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Abstract

We propose and evaluate a family of methods for con-
verting classifier learning algorithms and classification the-
ory into cost-sensitive algorithms and theory. The proposed
conversion is based on cost-proportionate weighting of the
training examples, which can be realized either by feeding
the weights to the classification algorithm (as often done in
boosting), or by careful subsampling. We give some theo-
retical performance guarantees on the proposed methods,
as well as empirical evidence that they are practical al-
ternatives to existing approaches. In particular, we pro-
pose costing, a method based on cost-proportionate rejec-
tion sampling and ensemble aggregation, which achieves
excellent predictive performance on two publicly available
datasets, while drastically reducing the computation re-
quired by other methods.

1 Introduction

Highly non-uniform misclassification costs are very
common in a variety of challenging real-world data min-
ing problems, such as fraud detection, medical diagnosis
and various problems in business decision-making. In many
cases, one class is rare but the cost of not recognizing some
of the examples belonging to this class is high. In these
domains, classifier learning methods that do not take mis-
classification costs into account do not perform well. In
extreme cases, ignoring costs may produce a model that is
useless because it classifies every example as belonging to
the most frequent class even though misclassifications of
the least frequent class result in a very large cost.

Recently a body of work has attempted to address this
issue, with techniques known as cost-sensitive learning in
the machine learning and data mining communities. Cur-
rent cost-sensitive learning research falls into three cat-
egories. The first is concerned with making particular
classifier learners cost-sensitive [3, 7]. The second uses
Bayes risk theory to assign each example to its lowest risk
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class [2, 19, 14]. This requires estimating class member-
ship probabilities and, in the case where costs are non-
deterministic, also requires estimating expected costs [19].
The third category concerns methods for converting arbi-
trary classification learning algorithms into cost-sensitive
ones [2]. The work described here belongs to the last cate-
gory.

In particular, the approach here is akin to the pioneering
work of Domingos on MetaCost [2], which also is a gen-
eral method for converting cost-sensitive learning problems
to cost-insensitive learning problems. However, the method
here is distinguished by the following properties: (1) it is
even simpler; (2) it has some theoretical performance guar-
antees; and (3) it does not involve any probability density
estimation in its process: MetaCost estimates conditional
probability distributions via bagging with a classifier in its
procedure, and as such it also belongs to the second cate-
gory (Bayes risk minimization) mentioned above.

The family of proposed methods is motivated by a folk
theorem that is formalized and proved in section 2.1. This
theorem states that altering the original example distribu-
tion D to another D̂, by multiplying it by a factor propor-
tional to the relative cost of each example, makes any error-
minimizing classifier learner accomplish expected cost min-
imization on the original distribution. Representing samples
drawn from D̂, however, is more challenging than it may
seem. There are two basic methods for doing this: (i) Trans-
parent Box: Supply the costs of the training data as example
weights to the classifier learning algorithm. (ii) Black Box:
resample according to these same weights.

While the transparent box approach cannot be applied to
arbitrary classifier learners, it can be applied to many, in-
cluding any classifier which only uses the data to calculate
expectations. We show empirically that this method gives
good results. The black box approach has the advantage that
it can be applied to any classifier learner. It turns out, how-
ever, that straightforward sampling-with-replacement can
result in severe overfitting related to duplicate examples.

We propose, instead, to employ cost-proportionate rejec-
tion sampling to realize the latter approach, which allows
us to independently draw examples according to D̂. This
method comes with a theoretical guarantee: In the worst
case it produces a classifier that achieves at least as good



approximate cost minimization as applying the base classi-
fier learning algorithm on the entire sample. This is a re-
markable property for a subsampling scheme: in general,
we expect any technique using only a subset of the exam-
ples to compromise predictive performance.

The runtime savings made possible by this sampling
technique enable us to run the classification algorithm on
multiple draws of subsamples and average over the resulting
classifiers. This last method is what we call costing (cost-
proportionate rejection sampling with aggregation). Cost-
ing allows us to use an arbitrary cost-insensitive learning al-
gorithm as a black box in order to accomplish cost-sensitive
learning, achieves excellent predictive performance and can
achieve drastic savings of computational resources.

2 Motivating Theory and Methods

2.1 A Folk Theorem

We assume that examples are drawn independently from
a distribution D with domain X � Y � C where X is the in-
put space to a classifier, Y is a (binary) output space and
C ��� 0 � ∞ � is the importance (extra cost) associated with
mislabeling that example. The goal is to learn a classifier
h : X � Y which minimizes the expected cost,

Ex � y � c � D � cI 	 h 	 x ��
� y ��

given training data of the form: 	 x � y � c � , where I 	���� is the
indicator function that has value 1 in case its argument is
true and 0 otherwise. This model does not explicitly allow
using cost information at prediction time although X might
include a cost feature if that is available.

This formulation of cost-sensitive learning in terms of
one number per example is more general than “cost matrix”
formulations which are more typical in cost-sensitive learn-
ing [6, 2], when the output space is binary.1 In the cost
matrix formulation, costs are associated with false negative,
false positive, true negative, and true positive predictions.
Given the cost matrix and an example, only two entries
(false positive, true negative) or (false negative, true posi-
tive) are relevant for that example. These two numbers can
be further reduced to one: (false positive - true negative) or
(false negative - true positive), because it is the difference in
cost between classifying an example correctly or incorrectly
which controls the importance of correct classification. This
difference is the importance c we use here. This setting is
more general in the sense that the importance may vary on
a example-by-example basis.

A basic folk theorem 2 states that if we have examples
drawn from the distribution:

D̂ 	 x � y � c ��� c
Ex � y � c � D � c 
 D 	 x � y � c �

1How to formulate the problem in this way when the output space is
not binary is nontrivial and is beyond the scope of this paper.

2We say “folk theorem” here because the result appears to be known by
some and it is straightforward to derive it from results in decision theory,
although we have not found it published.

then optimal error rate classifiers for D̂ are optimal cost
minimizers for data drawn from D.

Theorem 2.1. (Translation Theorem) For all distributions,
D, there exists a constant N � Ex � y � c � D � c 
 such that for all
classifiers, h:

Ex � y � c � D̂ � I 	 h 	 x ��
� y ��
 � 1
N

Ex � y � c � D � cI 	 h 	 x ��
� y ��


Proof.

Ex � y � c � D � cI 	 h 	 x ��
� y ��
 � ∑
x � y � c

D 	 x � y � c � cI 	 h 	 x ��
� y �
� N ∑

x � y � c
D̂ 	 x � y � c � I 	 h 	 x ��
� y �

� NEx � y � c � D̂ � I 	 h 	 x ��
� y ��

where D̂ 	 x � y � c � � c

N
D 	 x � y � c ���

Despite its simplicity, this theorem is useful to us be-
cause the right-hand side expresses the expectation we want
to control (via the choice of h) and the left-hand side is the
probability that h errs under another distribution. Choos-
ing h to minimize the rate of errors under D̂ is equivalent to
choosing h to minimize the expected cost under D. Simi-
larly, ε-approximate error minimization under D̂ is equiva-
lent to Nε-approximate cost minimization under D.

The prescription for coping with cost-sensitive problems
is straightforward: re-weight the distribution in your train-
ing set according to the importances so that the training set
is effectively drawn from D̂. Doing this in a correct and
general manner is more challenging than it may seem and is
the topic of the rest of the paper.

2.2 Transparent Box: Using Weights Directly

2.2.1 General conversion

Here we examine how importance weights can be used
within different learning algorithms to accomplish cost-
sensitive classification. We call this the transparent box
approach because it requires knowledge of the particular
learning algorithm (as opposed to the black box approach
that we develop later).

The mechanisms for realizing the transparent box ap-
proach have been described elsewhere for a number of weak
learners used in boosting, but we will describe them here for
completeness. The classifier learning algorithm must use
the weights so that it effectively learns from data drawn ac-
cording to D̂. This requirement is easy to apply for all learn-
ing algorithms which fit the statistical query model [13].

As shown in figure 1, many learning algorithms can be
divided into two components: a portion which calculates the
(approximate) expected value of some function (or query)
f and a portion which forms these queries and uses their
output to construct a classifier. For example, neural net-
works, decision trees, and Naive Bayes classifiers can be
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Figure 1. The statistical query model.

constructed in this manner. Support vector machines are
not easily constructible in this way, because the individual
classifier is explicitly dependent upon individual examples
rather than on statistics derived from the entire sample.

With finite data we cannot precisely calculate the expec-
tation Ex � y � D � f 	 x � y ��
 . With high probability, however, we
can approximate the expectation given a set of examples
drawn independently from the underlying distribution D.

Whenever we have a learning algorithm that can be de-
composed as in figure 1, there is a simple recipe for using
the weights directly. Instead of simulating the expectation
with 1�

S
� ∑ � x � y ��� S f 	 x � y � , we use 1

∑ � x � y � c � � S c ∑ � x � y � c ��� S c f 	 x � y � .
This method is equivalent to importance sampling for D̂ us-
ing the distribution D, and so the modified expectation is an
unbiased Monte Carlo estimate of the expectation w.r.t. D̂.

Even when a learning algorithm does not fit this model, it
may be possible to incorporate importance weights directly.
We now discuss how to incorporate importance weights into
some specific learning algorithms.

2.2.2 Naive Bayes and boosting

Naive Bayes learns by calculating empirical probabilities
for each output y using Bayes’ rule and assuming that each
feature is independent given the output:

P 	 y 	 x � � P 	 x 	 y � P 	 y �
P 	 x �

� ∏i P 	 xi 	 y � P 	 y �
∏i P 	 xi �

Each probability estimate in the above expression can be
thought of as a function of empirical expectations according
to D, and thus it can be formulated in the statistical query
model. For example, P 	 xi 	 y � is just the expectation of I 	 xi

�
xi ��
 I 	 y � y � divided by the expectation of I 	 y � y � . More
specifically, to compute the empirical estimate of P 	 xi 	 y �
with respect to D, we need to count the number of training
examples that have y as output, and those having xi as the
i-th input dimension among those. When we compute these
empirical estimates with respect to D̂, we simply have to
sum the weight of each example, instead of counting the
examples. (This property is used in the implementation of
boosted Naive Bayes [5].)

To incorporate importance weights into AdaBoost [8],
we give the importance weights to the weak learner in the
first iteration, thus effectively drawing examples from D̂.
In the subsequent iterations, we use the standard AdaBoost

rule to update the weights. Therefore, the weights are ad-
justed according to the accuracy on D̂, which corresponds
to the expected cost on D.

2.2.3 C4.5

C4.5 [16] is a widely used decision tree learner. There is a
standard way of incorporating example weights to it, which
in the original algorithm was intended to handle missing at-
tributes (examples with missing attributes were divided into
fractional examples, each with a smaller weight, during the
growth of the tree). This same facility was later used by
Quinlan in the implementation of boosted C4.5 [15].

2.2.4 Support Vector Machine

The SVM algorithm [11] learns the parameters a and b de-
scribing a linear decision rule h 	 x � � sign 	 a � x � b � , so that
the smallest distance between each training example and the
decision boundary (the margin) is maximized. It works by
solving the following optimization problem:

minimize: V 	 a � b � ξ � � 1
2 a � a � C ∑n

i 
 1 ξi
subject to: � i : yi � a � xi � b 
�� 1 � ξi � ξi � 0

The constraints require that all examples in the training set
are classified correctly up to some slack ξi. If a training
example lies on the wrong side of the decision boundary,
the corresponding ξi is greater than 1. Therefore, ∑n

i 
 1 ξi is
an upper bound on the number of training errors. The factor
C is a parameter that allows one to trade off training error
and model complexity. The algorithm can be generalized to
non-linear decision rules by replacing inner products with a
kernel function in the formulas above.

The SVM algorithm does not fit the statistical query
model. Despite this, it is possible to incorporate importance
weights in a natural way. First, we note that ∑n

i 
 1 ciξi, where
ci is the importance of example i, is an upper bound on the
total cost. Therefore, we can modify V 	 a � b � ξ � to

V 	 a � b � ξ � � 1
2 a � a � C ∑n

i 
 1 ciξi �

Now C controls model complexity versus total cost.
The SVMLight package [10] allows users to input

weights ci and works with the modified V 	 a � b � ξ � as above,
although this feature has not yet been documented.

2.3 Black Box: Sampling methods

Suppose we do not have transparent box access to the
learner. In this case, sampling is the obvious method to con-
vert from one distribution of examples to another to obtain
a cost-sensitive learner using the translation theorem (The-
orem 2.1). As it turns out, straightforward sampling does
not work well in this case, motivating us to propose an al-
ternative method based on rejection sampling.



2.3.1 Sampling-with-replacement

Sampling-with-replacement is a sampling scheme where
each example 	 x � y � c � is drawn according to the distribution
p 	 x � y � c � � c

∑ � x � y � c � � S c . Many examples are drawn to create

a new dataset S � . This method, at first pass, appears useful
because every example is effectively drawn from the distri-
bution D̂. In fact, very poor performance can result when
using this technique, which is essentially due to overfitting
because of the fact that the examples in S � are not drawn in-
dependently from D̂, as we will elaborate in the section on
experimental results (Section 3).

Sampling-without-replacement is also not a solution to
this problem. In sampling-without-replacement, an ex-
ample 	 x � y � c � is drawn from the distribution p 	 x � y � c � �

c
∑ � x � y � c � � S c and the next example is drawn from the set S ��
x � y � c � . This process is repeated, drawing from a smaller

and smaller set according to the weights of the examples
remaining in the set.

To see how this method fails, note that sampling-
without-replacement m times from a set of size m results
in the original set, which (by assumption) is drawn from the
distribution D, and not D̂ as desired.

2.3.2 Cost-proportionate rejection sampling

There is another sampling scheme called rejection sampling
[18] which allows us to draw examples independently from
the distribution D̂, given examples drawn independently
from D. In rejection sampling, examples from D̂ are ob-
tained by first drawing examples from D, and then keep-
ing (or accepting) the sample with probability proportional
to D̂ � D. Here, we have D̂ � D ∝ c, so we accept an exam-
ple with probability c � Z, where Z is some constant cho-
sen so that max � x � y � c ��� S c � Z,3 leading to the name cost-
proportionate rejection sampling. Rejection sampling re-
sults in a set S � which is generally smaller than S. Further-
more, because inclusion of an example in S � is independent
of other examples, and the examples in S are drawn inde-
pendently, we know that the examples in S � are distributed
independently according to D̂.

Using cost-proportionate rejection sampling to create a
set S � and then using a learning algorithm A 	 S � � is guaran-
teed to produce an approximately cost-minimizing classi-
fier, as long as the learning algorithm A achieves approxi-
mate minimization of classification error.

Theorem 2.2. (Correctness) For all cost-sensitive sample
sets S, if cost-proportionate rejection sampling produces a
sample set S � and A 	 S � � achieves ε classification error:

Ex � y � c � D̂ � I 	 h 	 x ��
� y ��
�� ε

3In practice, we choose Z � max � x � y � w � � S c so as to maximize the size of
the set S � . A data-dependent choice of Z is not formally allowed for rejec-
tion sampling. However, the introduced bias appears small when � S �
	�	 1.
A precise measurement of “small” is an interesting theoretical problem.

then h � A 	 S � � approximately minimizes cost:

Ex � y � c � D � cI 	 h 	 x ��
� y � 
�� εN

where N � Ex � y � c � D � c 
 .
Proof. Rejection sampling produces a sample set S � drawn
independently from D̂. By assumption A 	 S � � outputs a clas-
sifier h such that

Ex � y � c � D̂ � I 	 h 	 x ��
� y ��
�� ε

By the translation theorem (Theorem 2.1), we know that

Ex � y � c � D̂ � I 	 h 	 x ��
� y ��
 � 1
N

Ex � y � c � D � cI 	 h 	 x ��
� y ��


Thus, Ex � y � c � D � cI 	 h 	 x � 
� y ��

� εN �

2.3.3 Sample complexity of cost-proportionate rejec-
tion sampling

The accuracy of a learned classifier generally improves
monotonically with the number of examples in the training
set. Since cost-proportionate rejection sampling produces a
smaller training set (by a factor of about N � Z), one would
expect worse performance than using the entire training set.

This turns out to not be the case, in the agnostic PAC-
learning model [17, 12], which formalizes the notion of
probably approximately optimal learning from arbitrary dis-
tributions D.

Definition 2.1. A learning algorithm A is said to be an
agnostic PAC-learner for hypothesis class H, with sample
complexity m 	 1 � ε � 1 � δ � if for all ε � 0 and δ � 0, m �
m 	 1 � ε � 1 � δ � is the least sample size such that for all dis-
tributions D (over X � Y), the classification error rate of its
output h is at most ε more than the best achievable by any
member of H with probability at least 1 � δ, whenever the
sample size exceeds m.

By analogy, we can formalize the notion of cost-sensitive
agnostic PAC-learning.

Definition 2.2. A learning algorithm A is said to be a
cost-sensitive agnostic PAC-learner for hypothesis class H,
with cost-sensitive sample complexity m 	 1 � ε � 1 � δ � , if for all
ε � 0 and δ � 0, m � m 	 1 � ε � 1 � δ � is the least sample size
such that for all distributions D (over X � Y � C), the ex-
pected cost of its output h is at most ε more than the best
achievable by any member of H with probability at least
1 � δ, whenever the sample size exceeds m.

We will now use this formalization to compare the cost-
sensitive PAC-learning sample complexity of two methods:
applying a given base classifier learning algorithm to a sam-
ple obtained through cost-proportionate rejection sampling,
and applying the same algorithm on the original training
set. We show that the cost-sensitive sample complexity of
the latter method is lower-bounded by that of the former.



Theorem 2.3. (Sample Complexity Comparison) Fix an
arbitrary base classifier learning algorithm A, and sup-
pose that morig 	 1 � ε � 1 � δ � and mrej 	 1 � ε � 1 � δ � , respectively,
are cost-sensitive sample complexity of applying A on the
original training set, and that of applying A with cost-
proportionate rejection sampling. Then, we have

morig 	 1 � ε � 1 � δ � � Ω 	 mrej 	 1 � ε � 1 � δ � ���
Proof. Let m 	 1 � ε � 1 � δ � be the (cost-insensitive) sample
complexity of the base classifier learning algorithm A. (If
no such function exists, then neither morig 	 1 � ε � 1 � δ � nor
mrej 	 1 � ε � 1 � δ � exists, and the theorem holds vacuously.)
Since Z is an upper bound on the cost of misclassifying an
example, we have that the cost-sensitive sample complexity
of using the original training set satisfies

morig 	 1 � ε � 1 � δ � � Θ 	 m 	 Z � ε � 1 � δ � �
This is because given a distribution that forces ε more clas-
sification error than optimal, another distribution can be
constructed, that forces εZ more cost than optimal, by as-
signing cost Z to all examples on which A errs.

Now from Theorem 2.2 and noting that the central limit
theorem implies that cost-proportionate rejection sampling
reduces the sample size by a factor of Θ 	 N � Z � , the cost-
sensitive sample complexity for rejection sampling is:

mrej 	 1 � ε � 1 � δ � � Θ
�

Z
N

m 	 N � ε � 1 � δ ��� � (1)

A fundamental theorem from PAC-learning theory
states that m 	 1 � ε � 1 � δ � � Ω 	 	 1 � ε � ln 	 1 � δ � � [4]. When
m 	 1 � ε � 1 � δ � � Θ 	 	 1 � ε � ln 	 1 � δ � � , Equation (1) implies:

mrej 	 1 � ε � 1 � δ � � Θ
�

Z
N

N
ε

ln 	 1 � δ � � � Θ � morig 	 1 � ε � 1 � δ ���
Finally, note that when m 	 1 � ε � 1 � δ � grows faster than linear
in 1 � ε, we have mrej 	 1 � ε � 1 � δ � � o 	 morig 	 1 � ε � 1 � δ � � , which
finishes the proof.

Note that the linear dependence of sample size on 1 � ε
is only achievable by an ideal learning algorithm, and in
practice super-linear dependence is expected, especially in
the presence of noise. Thus, the above theorem implies that
cost-proportionate rejection sampling minimizes cost better
than no sampling for worst case distributions.

This is a remarkable property about any sampling
scheme, since one generally expects that predictive perfor-
mance is compromised by using a smaller sample. Cost-
proportionate rejection sampling seems to distill the origi-
nal sample and obtains a sample of smaller size, which is at
least as informative as the original.

2.3.4 Cost-proportionate rejection sampling with ag-
gregation (costing)

From the same original training sample, different runs of
cost-proportionate rejection sampling will produce differ-
ent training samples. Furthermore, the fact that rejection

sampling produces very small samples means that the time
required for learning a classifier is generally much smaller.

We can take advantage of these properties to devise an
ensemble learning algorithm based on repeatedly perform-
ing rejection sampling from S to produce multiple sample
sets S �1 � � � � � S �m, and then learning a classifier for each set.
The output classifier is the average over all learned classi-
fiers. We call this technique costing:

Costing(Learner A, Sample Set S, count t)

1. For i � 1 to t do

(a) S � � rejection sample from S with acceptance
probability c � Z.

(b) Let hi � A 	 S � �
2. Output h 	 x � � sign 	 ∑t

i 
 1 hi 	 x � �
The goal in averaging is to improve performance. There

is both empirical and theoretical evidence suggesting that
averaging can be useful. On the empirical side, many peo-
ple have observed good performance from bagging despite
throwing away a 1 � e fraction of the samples. On the theo-
retical side, there has been considerable work which proves
that the ability to overfit of an average of classifiers might
be smaller than naively expected when a large margin ex-
ists. The preponderance of learning algorithms producing
averaging classifiers provides significant evidence that av-
eraging is useful.

Note that despite the extra computational cost of averag-
ing, the overall computational time of costing is generally
much smaller than that of a learning algorithm using sam-
ple set S (with or without weights). This is the case because
most learning algorithms have running times that are super-
linear in the number of examples.

3 Empirical evaluation

We show empirical results using two real-world datasets.
We selected datasets that are publicly available and for
which cost information is available on a per example ba-
sis. Both datasets are from the direct marketing domain.
Although there are many other data mining domains that
are cost-sensitive, such as credit card fraud detection and
medical diagnosis, publicly available data are lacking.

3.1 The datasets used

3.1.1 KDD-98 dataset

This is the well-known and challenging dataset from the
KDD-98 competition, now available at the UCI KDD repos-
itory [9]. The dataset contains information about persons
who have made donations in the past to a particular charity.
The decision-making task is to choose which donors to mail
a request for a new donation. The measure of success is the
total profit obtained in the mailing campaign.



The dataset is divided in a fixed way into a training set
and a test set. Each set consists of approximately 96000
records for which it is known whether or not the person
made a donation and how much the person donated, if a do-
nation was made. The overall percentage of donors is about
5%. Mailing a solicitation to an individual costs the charity
$0 � 68. The donation amount for persons who respond varies
from $1 to $200. The profit obtained by soliciting every in-
dividual in the test set is $10560, while the profit attained
by the winner of the KDD-98 competition was $14712.

The importance of each example is the absolute dif-
ference in profit between mailing and not mailing an in-
dividual. Mailing results in the donation amount minus
the cost of mailing. Not mailing results in zero profit.
Thus, for positive examples (respondents), the importance
varies from $0 � 32 to $199 � 32. For negative examples (non-
respondents), it is fixed at $0 � 68.

3.1.2 DMEF-2 dataset

This dataset can be obtained from the DMEF dataset library
[1] for a nominal fee. It contains customer buying history
for 96551 customers of a nationally known catalog. The
decision-making task is to choose which customers should
receive a new catalog so as to maximize the total profit on
the catalog mailing campaign. Information on the cost of
mailing a catalog is not available, so we fixed it at $2.

The overall percentage of respondents is about 2.5%.
The purchase amount for customers who respond varies
from $3 to $6247. As is the case for the KDD-98 dataset,
the importance of each example is the absolute difference in
profit between mailing and not mailing a customer. There-
fore, for positive examples (respondents), the importance
varies from $1 to $6245. For negative examples (non-
respondents), it is fixed at $2.

We divided the dataset in half to create a training set and
a test set. As a baseline for comparison, the profit obtained
by mailing a catalog to every individual on the training set
is $26474 and on the test set is $27584.

3.2 Experimental results

3.2.1 Transparent box results

Table 1 (top) shows the results for Naive Bayes, boosted
Naive Bayes (100 iterations) C4.5 and SVMLight on the
KDD-98 and DMEF-2 datasets, with and without the im-
portance weights. Without the importance weights, the clas-
sifiers label very few of the examples positive, resulting
in small (and even negative) profits. With the costs given
as weights to the learners, the results improve significantly
for all learners, except C4.5. Cost-sensitive boosted Naive
Bayes gives results comparable to the best so far with this
dataset [19] using more complicated methods.

We optimized the parameters of the SVM by cross-
validation on the training set. Without weights, no setting of
the parameters prevented the algorithm of labeling all exam-
ples as negatives. With weights, the best parameters were

KDD-98:
Method Without Weights With Weights
Naive Bayes 0.24 12367
Boosted NB -1.36 14489
C4.5 0 118
SVMLight 0 13683

DMEF-2:
Method Without Weights With Weights
Naive Bayes 16462 32608
Boosted NB 121 36381
C4.5 0 478
SVMLight 0 36443

Table 1. Test set profits with transparent box.

a polynomial kernel with degree 3 and C � 5 � 10 �
5 for

KDD-98 and a linear kernel with C � 0 � 0005 for DMEF-2.
However, even with this parameter setting, the results are
not so impressive. This may be a hard problem for margin-
based classifiers because the data is very noisy. Note also
that running SVMLight on this dataset takes about 3 orders
of magnitude longer than AdaBoost with 100 iterations.

The failure of C4.5 to achieve good profits with impor-
tance weights is probably related to the fact that the facil-
ity for incorporating weights provided in the algorithm is
heuristic. So far, it has been used only in situations where
the weights are fairly uniform (such as is the case for frac-
tional instances due to missing data). These results indicate
that it might not be suitable for situations with highly non-
uniform costs. The fact that it is non-trivial to incorporate
costs directly into existing learning algorithms is the moti-
vation for the black box approaches that we present here.

3.2.2 Black box results

Table 2 shows the results of applying the same learn-
ing algorithms to the KDD-98 and DMEF-2 data using
training sets of different sizes obtained by sampling-with-
replacement. For each size, we repeat the experiments 10
times with different sampled sets to get mean and standard
error (in parentheses). The training set profits are on the
original training set from which we draw the sampled sets.

The results confirm that application of sampling-with-
replacement to implement the black box approach can result
in very poor performance due to overfitting. When there are
large differences in the magnitude of importance weights, it
is typical for an example to be picked twice (or more). In
table 2, we see that as we increase the sampled training set
size and, as a consequence, the number of duplicate exam-
ples in the training set, the training profit becomes larger
while the test profit becomes smaller for C4.5.

Examples which appear multiple times in the training set
of a learning algorithm can defeat complexity control mech-
anisms built into learning algorithms For example, suppose
that we have a decision tree algorithm which divides the
training data into a “growing set” (used to construct a tree)



KDD-98:
1000 10000 100000

Training Test Training Test Training Test
NB 11251 (330) 10850 (325) 12811 (155) 11993 (185) 12531 (242) 12026 (256)

BNB 11658 (311) 11276 (383) 13838 (65) 12886 (212) 14107 (152) 13135 (159)
C4.5 11124 (255) 9548 (331) 22083 (271) 7599 (310) 40704 (152) 2259 (107)
SVM 10320 (372) 10131 (281) 11228 (182) 11015 (161) 13565 (129) 12808 (220)

DMEF-2:
1000 10000 100000

Training Test Training Test Training Test
NB 33298 (495) 34264 (419) 32742 (793) 33956 (798) 33511 (475) 34506 (405)

BNB 33902 (558) 30304 (660) 34802 (806) 31342 (772) 34505 (822) 31889 (733)
C4.5 37905 (1467) 24011 (1931) 67960 (763) 9188 (458) 72574 (1205) 3149 (519)
SVM 28837 (1029) 30177 (1196) 31263 (1121) 32585 (891) 34309 (719) 33674 (600)

Table 2. Profits using sampling-with-replacement.

and a “pruning set” (used to prune the tree for complex-
ity control purposes). If the pruning set contains examples
which appear in the growing set, the complexity control
mechanism is defeated.

Although not as markedly as for C4.5, we see the same
phenomenon for the other learning algorithms. In general,
as the size of the resampled size grows, the larger is the dif-
ference between training set profit and test set profit. And,
even with 100000 examples, we do not obtain the same test
set results as giving the weights directly to Boosted Naive
Bayes and SVM.

The fundamental difficulty here is that the samples in S �
are not drawn independently from D̂. In particular, if D̂ is
a density, the probability of observing the same example
twice given independent draws is 0, while the probability
using sampling-with-replacement is greater than 0. Thus
sampling-with-replacement fails because the sampled set S �
is not constructed independently.

Figure 2 shows the results of costing on the KDD-98
and DMEF-2 datasets, with the base learners and Z � 200
or Z � 6247, respectively. We repeated the experiment 10
times for each t and calculated the mean and standard error
of the profit. The results for t � 1, t � 100 and t � 200 are
also given in table 3.

In the KDD-98 case, each resampled set has only about
600 examples, because the importance of the examples
varies from 0.68 to 199.32 and there are few “important”
examples. About 55% of the examples in each set are pos-
itive, even though on the original dataset the percentage of
positives is only 5%. With t � 200, the C4.5 version yields
profits around $15000, which is exceptional performance
for this dataset.

In the DMEF-2 case, each set has only about 35 exam-
ples, because the importances vary even more widely (from
2 to 6246) and there are even fewer examples with a large
importance than in the KDD-98 case. The percentage of
positive examples in each set is about 50%, even though on
the original dataset it was only 2.5%.

For learning the SVMs, we used the same kernels as
we did in section 2.2 and the default setting for C. In that

KDD-98:
1 100 200

NB 11667 (192) 13111 (102) 13163 (68)
BNB 11377 (263) 14829 (92) 14714 (62)
C4.5 9628 (511) 14935 (102) 15016 (61)
SVM 10041 (393) 13075 (41) 13152 (56)

DMEF-2:
1 100 200

NB 26287 (3444) 37627 (335) 37629 (139)
BNB 24402 (2839) 37376 (393) 37891 (364)
C4.5 27089 (3425) 36992 (374) 37500 (307)
SVM 21712 (3487) 33584 (1215) 35290 (849)

Table 3. Test set profits using costing.

section, we saw that by feeding the weights directly to the
SVM, we obtain a profit of $13683 on the KDD-98 dataset
and of $36443 on the DMEF-2 dataset. Here, we obtain
profits around $13100 and $35000, respectively. However,
this did not require parameter optimization and, even with
t � 200, was much faster to train. The reason for the speed-
up is that the time complexity of SVM learning is generally
superlinear in the number of training examples.

4 Discussion

Costing is a technique which produces a cost-sensitive
classification from a cost-insensitive classifier using only
black box access. This simple method is fast, results in ex-
cellent performance and often achieves drastic savings in
computational resources, particularly with respect to space
requirements. This last property is especially desirable in
applications of cost-sensitive learning to domains that in-
volve massive amount of data, such as fraud detection, tar-
geted marketing, and intrusion detection.

Another desirable property of any reduction is that it ap-
plies to the theory as well as to concrete algorithms. Thus,
the reduction presented in the present paper allows us to au-
tomatically apply any future results in cost-insensitive clas-
sification to cost-sensitive classification. For example, a
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Figure 2. Costing: test set profit vs. number of sampled sets.

bound on the future error rate of A 	 S � � implies a bound on
the expected cost with respect to the distribution D. This
additional property of a reduction is especially important
because cost-sensitive learning theory is still young and rel-
atively unexplored.

One direction for future work is multiclass cost-sensitive
learning. If there are K classes, the minimal representation
of costs is K � 1 weights. A reduction to cost-insensitive
classification using these weights is an open problem.
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