 and Y2= Y1- a1 is the tail of S1. Then node
Ni+2=Xa2:Y2 is created and called to compute maximal frequent
itemsets in transaction sets t(Xa2). This process continues till tn
where no item can be selected as head of S1. The returned
maximal frequent itemsets Mfi= ii Mfia∪ ,i∈ [0..n-1]; the
updated GInf is these itemsets in the original GInf which have not
marked as deleted.
SmartMiner uses tail information to guide depth-first search
which is different from dynamic reordering depth-first strategies
(DFS). First, SmartMiner defers creating a node till its preceding
nodes are visited, while DFS creates nodes for each item in the
tail of a node in the increasing order of their supports. DFS
creates as many sub trees as the number of frequent items in the
tail. Second, SmartMiner augments the dynamic ordering
heuristic with considering the tail information about each item
(see section 4.3). Using this heuristic, SmartMiner creates far less
sub trees than simple dynamic reordering. Finally, by passing tail
information, SmartMiner does not require the time for superset
checking that is required for DFS.

3.2 An example
We now use an example to illustrate how SmartMiner finds the
same MFI as shown in Figure 5 for the problem in Figure 2.
There are nine nodes N0, N1, … , N8 in the search tree. For a given
node, the columns t0, t1, …, tm represent the sequential time point
of the node. The row S0 represents the initial state and the Inf0 is
the tail information for S0. The row S1 is the next state to explore
and the relevant information is on the row Inf1. Note here Inf1
also called the global information as input for the next state and
will be updated. The row Mfi is the returned mfi after exploring
the state S1. On top of each node, we give the transaction set for
the node. For example, the transaction set for N0 is the entire
dataset)(φT ; the transaction set for N1 is)(aT which
represents all the transactions containing item a.

SmartMiner begins at the node N0 at t0, N0(t0), where S0=:abcde
and Inf0 is empty. At this point, item a is selected and thus the
next state S1=a:bcde. Here Inf1 is empty since Inf0 is empty.
Next SmartMiner create the node N1 for the state S1=a:bcde by
setting its transaction set)(aT and its initial set S0=:bcde.
When SmartMiner call the new node N1, each item in the tail
S0=:bcde will be sorted in the increasing order of their support in

)(aT and the infrequent items will be dropped. The process
continues to N2(t0), and then to N3(t0) where S0=:de and e is
dropped since it is infrequent in)(abcT . This yields S0=:d,
SmartMiner returns d as mfi to N2(t0) which will be added into

)(φT
N0 t0 t1 t2
S0 :abcde :bcde :bcd
Inf0 nil bcd,be,ce bcd,bc,d
S1 a:bcde e:bcd nil
Inf1 nil b,c nil
Mfi bcd,be,ce bc,d nil

N1 t0 t1 t2
S0 :bcde :cde :cd
Inf0 nil cd,e cd,c
S1 b:cde e:cd nil
Inf1 nil [] nil
Mfi cd,e c nil

N2 t0 t1 t2
S0 :cde :de :d
Inf0 nil d d
S1 c:de e:d nil
Inf1 nil nil nil
Mfi d [] nil

N3 t0
S0 :de
Inf0 nil
S1 nil
Inf1 nil
Mfi d

N4 t0
S0 :d
Inf0 nil
S1 nil
Inf1 nil
Mfi []

N5 t0
S0 :cd
Inf0 []1

S1 nil
Inf1 nil
Mfi c

N6 t0 t1 t2
S0 :bcd :bc :c
Inf0 b1,c2 b1,c2 c
S1 d:bc b:c nil
Inf1 nil [] nil
Mfi [] c nil

N7 t0
S0 :bc
Inf0 nil

S1 nil
Inf1 nil
Mfi []

N8 t0
S0 :c
Inf0 []1

S1 nil
Inf1 nil
Mfi c

Input
T=)(φT
S=:abcde
GInf=nil
Output
GInf=nil
Mfi=abcd,abe,ace,ebc,ed

Input
 T=T(e)
 S=e:bcd
 GInf=b, c
Output
 GInf=b, c
 Mfi=bc d

T(eb)T(ed) T(ae) T(ab)

T(abe)T(abc)

T(e) T(a)

Figure 5: An example of using SmartMiner to discover the MFI

 Local
information

Ni=X:Y t0 t1 … tn
S0: Initial state Y0 Y1 … Yn
Inf0: Inf(S0) Inf0-0=GInf Inf0-1 … Inf0-n
S1: Next state a0:Y1 a1:Y2 … nil
Inf1: Inf(S1| Inf0) Inf1-0 Inf1-1 … nil

Mfi: mfi for the tail of S1 Mfi0 Mfi1 … nil

Input
Transaction set T=T(X)
Tail of the node S=Y
Global information GInf=Inf(Ni)

Output
Updated GInf
Returned mfi Mfi

T (a0X), Y1
 Inf1-0, Mfi0
Ni+1=Xa0:Y1 …

 (1)

 (2)

Ni+2=Xa1:Y2 …

 (3)
 (4)

Figure 4: Search strategy illustrated at the node Ni=X:Y

Inf0 at N2(t1). Thus at N2(t0), Inf0 =d. SmartMiner then select
S1=e:d for next node, N4(t0).
The entire search route will be N0(t0), N1(t0), N2(t0), N3(t0), N2(t1),
N4(t0), N2(t2), N1(t1), N5(t0), N1(t2), N0(t1), N6(t0), N7(t0), N6(t1),
N8(t0), N6(t2), and N0(t2). As shown in the figure, at N0(t1),
Inf0=bcd,be,ce, S1=e:bcd, and the two itemsets be,ce contain e.
By removing e from be,ce, we get Inf1=b,c. When calling N6,
global information Ginf=b,c is passed from N0(t1) to N6(t0). Upon
completing exploring the node N6, bc,d are found to be mfi and
Ginf=b,c will be updated to be empty since they are dropped
respectively at N8(t0) to N6(t1) and at N6(t1) to N6(t2). When it
returns from N6, the Inf1 at N0(t1) will be empty. By collecting Mfi,
Inf1, and unselected Inf0 at N0(t1), we have Inf0=bcd,bc,d at N0(t2).
The search terminates at N0(t2) since the tail of S0=:bcd is in the
Inf0.
Figure 6 shows the tree for
counting support using
SmartMiner. At node N0,
SmartMiner counts the
supports for a,b,c,d,e and
found they are frequent. At
node N1, items b,c,d,e are
found to be frequent in T(a).
It is shown that there are a
total of 23 times to count for support.

4. Algorithmic Descriptions
4.1 Object model design

VData
- data: BitSet[]
- minSup: int
+ VData(String fileName, float
minSup)
+ getStart(Shorts tail):short[]
+ calSup(int[] base, Shorts
tail):short[]
+ getBase(int[] base, short item):int[]
- calSup(int[] base, short item):int
- loadData(String fileName):void

TInf
+ ginf: SortedShorts[]
+ mfi: Vector
+ tail: Shorts
- infs: Hashtable
- pep: short[]
+ TInf(Vector ginf, short[] pep,
Shorts tail)
+ AddInfo(Vector newinf):void
+ AddMfiInf(Vector mfi1):void
+ DoItem(short item):Vector
+ select():short
- maxLen():short[]

Miner
- vData: VData
- mfi: Vector
+ main(String argv[]): void
+ Miner(String fileName, float minSup)
+ mining(): void
- infMfi(int[] base, Shorts tails, Vector ginf): Vector
- output():void

1

1 1

*

Our data mining system is implemented in Java rather than C++
because Java has better portability. Figure 7 shows the three
classes in our system whose data types are specified using Java
language. The class VData is the vertical data model for a
transaction dataset. It loads data from a given fileName and
builds up a BitSet for each frequent item. The TInf class manages

the tail information for a given node. The Miner class uses the
proposed tail information based depth-first search to recursively
discover all MFI. An instance of Miner has exactly one object of
VData and will dynamically create one object of TInf for a node
when the mining starts. More details is given in the following
sections.

4.2 Vertical data class: VData
We chose to use a vertical BitSet representation for the database.
A vertical BitSet corresponds to one frequent item. In a BitSet,
there is one bit for each transaction in the database. If item i
appears in transaction j, then bit j of the BitSet data[i] is set to
one; otherwise, the bit is set to zero. The constructor
VData(String filename, float minSup) calls the private function
Load(String filename) to load data from the file into the variable
data. It also calculates the minSup by multiplying the float
minSup with the number of transactions. The variable int[] base
in methods calSup and getBase is an array of transaction id. The
base of a node represents the transaction set T(X) where X is the
head of the node. The private method calSup(int[] base, short
item):int is to calculate the support of the item in the given base.
The VData provides three methods for data mining. First, the
method getStart(Shorts tail):short[] returns the set of items that
occur in every transaction. It also passed other items by Shorts
tail in the order of increasing support. The getStart is called at a
root node. Second, the public method calSup(int[] base, Shorts
tail):short[] is similar to the getStart. It returns the set of items in
every transaction of the base and passes other frequent items at
the base in the order of increasing support. Finally, the method
getBase(int[] base, short item):int[] simply returns a new base
which is the subset of the base whose corresponding transactions
contains the item.
Note that when calculating support of an item in a base, the
VData needs to test as many bits as the size of the base. It is
slower than the Bitmap model where supports can be calculated a
byte (8 bits) at a time. Our VData model is also slower than the
diffset model of GenMax[] . However, the VData keeps only one
copy of data and thus needs less memory than the other two
models. In other words, both Mafia and GenMax need to build up
new datasets for the mining of sub nodes. Moreover, the VData is
easy to implement and is fair to use it as a common data model to
compare different search strategies of SmartMiner, Mafia, and
GenMax.

4.3 Tail information class: TInf
For a given node, an instance of the TInf class is created to
manage the tail information at the node. The global information
ginf is passed from its parent node. The mfi is the local maximal
frequent itemsets discovered at the node. The itemsets to be
explored is stored in the tail. Tail information for the tail is
stored in the hash table infs. The pep is the items occurred in
every transaction of the transaction set of the node which is
specified by the base.
The constructor method accepts global information ginf, common
items pep, and a tail to create a new instance. The public methods
AddInfo and AddMfiInf calculate relevant information of the
newinf and the mfi1 on tail respectively and then hash them into
the hash table infs. The method DoItem(short item):Vector
separates the itemsets in the infs into two groups: one mentions
the item; another does not. The first group will be removed from

a d

b c

d c e

d ee dd

dd c

d e

b

d ccbb

b c

e

dd

c

Figure 6: The tree for counting
support used by SmartMiner

Figure 7: The object model used for implementing SmartMiner

the hash table and returned as a vector after dropping the item
from its itemsets. The second group remains in the table. The
method also removes the item from the tail. For every item in the
tail, the private method maxLen():short[] is to find the maximal
length of itemsets in the hash table infs that contains the item.
Note that, in our experiment, we use a simplified maxLen that
returns an array of value either 0 or the maximal length. More
specifically, the maxLen first finds the longest itemset V in the infs
and then set the lengths of items in V to |V| and the lengths of
other items to 0.
Figure 8 describes the selection method which is a heuristic to
select an item to partition the search space. In dynamic
reordering, the item of least support is chosen to explore first
since it is likely that the sub search tree is small. This heuristic is
shown to be very effective. We augument it by the observation
that, if an item contained by an itemset of size k in the infs, there
are 2k itemsets that are known to be frequent and can be pruned
away from the search space. Therefore our heuristic chooses an
item of the smallest known space, i.e., not occur in long itemsets
in the infs. If the size of current tail is less than 2, the search
space is immediately solvable as shown in line 1~3. Line 4 calls
the method maxLen. Line 5 is to find the positions of the minimal
and maximal values in len. Note that, if there are several
positions for minimal value, we will choose the least position of
them since the corresponding item in the tail has the least support.
If there is an itemset in the infs has the size of the tail, this means
the whole search space of the tail is frequent and thus there is no
need to build a sub node as shown in line 6-8. If there are some
itemsets originated from ginf and they are not of the size of the
tail, the corresponding itemsets in ginf will be deleted since they
are subsets of some other itemset. Line 9 returns the selected
item.

4.4 Data mining class: Miner
The Miner class has two attributes and five methods as shown in
Figure 7. The vData is an instance of the class VData. It stores
transaction data in vertical format. The mfi is a vector of maximal
frequent itemsets. The main method reads filename and minSup
from command line and calls methods Miner, mining, and output
sequentially. The Miner builds an instance of this class and
initializes vData. The output method simply writes the mfi into a
file. The mining method is to mine the vData.
Now we present the information guided depth first algorithm as in
Figure 9. The parameter base is the transaction set for the head of

current node. The tail is the possible extension of the head. The
ginf is the globe information passed to the node. Note that ginf is
a reference parameter, whose value can be updated. The method
returns local maximal frequent itemsets. Line 1 calls
vData.calSup to get the pep and an updated tails sorted in the
increasing order of support. Line 2 creates an instance of the
Information class for this node. Lines 3~8 loop selects an item
for next node and make calls recursive call. More specifically, it
selects an item itm for next node as show in line 3. If there is no
node selected, it goes to line 9. Otherwise, it enters the loop
body. A new base is calculated at line 4; the inf.DoItem method is
called; and the new_tail is set. Then line 7, calls the selected sub
node. Upon returning from the sub node, it adds the updated
new_ginf into the inf at line 8 and also saves the new_mfi by
method AddMfiInf at line 9. It returns the mfi of the node at line
10.

For the node at the level 0, the local new_mfi is actually maximal
frequent itemsets and can output directly into a file. Since its
information for future searching is saved by the method
inf.AddMfiInf in line 9, there is no need to keep the new_mfi and
the memory of new_mfi can be released.

5. Experimental Results
We compare SmartMiner with Mafia and GenMax. All of them
are implemented in Java JDK1.3. For fair comparison, the three
methods use the same vertical data model VData. As we
discussed before, there are many ways to implement vertical data
model. In this paper, our purpose is to study the efficiency of
different search strategies and we are not interested in comparing
the different data models. We choose VData since it takes less
memory and it is easy to implement. The experiment was
performed on a 1Ghz Celeron with 512 MB of memory running
Microsoft Windows 2000 Professional. SmartMiner was tested
with two datasets: connect-4 and mushroom. A detailed
comparison of SmartMiner on these datasets with Mafia and
GenMax was conducted.
Figure 10 shows the performance comparison of the three
methods on Mushroom. All the three methods implement the
PEP pruning technique. Our running time does not include the
input time but does include the output time. The horizontal axis
shows minimum support in percentage. The vertical axis is the

/**
* Select an item to build a sub node.
* @return >=0 if success, -1 if no next items.
*/
public short select()
1 if(tail.size()<=1)
2 if tail in infs then mfi=null else mfi=tail;
3 return -1;
4 short[] len = maxLen();
5 find the min, max position minp, maxp in len;
6 if(len[maxp]==tail.size())
7 update the ginf info;
8 return -1;
9 return tail.get(minp);

Figure 8: The selection method: a heuristic to select an item for
partitioning the search space.

/**
* Recursively find mfi.
* @param base The tidSet for current head.
* @param tail The possible extension of the head.
* @param ginf The global information.
* @return The local maximal frequent itemsets.
*/
private Vector infMfi(int[] base, Shorts tails,

Vector ginf)
1 short[] pep = vData.calSup(base,tails);
2 TInf inf = new TInf(ginf, pep, tails);
3 while((itm=inf.select())>=0)
4 int[] newbase = vData.getBase(base,itm);
5 Vector newginf=inf.DoItem(itm);
6 Shorts newtail=new Shorts(inf.tail);
7 Vector newmfi=infMfi(newbase,newtail,newginf);
8 inf.AddInfo(newginf);
9 inf.AddMfiInf(newmfi);
10 return inf.mfi;

Figure 9: The infMfi method--the tail information guided depth-
first search

running time in seconds. In general, SmartMiner is one order of
magnitude faster than both Mafia and Genmax. When minimal
support is high, Mafia is faster than Genmax. Low minimal
support increase the number of MFI, then Genmax performs better
than Mafia.

Figure 11 compares the sizes (number of nodes in a tree) of the
search trees for the three methods. From the figure, we notice that
Genmax generates 10 times more nodes than SmartMiner and also
much more than Mafia. This indicates that the static ordering in
GenMax is not as efficient as the dynamic reordering used by both
SmartMiner and Mafia. Moreover, we notice that SmartMiner
generates less nodes than Mafia, which reveals that our
augmented heuristic is better than a pure dynamic reordering.

Figure 12 compares the number of support counting which shows
the number of times that the private method calSup(int[] base,
short item) in VData is called. As in Figure 12, Genmax calls the
calSup methods significantly more than both SmartMiner and
Mafia. Further, SmartMiner needs less number of support
counting than Mafia.

Since GenMax introduces a fast superset checking algorithm, the
performance gain of dynamic reordering of Mafia is mitigated by
the increasing time for superset checking when the set of MFI
becomes large. This is the reason we see in Figure 10 and Figure
13 that Mafia is better than Genmax when minimal support is high
and the reverse when minimal support is low.

Figure 13 shows the performance comparison of the three
methods for Connect dataset. Again, we notice the significant
performance improvements of SmartMiner.

6. Conclusion
In this paper, we propose the SmartMiner algorithm to find exact
maximal frequent itemsets for large datasets. The SmartMiner
algorithm first uses global and local tail information to augment
dynamic reordering to reduce the search tree. Second, the passing
of tail information eliminates the need of known MFI for superset
checking. Smartminer does require superset checking that can be
very expensive. Finally, SmartMiner also reduces the number of
support counting for determining the frequency of tail items and
thus greatly saves counting time. Our experiments reveal that the
SmartMiner algorithm yields an order of magnitude improvement
over the Mafia and GenMax in generating the MFI for the same
datasets.

Mushroom

Figure 10: Performance comparison on Mushroom for
selective minimum supports.

Mushroom

Figure 11: Comparison of tree size on mushroom for selective
minimum support.

Connect

Figure 13: Performance comparison on mushroom
for selective minimum support.

1. Mushro

Figure 12: Comparison of the # of support counting
for selective minimum support.

0

1

10

100

1000

10 1 0.1 0.01
 Minimum Support (%)

To
ta

l T
im

e(
se

c)

SmartMiner

GenMax

Mafia

1

10

100

1000

10 1 0.1 0.01
 Minimum Support (%)

N
um

be
r o

f N
od

es
(K

)

SmartMiner

GenMax

Mafia

1

10

100

1000

10000

95 90 80 70 60 50 40 30 20 10
 Minimum Support (%)

To
ta

l T
im

e(
se

c)

SmartMiner

GenMax

Mafia

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 1 0 .1 0 .0 1
 M in im u m S u p p o r t (%)

N
um

be
r o

f S
up

po
rt

C
ou

nt
in

g(
K)

S m ar t M iner
G enM ax

M af ia

ACKNOWLEDGMENTS
The authors wish to thank Professor Mohammed J. Zaki at
Rensselaer Polytechnic Institute for his help in the performance
study.

REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proceedings of the 20th VLDB
Conference, Santiago, Chile, 1994.

[2] R. Agarwal, C. Aggarwal and V. Prasad. A tree projection
algorithm for generation of frequent itemsets. Journal of
Parallel and Distributed Computing, 2001.

[3] Roberto Bayardo. Efficiently mining long patterns from
databases. In ACM SIGMOD Conference, 1998.

[4] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal
frequent itemset algorithm for transactional databases. In
Intl. Conf. on Data Engineering, Apr. 2001.

[5] K. Gouda and M. J. Zaki. Efficiently Mining Maximal
Frequent Itemsets. Proc. of the IEEE Int. Conference on
Data Mining, San Jose, 2001.

[6] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without
Candidate Generation, Proc. 2000 ACM-SIGMOD Int. Conf.
on Management of Data (SIGMOD'00), Dallas, TX, May
2000.

[7] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo.
Efficient algorithms for discovering association rules. In
KDD-94: AAAI Workshop on Knowledge Discovery in
Databases, pages 181-192, Seattle, Washington, July 1994

[8] J. S. Park, M. Chen, and P. S. Yu. An effective hash based
algorithm for mining association rules. In Proc. ACM
SIGMOD Intl. Conf. Management of Data, May 1995.

[9] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association rules. In
7th Intl. Conf. on Database Theory, January 1999.

[10] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for
mining frequent closed itemsets. In SIGMOD Int'l Workshop
on Data Mining and Knowledge Discovery, May 2000.

[11] Brin, S.; Motwani, R.; Ullman, J.; and Tsur, S. 1997.
Dynamic Itemset Counting and Implication Rules for Market
Basket Data. In Proc. of the 1997 ACM-SIGMOD Conf. On
Management of Data, 255-264.

[12] Ashok Sarasere, Edward Omiecinsky, and Shamkant
Navathe. An efficient algorithm for mining association rules
in large databases. In 21st Int'l Conf. on Very Large
Databases (VLDB), ZTrich, Switzerland, Sept. 1995.

[13] Hannu Toivonen. Sampling large databases for association
rules. In Proc. of the VLDB Conference, Bombay, India,
September 1996.

[14] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New
algorithms for fast discovery of association rules. In 3rd Intl.
Conf. on Knowledge Discovery and Data Mining., August
1997.

[15] M. J. Zaki and C. Hsiao. Charm: An efficient algorithm for
closed association rule mining. In Technical Report 99-10,
Computer Science, Rensselaer Polytechnic Institute, 1999.

[16] Q. Zou, W. Chu, D. Johnson and H. Chiu. A Pattern
Decomposition (PD) Algorithm for Finding All Frequent
Patterns in Large Datasets. Proc. of the IEEE Int.
Conference on Data Mining, San Jose, 2001.

[17] Q. Zou, W. Chu, D. Johnson and H. Chiu. Pattern
Decomposition Algorithm for Data Mining of Frequent
Patterns. Journal of Knowledge and Information System {to
appear}, 2002.

