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Abstract

We present an algorithm for clustering nominal data that
is based on a metric on the set of partitions of a finite set of
objects; this metric is defined starting from a lower valu-
ation of the lattice of partitions. The proposed algorithm
seeks to determine a clustering partition such that the to-
tal distance between this partition and the partitions deter-
mined by the attributes of the objects has a local minimum.
The resulting clustering is quite stable relative to the order-
ing of the objects.

1 Introduction

Clustering is an unsupervised learning process that par-
titions data such that similar data items are grouped to-
gether in sets referred to as clusters. This activity is im-
portant for condensing and identifying patterns in data. De-
spite the substantial effort invested in researching cluster-
ing algorithms by the data mining community, there are
still many difficulties to overcome in building clustering al-
gorithms. Indeed, as pointed in [16] “there is no cluster-
ing technique that is universally applicable in uncovering
the variety of structures present in multidimensional data
sets”. This situation has generated a variety of clustering
techniques broadly divided into hierarchical and partitional;
also, special clustering algorithms based on a variety of
principles, ranging from neural networks and genetic algo-
rithms, to tabu searches.

In this paper we focus on an incremental clustering algo-
rithm that can be applied to nominal data, that is, to data

whose attributes have no particular natural ordering. In
general clustering, objects to be clustered are represented
as points in an n-dimensional space R™ and standard dis-
tances, such as the Euclidean distance is used to evaluate
similarity between objects. For objects whose attributes are
nominal (e.g., color, shape, diagnostic, etc.), no such natural
representation of objects is possible, which leaves only the
Hamming distance as a dissimilarity measure, a poor choice
for discriminating among multi-valued attributes of objects.

Incremental clustering has attracted a substantial amount
of attention starting with Hartigan’s algorithm [15] imple-
mented in [7]. A seminal paper by D. Fisher [14] contained
COBWEB, an incremental clustering algorithm that in-
volved restructurings of the clusters in addition to the incre-
mental additions of objects. Incremental clustering related
to dynamic aspects of databases were discussed in [5, 6]. It
is also notable that incremental clustering has been used in a
variety of applications [19, 20, 8, 11]. The interest in incre-
mental clustering stems from the fact that the main memory
usage is minimal since there is no need to keep in memory
the mutual distances between objects and the algorithms are
scalable with respect to the size of the set of objects and the
number of attributes.

An object system is a pair § = (.5, H), where S is set
called the set of objects of S, H = {44,..., A, } isaset of
mappings defined on .S. We assume that for each mapping
A; (referred to as an attribute of 8) there exists a nonempty
set I; called the domain of A; such that A4; : S — E;
for 1 < i < m. The value of an attribute A; on an object
t is denoted by t[A;]. Our terminology is consistent with
the terminology used in relational databases, where a table
can be regarded as an object system; however, the notion
of object system is more general because objects have an



identity as members of the set S, instead of being regarded
as just m-tuples of values. In this spirit, we shall refer to
t[A;] as projection of t on A;.

Let S be aset. A partition on S is a non-empty collection
of subsets of S indexedby aset I, # = {B; | i € I} such
that | J;.; B; = Sand i # j implies B; N B; = (). The sets
B, are commonly referred to as the blocks of the partition
. The set of partitions on .S is denoted by PART(S).

An attribute A of an object system 8§ = (S, H) generates
a partition 74 of the set of objects S, where two objects be-
long to the same block of 7 if they have the same projec-
tion on A. We denote by B the block of 74 that consists
of all tuples of S whose A-component is a. Note that for
relational databases, 7 is the partition of the set of rows of
a table that is obtained by using the group by A option of
select in standard SQL.

A clustering of an object system 8 = (S, H) is defined
as a partition ~ of S. We shall seek to find clusterings start-
ing from their relationships with partitions induced by at-
tributes. As we shall see, this is a natural approach for nom-
inal data.

2 Metricson Object Partitions

The set of partitions of a set can be naturally equipped
with a partial order. For 7,0 € PART(S) we write 7 < o
if every block B of 7 is included in a block of o, or equiv-
alently, if every block of o is an exact union of blocks of
.

This partial order generates a lattice structure on
PART(.S); this means that for every two partitions 7, 7’ €
PART(S) there is a least partition 71 such that 7 < 7, and
7w’ < m and there is a largest partition 75 such that 7o < 7
and my < «’. The first partition is denoted by 7 Vv #’, while
the second is denoted by 7 A 7',

To introduce a metric on the set of partitions of a finite
set we define the mapping v : PART(S) — R by v(w) =
S |Bil?, where 7 = {Bx,..., B,}.

The mapping v is a lower valuation on PART(.S), that is,

v(m) +v(o) ()

for m,0 € PART(.S) (see Appendix A for a proof).

For every lower valuation v the mapping d
(PART(S5))? — R defined by d(m, o) = v(7) + v(o) —
2v(mAo) isametricon PART(S) (see [2, 1, 21]). A special
property of this metric allows the formulation of an incre-
mental clustering algorithm.

v(mrVo)+u(mrAo) >

3 AMICA - A MetricIncremental Clustering
Algorithm

Let 8 = (S, H) be an object system. We seek a clus-
tering k = {C4,...,C,} € PART(S) such that the total

distance from « to the partitions of the attributes:

is minimal.
The definition of d allows us to write:

d(x, Z|C|2+Z|BA|2 2i§|c nB.2,

=1 j=1

Suppose now that ¢ is a new object, t ¢ S, and let Z =
S U {t}. The following cases can occur:

1. the object ¢ is added to an existing cluster C;
2. anew cluster, C, 1 is created that consists only of ¢.

Also, from the point of view of partition 74, ¢ is added to
the block B;EA], which corresponds to the value ¢[A] of the
A-component of ¢.

In the first case let:

ki) = {Clv~-~ Ck71,CkU{t} Ck+1,...,cn}
/
o = {BA. By Uit BA

be the partitions of Z. Now, we have:

d(/@(k),wAl) — d(k, 7TA)
= (ICk] +1)* = |Ck]* + (IBjja| + 1)°
—|B{la)]* = 2(21Cx N Bi{a)| + 1)

= 2|Cy +1+2|Bt[A |+1-

4|Ck th[A]| 2

The minimal increase of d(x ), 74"} is given by:
mkinz 2|C @ Bila)l-
A

In the second case we deal with the partitions:

K = {C,...,...,Cn, {t}}
= {BA,. Biyu{t}... B
and we have
d(',7") — d(r, 7%) = 2| Bl 4.
Consequently,
R oot



Thus, the choice between adding an object to an existing
cluster and creating a new cluster is based on comparing
the numbers

mkinz C @ Byl and > [Bfiyl.
A A

If the first number is smaller, we add ¢ to a cluster C}, for
which )", |C, & Bt“[‘A] is minimal; otherwise, we create a
new one-object cluster.

Incremental clustering algorithms are affected, in gen-
eral, by the order in which objects are processed by the
clustering algorithm. Moreover, as pointed in [9], each such
algorithm proceeds typically in a hill-climbing fashion that
yields local minima rather than global ones. For some incre-
mental clustering algorithms certain object orderings may
result in rather poor clusterings. To diminish the ordering
effect problem we expand the initial algorithm by adopting
the “not-yet” technique introduced by Roure and Talavera
in [23]. The basic idea is that a new cluster is created only
when the inequality:

Y alBla Y
miny, 3, |Cr @ By ’

r(t) =

is satisfied, that is, only when the effect (¢) of adding the
object ¢ on the total distance is significant enough. Here «
is a parameter provided by the user, such that o <= 1. Note
that if o = 1, we make no use of the NOT- YET buffer.

We formulate now a metric incremental clustering algo-
rithm (referred to as AMICA - an acronym of the previous
five words) that is using the properties of distance d. The
variable nc denotes the current number of clusters.

If « < r(t) < 1, then we place the object ¢ in a
NOT- YET buffer. If r(¢) < « a new cluster that consists of
the object {¢} is created. Otherwise, that is if »(¢) > 1, the
object ¢ is placed in an existing cluster C}, that minimizes
alCre® Bt“[‘A] |; this limits the number of new singleton
clusters that would be otherwise created. After all objects
of the set S have been examined, the objects contained by
the NOT- YET buffer are processed with & = 1. This pre-
vents new insertions in the buffer and results in either plac-
ing these objects in existing clusters or in creating new clus-
ters. The pseudocode of the algorithm is given next:

Input: data set S and threshold «
Qutput: clustering Ci,...,Cnc

Met hod:

nc = 0;

{=1;

while S#0 do
sel ect an object ¢
S=8-{th
if 30, Byl < aminicpene 34 Ok @ Biy|

t hen

nc ++;

create a new singl e- obj ect
cluster Che = {t};

el se
B > A ‘BﬁA]‘
r(t) T mini<p<ne 24 |C*‘@B£?A]|
if rit)>1
t hen

k=arg mngX,|Cr @ Byl
add ¢t to cluster Cy;
else /* this neans a<r(t) <1 */
pl ace ¢t in NOT- YET buffer;
end if;

endwhi | e;
process objects in the NOT-YET buffer
as above with a=1;

4 Experimental Results

We applied AMICA to synthetic data sets produced by
an algorithm that generates clusters of objects having real-
numbered components grouped around a specified number
of centroids. The resulting tuples were discretized using a
specified number of discretization intervals which allowed
us to treat the data as nominal. The experiments were ap-
plied to several data sets with an increasing number of tu-
ples and increased dimensionality and using several permu-
tations of the set of objects. All experiments describe in this
paper used o = 0.95.

The stability of the obtained clusterings is quite remark-
able. For example, in an experiment applied to a set that
consists of 10,000 objects (grouped by the synthetic data
algorithm around 6 centroids) a first pass of the algorithm
produced 11 clusters; however, most objects (9895) are con-
centrated in the top 6 clusters, which approximate very well
the “natural” clusters produced by the synthetic algorithm.

The next table compares the clusters produced by the
first run of the algorithm with the cluster produced from
a data set obtained by applying a random permutation.

Initial Run Random Permutation
Cluster  Size || Cluster  Size | Distribution
(Original cluster)
1 1548 1 1692 | 1692 (2)
2 1693 2 1552 | 1548 (1),3(3),1(2)
3 1655 3 1672 | 1672 (5)
4 1711 4 1711 | 17111 (4)
5 1672 5 1652 | 1652 (3)
6 1616 6 1616 | 1616 (6)
7 1 7 85 | 85(8)
8 85 8 10 | 10(9)
9 10 9 8 | 8(10)
10 8 10 1|11
11 1 11 111




Note that the clusters are stable; they remain almost invari-
ant with the exception of their numbering. Similar results
were obtained for other random permutations and collec-
tions of objects.

As expected with incremental clustering algorithms, the
time requirements scale up very well with the number of
tuples. On an IBM T20 system equipped with a 700 MHz
Pentium 111 and with a 256 MB RAM, we obtained the fol-
lowing results for three randomly chosen permutations of
each set of objects.

Number of Time for 3 Average
objects permutations (ms) time (ms)
2000 | 131 140 154 141.7

5000 | 410 381 @ 432 407.7
10000 | 782 761 831 794.7
20000 | 1103 1148 1061 1104

Another series of experiments involved the application
of the algorithm to databases that contain nominal data. We
applied AMICA to the mushroom data set from the standard
UCI data mining collection (see [4]). The data set contains
8124 mushroom records and is typically used as test set for
classification algorithms. In classification experiments the
task is to construct a classifier that is able to predict the
poisonous/edible character of the mushrooms based on the
values of the attributes of the mushrooms.

We discarded the class attribute (poisonous/edible) and
applied AMICA to the remaining data set. Then, we iden-
tified the edible/poisonous character of mushrooms that are
grouped together in the same cluster. This yields the clus-

tersCy,...,Cy:
Cl. Poisonous/Edible | Total Percentage of
num. dominant group
1 825/2752 | 3577 76.9%
2 8/1050 | 1058 99.2%
3 1304/0 | 1304 100%
4 0/163 163 100%
5 1735/28 | 1763 98.4%
6 017 7 100%
7 0/192 192 100%
8 36/16 52 69%
9 8/0 8 100%

Note that in almost all resulting clusters there is a dom-
inant character, and for five out of the total of nine clusters
there is complete homogeneity.

A study of the stability of the clusters similar to the one
performed for synthetic data shows the same stability rela-
tive to input orderings as follows from the next two tables
that describe clusterings obtained under two randomly cho-
sen permutations:

C,; Computed Clusters
First Random Permutation
Cc] [<4 [ [ Cl [eA c7  Cf [eA Cclg
3540 1797 1095 192 1296 8 36 7 137 16
3577 3540 0 37 0 0 0 0 0 ) 0
1058 0 0 1058 0 0 0 0 0 0 0
1304 0 8 0 0 1296 0 0 0 0 0
163 0 26 0 0 0 0 0 0 137 0
1763 0 1763 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 7 0 0
192 0 0 0 192 0 0 0 0 0 0
52 0 0 0 0 0 0 36 0 0 16
8 0 0 0 0 0 8 0 0 0 0
and
[} Computed Clusters
Second Random Permutation
Cc] [<4 Ch [ ct [eA c’ [ [eA
3548 1809 1052 192 1296 165 52 8 2
3577 3548 29 0 0 0 0 0 0 )
1058 0 6 1052 0 0 0 0 0 0
1304 0 8 0 0 1296 0 0 0 0
163 0 0 0 0 0 163 0 0 0
1763 0 1763 0 0 0 0 0 0 0
7 0 3 0 0 0 2 0 0 2
192 0 0 0 192 0 0 0 0 0
52 0 0 0 0 0 0 52 0 0
8 0 0 0 0 0 0 0 8 0

Note that the previous tables contains mostly zeros. This
shows that the clusters remain essentially stable under input
data permutations (with the exception of the order in which
they are created).

5 Conclusion and Future Work

AMICA provides good quality, stable clusterings for
nominal data, an area of clustering that is less explored than
the standard clustering algorithms that act on ordinal data.
Clusterings produced by the algorithm show a rather low
sensitivity to input orderings.

Further investigations in the behavior of the algorithm
are warranted. For example, we ran AMICA with a rather
high value of the threshold o« = 0.95. Future work will
include an examination of the dependency of the maximal
size of the NOT- YET buffer for various values of a.

AMICA could be combined with special discretization
algorithms such as fixed k-interval discretization [10], met-
ric discretization [24], fuzzy discretization (see [17, 18]),
Shannon-entropy discretization [12, 13], proportional k-
interval discretization (see [25, 26]), or techniques that are
capable of dealing with highly dependent attributes (cf.[22])
to obtain a more general incremental clustering algorithm
applicable to mixed data, that is, to data having both nomi-
nal and ordinal attributes.

A A proof of inequality (1)

Let 7, o be two partitions of the finite set .S, such that
7w ={B1,...,Bp}and o = {Cy,...,C,}. Itis known
(see [3], for example) that = A o consists of all sets of the
form B; N C; such that B; N C; # (. On another hand,
m V o has a more complicated description; namely, x,y €
S belong to the same block D of 7 Vv o if there exists a




B1 ai, az

a2, a4 Cl

B2 as, a4, as

ai, as, as, aeg, ar Cy

ag, a
B3 6, U7
B asg, ag, aio ag,ail
4 ) ) ) Cd
B a1, a2 ag, a10, a12 Cy

Figure 1. The graph G »

sequence of elements of S, zg,..., 2, such that x = z,
2z, = y and for each pair (z,, z,+1) there is a block B; of
or a block C; of & such that both z, and z, belong to B;
ortoC;forl <p<k-1.

Consider the bipartite graph G , whose set of vertices
consists of the blocks of 7 and the blocks of 0. An edge
(B;,Cj) exists only if B, N C; # (. If K is a connected
component of this graph it is easy to see that | J{B; € 7 |
B; € K} =U{C; € o | C; € K}. Further, each block D
of m Vv o equals the union of the blocks of 7 (or the blocks
of o) that belong to a connected component IC of G ;.

ExampleA.l Let S = {a; | 1 < i < 12} andletn =
{B; | 1<i<b}ando ={C; | 1 <j <4}, where

Bl == {a17a2}7 Cl = {a2;a4};
By = {a’37a’47a’5}7 Cy = {alaa3;a5;a6;a7}a
B3 = {a67a7}7 C3 = {a8;a11}7

By = {as,a9,a10}, Ci={ag,ai0,a12},

Bs = {a11,a12}-

The graph G, shown in Figure 1 has two connected com-
ponents that correspond to the blocks

Dy = {a1,a9,a3,a4,as5,a6,a7}
= B1UByUB;

C1 U Oy,

{a87a97a10,a117a12}

By U Bs

= (C3UCy.

Dy

of the partition 7 V o.
The partition = A o consists of 9 blocks that correspond

to the edges of the graph:

BiNCi = {ag}, B1NCy = {al},
BgﬂCl :{a4}, BQQCQZ{G3,G5},
B3N Cy = {ag, ar},

BiNCs = {ag}, BsNCy = {a9;a10}7

Bs; N C3 = {an}, Bs; N Cy = {ai12}.

0

Let Dy,..., D, be the blocks of the partition = Vv o.
For a block Dy define the sets I, € {1,...,m} and
Je € {1,...,n} where I, = {i | B;nN Dy # 0} and
Jr ={j | B;N Dy # 0}. Note that

.
v(rveo) = Y |Di
k=1

vmne) = D Y > BiNGP,

k=1i€ly jeJi

om) = Y BP
k=1i€l}
2

= iz Yo IBinGl|

k=1i€l, \j€Jx

o) = S IGP

k=1jeJy
r 2
- zz(zwmcjo .
k=1j€Ji \i€ly

It is immediate to verify the inequality:

2
(Ziefk, > e, |Bin Cj|) + D i, 2ujer [BiN Cyl?
2
> ier, (Zien 1B:NCH) +
2
Zje.]k (Zielk |Bi n Cj|)

This is equivalent to

1Dil? + e, 2jes |Bin gj|2

> Yier, (Tyen |B:NGCH) +
2

> icd (Zielk |Bi N Cj))

Adding up the similar inequalities for 1 < k& < r we have
v(rVo)+u(rAo)>o(r)+v(o),

which is the desired inequality.
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