An Evaluation of Approaches to Classification Rule Selection

Frans Coenen and Paul Leng
Department of Computer Science,
The University of Liverpool,
Liverpool, L69 3BX
{frans,phl } @csc.liv.ac.uk

Abstract

In this paper a number of Classification Rule evaluation
measures are considered. In particular the authors review
the use of a variety of selection techniques used to order
classification rules contained in a classifier, and a number
of mechanisms used to classify unseen data. Four estab-
lished ordering mechanisms are considered: the standard
support/confidence framework, a weighted relative accu-
racy measure, Laplace accuracy and x? testing. In addi-
tion the authors propose a fifth ordering strategy founded on
the size of the antecedent so that specific rules are “fired”
before more general rules. The techniques to classify un-
seen data are grouped into three categories: (i) select best
first rule (according to ordering), (ii) average best K rules
(again according to ordering), and (iii) consider all rules
in classifier. The authors demonstrate that rule ordering
founded on the size of antecedent works well given certain
conditions.

Keywords: Classification rule evaluation measures.

1. Introduction

Classification Association Rule Mining (CARM) is
based on the observation that a subset of the Association
Rules (ARs) generated by Association Rule Mining (ARM)
algorithms can effectively be used for the purpose of clas-
sification [2]. ARs [1] are rules of the form A = C where
A and C (Antecedent and Consequent) are disjoint subsets
of a set of binary valued attributes defined by the input data
set. In the case of Classification Rules (CRs) the variable
C' is a unary subset of a set of classes defined with respect
to the input data. Consequently, given a particular data set,
the set of possible CRs will be a subset of the set of possi-
ble ARs. The notation r.A and r.C will be used to indicate
respectively the antecedent and consequent (class) of a rule
r.

CARM algorithms (broadly) can be categorised into two
groups according to the way that the CRs are generated:

1. Two stage algorithms where a set of CARs (Classi-
fication Association Rules) are produced first (stage
1), which are then pruned and placed into a classifier
(stage 2). Examples of this approach include CMAR
[10] and CBA [11].

2. Integrated algorithms where the classifier is pro-
duced in a single processing step. Examples of this
approach include Apriori-TFPC [7], and induction sys-
tems such as FOIL [12], PRM and CPAR [13].

Once the classifier has been established (usually pre-
sented in the form of a list of rules), regardless of the
methodology used to generate it, there are a number of pro-
posed mechanisms for using the resulting classifier to clas-
sify unseen data. These can be itemised as follows (given a
particular case):

1. Best Rule: Select the first “best” rule that satisfies the
given case according to some ordering imposed on the
rule listing. The ordering can be defined according
to many different ordering schemes. Four established
schemes are:

(a) CSA: Combinations of confidence, support and
size of antecedent, with confidence being the
most significant factor. Example CARM sys-
tems that use CSA ordering include CBA [11]
and Apriori-TFPC [7], and (only during the early
stages of processing) CMAR [10]).

(b) WRA: The weighted relative accuracy which re-
flects a number of rule “interestingness” mea-
sures as proposed in [9].

(c) Laplace Accuracy Laplace accuracy [4] mea-
sures as used in FOIL [12], and PRM and CPAR
[13].

(d) x2 Testing: x2 values as used, in part, in CMAR
[10].

An alternative to CSA, that has bot been considered in
the literature to date is to make use of the size of the
antecedent as the most significant factor followed by
confidence and support, i.e. ACS ordering.

2. Best K rules: Select the first best K rules that satisfy
the given case and then select a rule according to some
averaging process. “Best” in this case is defined ac-
cording to an imposed ordering of the form described
in 1. This technique is used, for example, in CPAR
[13].

3. All rules: Collect all rules in the classifier that sat-
isfy the given case and then evaluate this collection to
identify a class. One well known evaluation method in
this category is Weighted x? (WCS) testing as used in
CMAR [10].

Note that a rule r satisfies a case n if r.A C n, the class
to be assigned to V will then be r.C.

In this paper we compare the above satisfaction/ordering
techniques which are described in some further detail in the
following two Sections. The evaluation of the techniques is
carried out using a number of sets of CRs, generated using
the Apriori-TFPC [7] CARM algorithm which is briefly re-
viewed in Section 4. The evaluation is discussed in detail in
Section 5 and some conclusions offered in Section 6.

2. RuleOrdering

As noted in the introduction to this paper five different
rule ordering strategies are considered here, four established
strategies and one new strategy. Each is described in more
detail in the following five sub-sections.

2.1. CSA ordering

The confidence-Support framework remains very com-
mon amongst current ARM algorithms. Given a CR, r, the
support for » (sup(r)) is the proportion of occurrences of
the set ».A U r.C' in the input data compared to the number
of records in the input. The confidence of r (conf(r)) is
then given as sup(r)/sup(r.A). Using the support and con-
fidence framework algorithms such as Apriori-TFPC [7],
CBA [11] and CMAR [10] make use of support and con-
fidence values in their rule ordering mechanism.

CSA (Confidence, Support, size of Antecedent) ordering
is defined as follows:

1. Confidence: A rule r; has priority over a rule r, if
conf(ry) > conf(ra).

2. Support: A rule r; has priority over a rule ry if
conf(r1) = conf(rs) and sup(ry) > sup(ra).

3. Size of antecedent: A rule r; has priority over a rule
ro if conf(r1) = conf(re), sup(ri) = sup(rs) and
|’I“1.A| < |T2.A > |

Given that confidence values are normally calculated as
real numbers it is unusual to have CRs with identical con-
fidence values other than in the case of “100% confidence
rules”. Where 100% rules are found the associated sup-
ported value “comes into play”. The size of the antecedent
is seldom used in CSA ordering.

It should be noted that CARM algorithms that use the
support/confidence framework, and this includes ACS and
systems founded on WRA and Laplace accuracy as dis-
cussed in the following Sub-sections, usually also make
use of user defined minimum support/confidence thresh-
old values during the CR generation process. Conse-
quently rules contained in the final classifier will be such
that sup(r) > min support threshold and conf(r) >
min conf threshold.

2.2. Weighted Relative Accuracy (WRA)

The use of WRA (Weighted Relative Accuracy) was pro-
posed in [9] as a unifying mechanism for determining CR
expected accuracy. WRA was specifically designed as a rule
ordering mechanism that reflects a number of rule measures.
The idea is that the WRA measure is a synthesis of a num-
ber of rule “interestingness” measures. The WRA for a rule
r is calculated as follows:

wra(r) = weighting x relative accuracy

Where relative accuracy is equal to

con fidence(r) — sup(r.C)

The term “relative” is used in the sense that the support for a
rule is compared with its expected support — a concept not
dissimilar to the idea under-pinning x? testing (see below).
A negative relative accuracy indicates that the accuracy as-
sociated with r is less than the fixed rule true = C'. So that
rules with a low “generality” (i.e. a low sup(r.A) value)
are not given a high accuracy measure the support value for
the rule antecedent is used to weight the relative accuracy
measure. Thus:

wra(r) = sup(r.A) x (confidence(r) — sup(r.C))

In [9] it is demonstrated that the WRA measure, as cal-
culated above, is equivalent to a number of alternative rule
measures, namely:

1. The weighted relative sensitivity,
2. weighted relative specificity, and
3. weighed relative negative reliability.

WRA also reflects a measure of novelty, where novelty is
defined as sup(r) — (sup(r.A) x sup(r.C)) [9].

2.3. Laplace Accuracy

The use of the Laplace expected accuracy estimate with
respect to classification rule generation was first proposed
by Clark and Boswell [4]. It has subsequently been used
in a number of CARM algorithms to order lists of CRs (for
example CPAR [13]). In [13] the measure is defined, given
arule r, as follows:

sup(rrAUur.C) +1
sup(r.A) + k)
where k is the number of classes. Note that in this case

support is defined as the actual number of records (in the
training or test set) that contain r.A U r.C or r.A.

Laplace accuracy(r) =

2.4. x2 Testing

x?2 testing is a well known statistical technique (see for
example [8]) used to determine whether two variables are
independent of one another by comparing a set of observed
values (O) against a set of expected values (E) — values
that would be expected if there were no association between
the variables. A x?2 value is calculate using the identity:

X’ = Z (0; — E;)*/E;
1<i<n

where n is the number of observed/expected values (this
is always 4 in the case of CARM). If the result is above
a given critical threshold value then it can be said that a
relationship between the variables exists, otherwise there is
no relationship. A good description of the use of x?2 testing
with respect to CARM is given in [10]; for completeness an
alternative description, in the form of an example, is given
below. To determine whether a x? value is significant or not
a critical value for x2 must be known. Such critical values
are usually published in tables with significance level along
the X-axis (expressed as a percentage) and the degrees of
freedom (D F') along the Y-axis. In the case of classification
rule mining DF' is always going to be 1. For CMAR a
significance level of 5% was used giving a threshold value
of 3.8415 (this value has also been used in this paper).

2.4.1 x? Testing Example

Given a rule r such that: sup(r) = 6, sup(r.4) = 8,
sup(r.C') = 12and N (the number of records in the training
set) is 32, a contingency table (referred to by some authors
as a confusion matrix) of observed values can be produced
as follows:

C -C
A sup(r) sup(r.A)— sup(r.A)
sup(r)
sup(r.C)— | N —sup(r.A)— | N — sup(r.A)
-A sup(r) sup(r.C)—
sup(r)
sup(r.C) N — sup(r.C) N

which will, in the above case give:

c | -C
A 6 2 8
-A| 6| 18 |24
12 | 20 | 32

The expected values are then calculated thus:

C —C
A | (12%8)/32=3 | (20%8)/32=5 | 8
—A [(12%24)/32=9 | (20%24)/32=15 | 24
12 20 32

The Chi-squared value is then:

X*= > (0; - E;)’/E; = 6.4
1<i<4

This is above the critical value of 3.8415 and therefore it
can be said that, in this example, the rule is significant.

2.5. ACS or Specificity ordering

In this paper it is proposed that a good alternative order-
ing to CSA (as described above) is ACS ordering (size of
Antecedent, Confidence and Support) which is defined as
follows:

1. Size of antecedent: A rule r, has priority over a rule
ro if |T1.A| > |7’2.A > |

2. Confidence: A rule ry has priority over a rule r, if
|r1.A| = |r2.A > | and conf(r1) > conf(ra).

3. Confidence: A rule r; has priority over a rule rs
if |ri.A] = |r2.A > |, conf(r1) = conf(rz) and
sup(r1) > sup(rz).

The intuition behind this ordering is that more specific rules
should be “triggered” before more general rules are at-
tempted. For example we may have a classifier, ordered
using CSA, comprising two rules as follows:

| Rule Conf.
1| {adb} = {y} 80%
2 | {abcd} = {z} | 5%

Given a case {abc} this would be classified, using “best
first” case satisfaction, as belonging to class y when intu-
itively class = would be more likely to be the correct class.
ACS ordering thus ensures that specific rules have a higher
precedence than more general rules so that in the above ex-
ample the class z would be returned. It will be demon-
strated, in Section 5, that ACS ordering works well if a high
confidence threshold value is used.

3 Classifi cation

In the introduction to this paper three alternative
case/record classification mechanisms were identified. Two
of these, “best k” and “x* testing” are briefly discussed be-
low so as to provide some necessary further detail (“best
first” has the obvious interpretation).

3.1. Best K Testing

The intuition behind “best & testing” is that ‘one cannot
expect that any single rule can perfectly predict the class
label for every example satisfying its body’ [13]. Given a
case n to be classified the best K approach is as follows:

1. Obtain all rules that satisfy n.

2. Keep only best K rules for each class, or all rules if
there are less than K rules for a particular class

3. For each group determine some average expected
value to be maximised (e.g. confidence, size of an-
tecedent, Laplace accuracy, x2 value).

4. Select the class associated with the best average.

In [13] a value of 5 was suggested as an appropriate value
for K.

3.2. Weighted x?2 Testing

Weighted 2 Testing is used in a number of CARM algo-
rithms, such as CMAR [10], to classify data by considering
entire groups of rules that satisfy a given case. With respect
to CMAR, given a case n to be classified, the procedure is
as follows:

1. Collect all rules that satisfy n, and

(a) If consequents of all rules are identical, or only
one rule is found, classify case according to the
consequents.

(b) Else group rules according to class and determine
the combined effect of the rules in each group.
The class associated with the “strongest group”
is then selected.

The strength of a group is calculate using the WCS
(Weighted x Squared) value. As reported in [10] this is
done by first defining a Maximum x2 (MCS) value for each
rule A = C:

oS 24(0))

(min0e ey - 222

xN x e

where the function min returns the lesser of its two argu-
ments, NV is the number of records in the test set, and e is
calculate as follows:

1 1
T R@R0) T AN 20 T
1 1

N 2@ (0) T (V- 2@)(N — 2 (C)

For each group of rules the Weighted x2 (WCS) value is
defined as:

WCS= Y (xi x xi)/(MCS)

1<i<yg

where g is the number of CRs in the group. The class asso-
ciated with the group of rules with the highest WCS value
is selected as the class to be allocated to the case.

4. Apriori-TFPC

To evaluate the above approaches a number of variations
of the Apriori-TFPC [7] algorithm were created, each re-
flecting one of the identified approaches. The Apriori-TFPC
classification rule generation algorithm is founded on the
Apriori-TFP (Total From Partial) Association Rule Mining
algorithm [6] ; which, in turn, is an extension of the Apriori-
T (Apriori Total) ARM algorithm [5]. All three algorithms,
Apriori-T, Apriori-TFP and Apriori-TFPC, were developed
by the authors?.

1Apriori-T, Apriori-TFP and Apriori-TFPC my be obtained from
http://www.csc.liv.ac.uk/ frans/KDD/Software.

Apriori-T is an “apriori” style algorithm (such as first
proposed by Agrawal and Srikant [1]) designed to process a
binary valued input data set so as to identify frequent (large)
itemsets and store the resulting frequent itemset information
in a “reverse” set enumeration tree called a T-tree (Total
support tree). This T-tree can then be processed to identify
ARs.

Apriori-TFP proceeds in a similar manner to Apriori-T
except that, instead of operating with the raw input data di-
rectly, the input data is first preprocessed and placed in a P-
tree (Partial support tree). As such Apriori-TFP has all the
functionality of Apriori-T with the additional advantage that
it operates in a much more efficient manner. Advantages
which are particularly significant when operating with data
that features many duplicate records and/or records with du-
plicate leading sub-strings (in this respect attribute ordering
is advantageous).

Apriori-TFPC is an extension of Apriori-TFP de-
signed to produce Classification Association Rules (CARS)
whereas Apriori-T and Apriori-TFP were designed to gen-
erate ARs. Apriori-TFPC is different to many other CARM
algorithms in that it does not use the “standard” two stage
approach: (1) generate all CARs, (2) prune CARs to pro-
duce a classifier. Instead Apriori-TFPC comprises only a
single stage where CRs are generated as part of the “fre-
quent set identification process”. As the T-tree is devel-
oped nodes in branches whose root represents a classifier
are tested for their appropriateness as classification rules.
To date this has been achieved with respect to a confidence
threshold; however, to evaluate the different techniques con-
sidered in this paper this can equally well be achieved using
a x2 threshold, Laplace accuracy or a WRA measure. Once
it has been established that a node represents a suitable CR
the node is not processed any further. Nodes are also pruned
during the generation process according to a user supplied
support threshold. The nature of the rules produced is there-
fore very much dependent on the threshold value used.

A high level view of the Apriori-TFP CR generation al-
gorithm is presented in Table 1 where Ny, indicates the set
of level K T-tree nodes and C' IV, the set of candidate level
K T-tree nodes. The constants minsup and minconf in-
dicate the minimum support and confidence thresholds sup-
plied by the user. Remember that although the algorithm
compares a calculated confidence value to a threshold value
when deciding whether to add a rule to R or not, this could
equally well be a Laplace or WRA accuracy value or a x2
value.

To prevent the T-tree from growing too large an addi-
tional test (not shone in Table 1) is included in the gener-
ation process in that if the number of nodes in the T-tree
is greater than 80,000; on completion of a level, no further
levels are generated.

On completion of the generation process a default rule

is also identified; this is the class associated with the last
rule in R. The last m rules whose class is equivalent to the
default class are then removed from R and replaced with a
default rule.
Algorithm: Apriori-TFPC
input The set of classes C, and

input data stored in P-tree
output A list of rules R
K«1
Generate CNg
Determine support for C Nx with reference to P-tree
Prune C' Nk according to minsup to give Ng

K+ 2
Start loop
Generate C Nk from Bg_1 nodes
if CNg = () break
Determine support for C Nk with ref. to P-tree
Prune C' Nk according to minsup to give Nx
Start loop
For each n in Nx where node root is
in C, generate a candidate CR r
if conf(r) > minconf
R+ RUT"r
Remove n from T-tree
End loop
K+ K+1
End loop
Table 1 Apriori-TFPC algorithm

The different ordering and case satisfaction techniques
considered in this paper, and itemised in the foregoing sec-
tions can be combined into eleven different variations of
Apriori-TFPC as follows:

1. Best First and CSA: T-tree pruning using support and
confidence thresholds, rule ordering using CSA, case
satisfaction using best first.

2. Best First and ACS: T-tree pruning using support and
confidence thresholds, rule ordering using ACS, case
satisfaction using best first.

3. Best First and WRA: T-tree pruning using support
and WRA thresholds (WRA threshold set to 0), rule
ordering using WRA, case satisfaction using best first.

4. Best First and Laplace: T-tree pruning using support
and Laplace thresholds, rule ordering using Laplace
accuracy, case satisfaction using best first.

5. Best First and x2: T-tree pruning using support and
x? thresholds (x2 threshold set to 3.8415, assuming a
significance level of 5%, and a “degree of freedom” of
1), rule ordering using x?2, case satisfaction using best
first.

10.

11.

Best K and CSA: T-tree pruning using support and
confidence thresholds, rule ordering using CSA, case
satisfaction using best K.

Best K and ACS: T-tree pruning using support and
confidence thresholds, rule ordering using ACS, case
satisfaction using best K.

Best K and WRA: T-tree pruning using support and
WRA thresholds (WRA threshold set to 0), rule order-
ing using WRA, case satisfaction using best K.

Best K and Laplace: T-tree pruning using support
and Laplace thresholds, rule ordering using Laplace
accuracy, case satisfaction using best K.

Best K and x?2: T-tree pruning using support and x?2
thresholds (2 threshold set to 3.8415, assuming a sig-
nificance level of 5%, and a “degree of freedom” of 1),
rule ordering using x?2, case satisfaction using best K.

All and WCS: T-tree pruning using support and x2
thresholds (x? threshold set to 3.8415, assuming a sig-
nificance level of 5%, and a “degree of freedom” of
1), case statisfaction using all rules that satisfy a given
case and WCS (rule ordering irrelevant).

In the case of experiments using “best K” techniques K was
set to 5.

5. Evaluation

Experiments were conducted using a range of data sets
taken from the the UCI Machine Learning Repository [3].
The chosen datasets were discretized using the LUCS-KDD
DN software?, where appropriate continuous attributes were
ranged using five sub-ranges. The experiments were run
on a 1.2 GHz Intel Celeron CPU with 512 Mbyte of RAM
running under Red Hat Linux 7.3.

The first set of evaluations undertaken used a confidence
threshold value of 50% and a support threshold value of 1%
(as also used in the published evaluations of CMAR [10]
and CBA [11]). The results are presented in Table 2 where
the best accuracy obtained for each of the data sets is high-
lighted in bold print. The row labels describe the key char-
acteristics of each data set, in the form which it was discre-
tised. For example, the label adult.D131.N48842.C'2 de-
notes the “adult” data set, which includes 48842 records in
2 classes, with attributes that for the experiments described
here have been discretised into 131 binary categories.

Data Best first Best K first All
Set CSA[ACS|WRA [Lap. | x*> [CSA|ACS|[WRA [Lap.| x*|WCS
adult.D131.N48842.C2 76.1 | 76.1 | 652 | 76.1 | 328 | 76.0 | 76.3 | 57.8 | 76.1 | 33.7 | 76.1
anneal.D106.N798.C6 85,5 | 855 | 684 | 837 | 59.1 | 794 | 795 | 69.2 | 82.2 | 423 | 80.7
auto.D142.N205.C7 12.7 | 196 | 549 | 48.0 | 19.6 | 13.7 | 13.7 | 324 | 43.1 | 12.7 | 20.6
breast.D47.N699.C2 98.0 | 98.0 | 81.1 | 96.6 | 83.1 | 93.4 | 934 | 72.2 | 91.7 | 88,5 | 98.0
connect4.D129.N67557.C3 | 65.8 | 65.8 | 37.3 | 65.8 | 61.1 | 65.8 | 65.8 | 62.4 | 65.8 | 65.9 | 65.8
glass.D52.N214.C7 495 | 383 | 346 | 46.7 | 131 | 421|421 | 26.2 | 43.0 | 13.1 | 13.1
heart.D53.N303.C5 497 | 54.3 | 57.6 | 55.0 | 55.0 | 53.0 | 53.0 | 56.3 | 55.0 | 55.0 | 55.0
hepatitis.D58.N155.C2 714 | 792 | 675 | 79.2 | 20.8 | 805 | 805 | 70.1 | 79.2 | 28.6 | 61.0
horseColic.D94.D368.C2 679 | 782 | 837 | 77.8 | 625 | 70.7 | 70.1 | 78.3 | 66.8 | 51.1 | 62.5
ionosphere.D172.N351.C2 817914 | 760 | 87.4 | 846 | 77.1 | 88.0 | 629 | 829 | 69.7 | 62.9
iris.D23.N150.C3 947 | 947 | 93.3 | 93.3 1933 | 92.0 | 920 | 93.3 | 92.0 | 89.3 | 94.7
led7.D24.N3200.C10 67.1 | 57.2 | 329 | 66.6 | 26.0 | 66.2 | 66.3 | 31.9 | 66.8 | 19.1 | 73.8
letRecog.D106.N20000.C26 | 44.2 | 349 | 16.9 | 42.4 | 28.1 | 41.0 | 41.2 8.1 | 413|256 | 38.1
mushroom.D127.N8124.C2 | 96.0 | 89.1 | 475 | 46.7 | 88.4 | 71.1 | 69.7 | 66.9 | 69.8 | 85.6 | 53.1
nursery.D32.N12960.C5 80.0 | 74.4 | 70.6 | 80.0 | 70.6 | 69.8 | 69.9 | 70.3 | 70.6 | 68.6 | 85.3
pageBlocks.D55.N5473.C5 | 89.8 | 89.8 | 79.6 | 89.8 | 3.4 | 89.8 | 89.8 | 68,5 | 89.8 | 54 2.0
penDigits.D90.N10992.C10 | 79.5 | 406 | 33.1 | 78.1 | 49.9 | 54.4 | 54.8 | 35.2 | 55.0 | 46.8 | 70.8
pimalndians.D42.N768.C2 742 | 742 | 76.0 | 745 | 651 | 71.3 | 73.7 | 66.9 | 70.6 | 62.0 | 70.6
ticTacToe.D29.N958.C2 66.6 | 66.0 | 65.8 | 66.0 | 65.8 | 64.3 | 51.4 | 54.9 | 64.9 | 65.8 | 78.9
waveform.D108.N5000.C3 | 66.2 | 61.1 | 62.5 | 66.4 | 625 | 57.8 | 58.3 | 60.0 | 58.7 | 60.0 | 77.6
wine.D68.N178.C3 70.8 | 82.0 | 86.5 | 921 | 921 | 67.4 | 67.4 | 719 | 809 | 84.3 | 91.0
z00.D43.N101.C7 88.0 | 80.0 | 540 | 62.0 | 740 | 70.0 | 74.0 | 58.0 | 62.0 | 62.0 | 92.0
Average 716 | 696 | 61.1 | 716 | 55.0 | 66.7 | 66.9 | 57.9 | 68.6 | 51.6 | 64.7

Table 2 Classification accuracy (minsup = 1%, minconf = 50%)

_ 2The LUCS-KDD DN is available at http://www.csc.liv.ac.uk/
frans/KDD/Software/LUCS-KDD-DN/.

It should also ve noted that, in all cases, the input data
was divided in half with the first half used as the training set
and the second half as the test set. A “better” accuracy fig-
ure might have been obtained using Ten-Cross Validation;
however, it is the relative accuracy that is of interest here
and not the absolute accuracy.

From Table 2 it can be seen that:

e No approach produced a best result for every input data
set considered.

e For some data sets a fairly consistent accuracy was pro-
duced across the different approaches (for example the
iris data set).

e For other data sets the distribution of accuracy values
was notable (for example the pageBlocks data set).

e The best average accuracy was produced using “best
first” case satisfaction with either CSA or Laplace ac-
curacy ordering.

e In terms of the number of best classifications per input
data set “best first” with CSA ordering produces the
best result in 8 out of the 22 different data sets consid-
ered; with WCS producing the best result in 7 out of
the 22 data sets.

e The only approach that did not produce a best result
for at least one data set was WRA with “best K™ case
satisfaction.

e 2 ordering, with both “best first” and “best K”
case satisfaction, produced the lowest overall accuracy.
This is possibly because x? is a measure of the “un-
expectedness” between attributes and classes; and as
such expected, but possibly extremely valid, CRs ap-
pear at the end of the rule list. However the WCS
approach, where the entire rule list was considered,
worked reasonably well.

e In general “best K testing produced reasonable re-
sults but not as good as “best first”. It was con-
jectured that best K (and WCS) might work better
if a lower support threshold were used and therefore
more rules were generated, however, further experi-
ments (not shown here) proved this conjecture to be
unfounded.

e The proposed ACS ordering, using a confidence
threshold of 50%, worked reasonably well but not as
well as was hoped. It was conjectured that this was
probably because many specific rules with relatively
low confidence were given a high precedence over
higher confidence but more general rules. A further set
of experiments was therefore conducted using a higher

confidence threshold of 75% (and maintaining the sup-
port threshold at 1%). The results are shown in Table
3 (for those approaches that make use of a confidence
threshold).

From Table 3 it can be seen that when the confidence
threshold is increased to 75% with respect to CSA and ACS
ordering, best results are obtained using “best first” and
ACS. ACS with “best first” also produces the greatest num-
ber of best accuracies with respect to the data sets tested
(10 out of 22). Table 3 also illustrates that by reducing the
overall number of rules (by increasing the confidence re-
quirement) the “best K approach deteriorates.

With respect to overall execution time there is little to
distinguish the methods, WCS on average takes marginally
longer, but in each case the data set is processed in a number
of seconds.

Data Best first Best K first
Set CSA | ACS | CSA | ACS
adult 80.7 | 76.1 | 80.9 | 76.4
anneal 88.0 | 85.5 | 89.5 | 895
auto 13.7 | 12.7 | 12.7 | 19.6
breast 98.0 | 98.0 | 98.0 | 97.1
connect4 65.8 | 65.8 | 65.9 | 65.9
glass 32.7 | 36.4 | 46.7 | 45.8
heart 430 | 54.3 | 29.8 | 29.8
hepatitis 64.9 | 79.2 | 53.2 | 53.2

horseColic | 60.9 | 77.1 | 47.8 | 58.7
ionosphere | 91.4 | 91.4 | 66.3 | 94.3
iris 89.3 | 94.7 | 88.0 | 88.0
led7 63.4 | 64.6 | 64.1 | 64.1
letRecog 28.6 | 29.1 | 285 | 284
mushroom 96.2 | 89.1 | 82.0 | 81.9
nursery 89.6 | 87.2 | 87.6 | 88.3
pageBlocks | 89.8 | 89.8 | 89.8 | 89.8
penDigits 83.0 | 79.3 | 71.0 | 71.2
pimalndians | 76.0 | 76.8 | 73.7 | 73.7
ticTacToe 69.1 | 66.2 | 55.9 | 55.7
waveform 76.4 | 67.8 | 66.0 | 66.8

wine 70.8 | 83.1 | 27.0 | 28.1
z00 86.0 | 78.0 | 66.0 | 66.0
Average 70.8 | 71.9 | 63.2 | 65.1

Table 3 Accuracy (minsup = 1%,
minconf = 75%)

6. Conclusion

In this paper a number of alternative rule ordering and
case satisfaction strategies have been considered. Four es-
tablished ordering strategies were examined: (i) CSA, (ii)
WRA, (iii) Laplace and (iv) x? testing; together with three
different rule satisfaction mechanisms: (i) “best first”, (ii)

“best K first” and (iii) WCS. In addition the authors pro-
posed a fifth ordering strategy where specificity is the over-
riding factor when considering rule ordering so that more
specific rules are given a higher precedence than less spe-
cific rules. Specificity is defined according to the number of
attributes contained in the antecedent of a rule.

The principal findings of the evaluation are as follows:

e There is no overall best ordering suited to all the data
sets used in the experiments.

e The “best first” case satisfaction mechanism works
better than “best £ in all the data sets tested.

e ACS ordering produces the best result provided that a
relatively high confidence threshold is used (a confi-
dence threshold of 75% is suggested).

e For lower confidence thresholds (50% to 75%) CSA
and Laplace ordering coupled with a “best first” case
satisfaction produced good results.

The above suggests that ACS ordering coupled with a
“best first” strategy and a relatively high confidence thresh-
old will give an optimum result with respect to CARM.

References

[1] Agrawal, R. and Srikant, R. (1994). Fast algorithms
for mining association rules. Proc. 20th VLDB Con-
ference, Morgan Kaufman, pp487-499.

[2] Bayardo, R.J. (1997). Brute-Force Mining of High-
Confidence Classification Rules. Proceedings of 3rd In-
ternational Conference on Knowledge Discovery and
Data Mining, AAAI, pp 123-126.

[3] Blake, C.L. and Merz, CJ. (1998). UCI
Repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html,
Irvine, CA: University of California, Department of
Information and Computer Science.

[4] Clark, P. and Boswell. R. (1991). Rule Induction With
CN2: Some Recent Improvements. Proc. European
Working Session on Learning (ESWL’91), Porto, Por-
tugal. pp151-163.

[5] Coenen and Leng (2004). Data Structures for Associ-
ation Rule Mining: T-trees and P-trees To appear in
IEEE Transaction in Knowledge and Data Engineering.

[6] Coenen, F., Leng, P., Goulbourne, G. (2004). Tree
Structures for Mining Association Rules. Journal of
Data Mining and Knowledge Discovery, Vol 15 (7),
pp391-398.

[7] Coenen, F., Leng, P., Zhang, L. (2004) Generating
optimal classification association rules. Submitted to
PKDD 2004.

[8] Diamond, I and Jefferies J. (2001). Beginning Statistics:
An Introduction for Social Scientists. Sage Publications,
London, pp183-197.

[9] Lavrac, N., Flach, P. and Zupan, B. (1999) Rule Eval-
uation Measures: A Unifying View Proc. Ninth Inter-
national Workshop on Inductive Logic Programming
(ILP’99), Springer-Verlag, pp174-185.

[10] Li W., Han, J. and Pei, J. (2001). CMAR: Accurate
and Efficient Classification Based on Multiple Class-
Association Rules. Proc ICDM 2001, pp369-376.

[11] Liu, B. Hsu, W. and Ma, Y (1998). Integrating Clas-
sification and Association Rule Mining. Proceedings
KDD-98, New York, 27-31 August. AAAL. pp80-86.

[12] Quinlan, J. R. and Cameron-Jones, R. M. (1993).
FOIL: A Midterm Report. Proc. ECML, Vienna, Aus-
tria, pp3-20.

[13] Yin, X. and Han, J. (2003). CPAR: Classification
based on Predictive Association Rules. Proc. SIAM Int.
Conf. on Data Mining (SDM’03), San Francisco, CA,
pp. 331-335.

