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Abstract

We describe an interactive way to generate a set of clus-
ters for a given data set. The clustering is done by con-
structing local histograms, which can then be used to vi-
sualize, select, and fine-tune potential cluster candidates.
The accompanying algorithm can also generate clusters au-
tomatically, allowing for an automatic or semi-automatic
clustering process where the user only occasionally inter-
acts with the algorithm. We illustrate the ability to auto-
matically identify and visualize clusters using NCI’s AIDS
Antiviral Screen data set.

1. Introduction

The analysis of large data sets usually results in the ex-
traction of models that describe some aspect of the process
that originally generated the data. In many real world appli-
cations, users are often willing to accept models with not-
optimal generalization performance if they can explore the
underlying decision process and, preferably, are able to in-
fluence the construction of the model interactively through-
out the training process. A summary of methods for inter-
active visualization can be found in [7].

This paper presents an interactive visualization tech-
nique for a clustering algorithm, which provides such
an interactive model-construction method. The presented
method visualizes cluster neighborhoods in detail by dis-
playing each example in the clusters’ neighborhood individ-
ually and is accompanied by a clustering algorithm, which
finds close-to-optimal cluster centers for certain classes of
interest. The visualization component allows the user to in-
teract with the clustering algorithm, thus inserting domain
knowledge into the cluster formation process. In addition,
the clustering process is not limited to low dimensional fea-
ture space, in fact we have successfully used the presented
approach in feature spaces with thousands of features.

The algorithm described here belongs to the category of
clustering techniques which pick representative examples
from the training data (similar to the algorithm described
in [3]) rather than represent prototypes by weighted aver-
ages of several training points (such as for example fuzzy
c-means [5]). Instead of relying on the usual heuristics or
greedy algorithms to select example patterns as cluster rep-
resentatives, the presented method analyses the neighbor-
hood of each cluster candidate and picks the optimal cluster
representative directly. This neighborhood can additionally
be visualized to give the user insights into the patterns each
cluster candidate represents. Such a complete and hence
computationally expensive approach obviously only works
for all classes of a medium sized data set or - in case of
very large data sets - to model a minority class of inter-
est. In many real world applications this scenario is the one
that matters, however. Especially in bioinformatics appli-
cations it is often more important to extract detailed knowl-
edge about few, rare classes within the larger context.

2. Neighborgram Clustering

In the following we assume a feature space in which M
training instances �xi are given (i = 1 . . .M ) along with a
function d(·), which computes distances between training
instances. Each example �xi is also assigned to one of C
classes, indicated by the class index ki (ki =1 . . . C).

2.1. Neighborgrams

The basic algorithm operates on all training examples
in parallel and computes a so-called Neighborgram for
each example of the class(es) of interest. A Neighborgram
records the patterns and associated classes of the immediate
neighbors for the corresponding center �x i in an ordered list:

NGi = [(l1, k1) , . . . , (lr, kr) , . . . , (lR, kR)]

where lr =1 . . .M indicates the index of a training example
and kr =1 . . . C is the corresponding class index. The list is
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sorted according to the distance of pattern �x lr to the center
vector �xi:

∀r : 2 ≤ r ≤ R ∧ d(�xi, �xl(r−1)) ≤ d(�xi, �xlr ).

Note that l1 = i, because d(�xi, �xi) = 0 for all i, that is, each
pattern is closest to itself. The overall length of this list is
determined by parameter R, where R � M for large data
sets. Hence a Neighborgram simply lists all neighbors of a
particular pattern in order of their distance, up to a certain
depth of the list.

Obviously in case of large data sets the computation of
Neighborgrams for each training pattern is excessively time
and memory consuming. As noted earlier, however, the
main target of the algorithm discussed here are problems
where one (or several) minority class(es) are of prime inter-
est. The computation of Neighborgrams for all these pat-
terns is then of complexity O(M ·M ′) · O(d(·)), where
O(d(·)) depends linearly on the dimension of the feature
space for most distance functions and M ′ indicates the
number of examples of the minority class(es), i.e. M ′�M
in case of large data sets.

2.2. The Basic Clustering Algorithm

The main idea behind the clustering algorithm based on
Neighborgrams can be summarized as follows: determine
cluster-candidates from each Neighborgram, then find the
“best” Cluster, and remove all patterns it “covers”. Now
find the next “best” Cluster, remove all patterns that are
covered and so on. Obviously the notions of “best” and
“covers” need to be clarified, and we need to explain how a
suitable cluster candidate can be derived from each Neigh-
borgram. In order to do this, we first introduce a number of
measures:

• Purity: The purity of a Cluster is computed based on
the Neighborgram i it stems from. Purity basically de-
termines how many patterns of the correct class are
contained within a certain neighborhood of depth r
with respect to patterns of all classes inside this area:

Purityi(r) =
| {(lr′ , kr′) ∈ NGi | 1 ≤ r′ ≤ r ∧ kr′ = ki} |

| {(lr′ , kr′) ∈ NGi | 1 ≤ r′ ≤ r} |

• OptDepth: is the optimal depth for which a certain
Purity = pmin is guaranteed, that is,

OptDepthi(pmin) = maxargr {
Purityi(r) ≥ pmin ∧ Purityi(r + 1) < pmin}

• Coverage: The default coverage of a cluster with a cer-
tain depth r determines how many positive patterns it

“explains”, that is, fall within its radius:

Coveragei(r) =
| {(lr′ , kr′) ∈ NGi | 1 ≤ r′ ≤ r ∧ ki = kr′} |

We can now specify clearer what we mean by “best”
cluster and “covers”. Starting from a user-defined value
for parameter Purity we can compute values for parameters
OptDepth and Coverage for each Cluster. The best clus-
ter is then the one with the highest Coverage. This cluster
“covers” all patterns that are within its radius.

The only remaining parameter is a limit on the overall
amount of coverage desired: MaxCoverage. Once the sum
of all covered patterns exceeds this threshold, the algorithm
terminates. The following pseudo code summarizes the
resulting algorithm:

1) ∀�xi: ki is minority class ⇒ compute NGi

2) ∀NGi: compute OptDepthi

3) ∀NGi: compute Coveragei

4) while MaxCoverage not reached:
5) ibest = maxargi{Coveragei(OptDepthi)}
6) add (ibest, OptDepthibest

) to list of clusters
7) determine list of covered patterns
8) remove them from all Neighborgrams NG i

9) ∀NGi: recompute Coveragei

10) end while

3. Experimental Results and Visual Clustering

In the following we will focus on the main contribution
of the presented method, the ability to visually investigate
cluster candidates. Obviously the presented algorithm could
also be used as a stand-alone clustering method. The re-
sulting classification performance is comparable to state-of-
the-art classification methods and performs on par with the
method presented in [3].

3.1. Neighborgram Visualization

Visualizing a Neighborgram requires only one dimen-
sion, since we are interested in the distance to the cen-
ter point only. In addition, we are usually only interested
in a small neighborhood (i.e. Neighborgrams with a small
depth R) and can invest some screen area for each individ-
ual neighbor. Figure 1 shows an example of a visualization
of one Neighborgram built for a pattern of class Iris-Setosa
(xl1). In case that two or more patterns are too close to each
other so that they would overlap we decided to stack them
on top of each other. The vertical axes therefore has no ge-
ometrical meaning, it is simply used to avoid overlaps1.

1Obviously many other ways to depict one-dimensional spaces can be
used, dense-pixel displays [6] come to mind if the neighborhood to be
displayed contains several thousands or more patterns.
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Figure 1. A Neighborgram for the Iris data.

Note how in this case, all 50 patterns of class Iris-Setosa
are in a close neighborhood of x l1 , and the two other classes
are clumped together further apart. In this case the depth
was chosen to be R = 150, i.e. the last pattern shown is
xl150 . This particular example shows a good cluster candi-
date, which is also the one returned first by the algorithm
explained above.

As a test case we used a well-known data set from the
National Cancer Institute, the DTP AIDS Antiviral Screen
data set [8]. We have used the class assignment provided
with the data, that is, compounds that provided at least
50% protection on retest were listed as moderately active
(CM), compounds that reproducibly provided 100% protec-
tion were listed as confirmed active (CA), and compounds
not meeting these criteria were listed as confirmed inactive
(CI). Available online [1] are screening results and chemi-
cal structural data on compounds. We have generated Unity
Fingerprint descriptors [4], which represent each compound
through a 990-dimensional bit string. Unity fingerprints
represent a collection of pre-defined chemical substructures
of interest. The used distance metric was the usual Tani-
moto distance, which computes the number of bits that are
different between two vectors normalized over the number
of bits that are turned on in one or both vectors.

We next generated Neighborgrams for classes CA and
CM. The first and biggest cluster covered quite a large num-
ber of patterns of class CA. At first we were surprised to
see that none of the compounds contained in this cluster fall
in any of the classes of active compounds listed on NIH’s
website [1]. As it turns out when looking at the correspond-
ing structures, this cluster covers m-acylaminobenzamides
which probably all inhibit folic acid synthesis, but are likely
too toxic and hence not very interesting as active com-
pounds to fight HIV. This is therefore a nice example of a
cluster that a chemist might discard as “useful but not very
interesting for the current task at hand”. The clustering al-
gorithm has no insights other than numerical cluster mea-
sures and therefore would rank this first without any ex-
pert interaction. Subsequent clusters reveal groupings very
much in line with the known classes of compounds, one
particular example is shown in Figure 2. Here the group
of Azido Pyrimidines is rediscovered, probably one of the
best-known class of active compounds for HIV.

Experiments with this (and other similar) data sets
showed nicely how the interactive clustering using Neigh-

borgrams helps to include domain knowledge in the cluster-
ing process and how Neighborgrams help to quickly display
cluster candidates. Without the additional display of chemi-
cal structure this would not have worked as convincingly. It
is important to display the discovered knowledge in a “lan-
guage” the expert understands.

4 Extensions

A couple of issues that we do not have space to discuss
in detail, but that are worth being mentioned are listed in the
following:
Partial Coverage and Fuzzy Clusters: It is obvious that
the basic algorithm sketched in the previous section is very
strict - a pattern will be completely removed from any fur-
ther consideration as soon as it falls within the optimal ra-
dius for just one single cluster. This effect might be desir-
able for patterns lying close to the center of the new cluster
but it will reduce accuracy in areas further away from the
cluster center. We therefore introduced the notion of Par-
tial Coverage using fuzzy membership functions [9], which
allow us to model a degree of membership of a particular
pattern to a cluster.
Binning Neighborgrams: Obviously for only few hun-
dreds of patterns in each Neighborgram it is possible to
plot all patterns individually. For larger neighborhoods it
is preferable to bin the neighborhood and just display how
many patterns of each class are encountered in each bin. We
have experimented with this type of display as well but for
all our applications smaller neighborhoods have shown to
be sufficient to find good clusters.
Fuzzy Class Membership: In many pharmaceutical ap-
plications class information is not as exact as the example
above seems to suggest. Here fuzzifying the class informa-
tion as well could allow to build better clusters. The purity
of a cluster candidate would then be computed based on the
degree of membership to the correct vs. conflicting class.
Minimum Cluster Size: Computing Purity as described
above has the disadvantage that for noisy data sets many
clusters will not extend as far as they could because an early
encountering of a pattern of wrong class will set OptDepth
very close to the cluster’s center. To avoid this, we have
introduced a parameter minSize, which allows to specify a
minimum number of patterns in a neighborhood before Pu-
rity and OptDepth are determined. Early experiments with
noisy data sets have shown a decrease in number of clusters
and better generalization ability.
Parallel Universes: The algorithm described above does
not require that the clusters reside in the same feature space.
Besides the fact that a chosen cluster removes covered pat-
terns from consideration there is no obvious need for two
clusters to be based on the same distance function or the
same features. Hence we can find clusters in different fea-



Figure 2. One cluster for the NIH-Aids data (top row) covering Azido Pyrimidines.

ture spaces in parallel. Covered patterns will then be re-
moved from all universes and the result is a set of clusters,
spread out over different descriptor spaces.
Detecting Outliers and Mislabeled Training Instances:
A problem that often occurs when collecting large amounts
of biological data is the reliability of the labels. The pre-
sented approach offers an interesting option to discover at
least some of these wrong labels. By letting the user inves-
tigate “bad” Neighborgrams (i.e. Neighborgrams that have
a high density of wrong patterns surrounding a center of
different class), we can point out potential false positives.

5. Conclusions

We have presented a method to build clusters based on
Neighborgrams, which model the local distribution of pat-
terns for each potential cluster candidate. The proposed
visualization of Neighborgrams allows the user to explore
the proposed cluster selection and enables experts to inject
domain knowledge into the clustering process by selecting,
discarding, or fine-tuning cluster candidates. Analysis of
chemical data has shown the usefulness of the provided vi-
sualization. By displaying cluster candidates it is possible
to naturally incorporate expert knowledge through interac-
tive feedback.
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