
A Machine Learning Approach to Improve Congestion Control over Wireless
Computer Networks

Pierre Geurts, Ibtissam El Khayat, Guy Leduc
Department of Electrical Engineering and Computer Science

University of Liège
Institut Montefiore - B28 - Sart Tilman

Liège 4000 - Belgium
{geurts, elkhayat, leduc}@montefiore.ulg.ac.be

Abstract

In this paper, we present the application of machine
learning techniques to the improvement of the congestion
control of TCP in wired/wireless networks. TCP is sub-
optimal in hybrid wired/wireless networks because it re-
acts in the same way to losses due to congestion and losses
due to link errors. We thus propose to use machine learn-
ing techniques to build automatically a loss classifier from
a database obtained by simulations of random network
topologies. For this classifier to be useful in this applica-
tion, it should satisfy both a computational constraint and
a time varying constraint on its misclassification rate on
congestion losses. Several machine learning algorithms
are compared with these two constraints in mind. The
best method for this application appears to be decision tree
boosting. It outperforms ad hoc classifiers proposed in the
networking literature and its combination with TCP im-
proves significantly the bandwidth usage over wireless net-
works and does not deteriorate the good behaviour of TCP
over wired networks. This study thus shows the interest of
the application of machine learning techniques for the de-
sign of protocol in computer networks.

1 Introduction

Computer networks are highly complex systems that
have evolved greatly in the last decade. Nowadays networks
combine a large diversity of different technologies (hybrid
networks that combines wired, wireless, and satellite links)
and must respond to a large variety of tasks with very differ-
ent requirements in terms of quality of service (e.g. e-mail,
videoconference, streaming, peer-to-peer). Furthermore,
the behavior of these networks depend on a large number of
external factors (user behaviours, load of the networks, link

capacities...) that are difficult to appraise. All these factors
make the analytical modeling of networks a very difficult (if
not impossible) task. Yet, the good behaviour of computer
networks requires the design of effective control strategies
and the rapid adaptation of these strategies to new technolo-
gies. Hence, data mining and machine learning are certainly
tools of choice to improve our understanding of networks
and to help in the design of control solutions. Furthermore,
as networks are computer based systems, it is quite easy to
collect the data which are the basis of these methods, either
from the observation of real networks or from the simula-
tion of artificial ones (e.g. with a network simulator like
ns-2[14]).

In this paper, we present an application of machine learn-
ing techniques to the improvement of congestion control
protocol in hybrid wired/wireless computer networks. Con-
gestion control in computer networks is necessary to share
equitably the available bandwidth between several users and
to avoid congestion collapse. Nowadays, most internet traf-
fic is carried by TCP that is thus responsible for most con-
gestion control. However, this protocol, which has been de-
ployed in the eighties, has been designed for wired networks
and hence its congestion control mechanism is not adapted
to nowadays networks where wireless links are becoming
more common. In this paper, we propose to apply machine
learning techniques to improve the behaviour of TCP over
hybrid wired/wireless networks. The main motivation of
this paper is to illustrate the different problems we faced for
the design of our solution from the machine learning point
of view. The technical details about computer networks may
be found in [7].

The paper is structured as follows. In the first section,
we present the very basis of TCP and the drawback of its
congestion control algorithm in the context of wireless net-
works. We next describe how we propose to solve this
problem with machine learning techniques and what are the



main constraints on the machine learning solution. Sec-
tion 3 describes the database that has been generated for
this study. Then, Section 4 presents the different machine
learning methods, essentially decision tree based methods,
that have been compared for this problem. Experiments are
described in Section 5. Finally, we end the paper with our
conclusions and some future work directions.

2 TCP over wired/wireless networks

TCP, for “Transmission Control Protocol”, is the most
widely used protocol in the Internet. More than 90% of the
traffic in nowadays networks is carried by TCP. Its success
lies in its reliable file transfer and its capacity in avoiding
congestion. In this section, we introduce the very basis of
TCP congestion control and then we describe our proposed
solution to improve its behaviour in the case of wireless net-
works. These descriptions are very much simplified. Fur-
ther details about congestion control mechanisms in TCP
may be found in [1].

2.1 TCP congestion control

A congestion arises in the network when routers are not
able to process the data that arrive to them and this causes
buffer overflows at these routers that result in the loss of
some packets of data. The only solution to relax a conges-
tion is to reduce the load of the network. TCP congestion
protocol is based on the definition of a congestion window
(denoted cwnd) that controls the rate at which packets are
sent by a sender to a receiver and a mechanism to adapt
the value of this window size according to the state of the
network. The idea is to increase the rate steadily (i.e. ad-
ditively) when everything works fine and to reduce it more
abruptly (i.e. multiplicatively) as soon as a loss occurs.

In TCP, every packet sent from a sender to a receiver
gives rise to an acknowledgment packet sent in the opposite
way by the receiver. The congestion window determines the
maximum number of packets that can wait for an acknowl-
edgment at the sender side at each time. A normal scenario
of communication between a sender and a receiver is repre-
sented in the left part of Figure 1, starting with a congestion
window of size 1. The sender starts by sending one packet.
Then, each time it gets an acknowledgment, it sends a new
packet. When it gets the acknowledgment of the last packet
of the previous group of cwnd packets, it increments cwnd
by 1 and then sent two packets in burst instead of one1. The
round-trip-time (RTT) is defined as the time between the
sending of a packet and the reception of its acknowledg-
ment by the sender. Hence, as seen in Figure 1, the number

1Actually, cwnd is initialized by a “slow-start” phase that accelerates
the growth of the congestion window to a certain level

P1

P2

P5

P9

P4

P6

P7

P10

A1

A4

A2
A3

A6

A5

P3

P8

Packet

Ack
RTT

Sender Receiver

P1

P3

P2

P4

P5

P6

A1

A1

A1

A1

t3

t5

t1

t2

t4

t6

t

t’2
t’3
t’4

t’5

t’1

Sender Receiver

loss

Figure 1. Congestion control without loss
(left) and with loss (right)

of packets sent during each RTT is exactly equal to the win-
dow size and hence the instantaneous throughput of TCP is
equal to (cwnd.size of packets/RTT ). Hence, the additive
increase of the window size leads to a linear growth of the
bandwidth occupancy and allows the sender to slowly probe
the available bandwidth.

The right part of Figure 1 shows a scenario where
cwnd=5 and the second packet is lost. The receiver knows
that a packet has been lost when it receives a packet before
its predecessors in the sequence order. In this case, it sends
to the sender the acknowledgment of the last packet it has
received in the sequence. As packets may not be received
in order for other reasons than packet loss (e.g. two packets
may follow different routes), a packet loss is detected only
after three duplicate acknowledgments 2. At the detection
of at least three duplicates, the sender divides its conges-
tion window by a factor 2, starts retransmission of the lost
packet, and enters in a so-called fast recovery phase. The
description of this latter phase is not useful for the compre-
hension of this paper. Further details may be found in [1].

This congestion control mechanism thus makes the hy-
pothesis that packet losses are due to buffer overflows and it
works fairly well in the case of wired networks where this is
indeed the case. However, in wireless links, losses caused
by error in the link (for example by signal fading) are not
so unlikely. The TCP protocol as described above has no
mechanism to distinguish loss caused by a link error from
losses caused by a congestion and it reduces systematically
its rate whenever it faces a packet loss. This reduction is not
justified when there is no congestion and the consequence is
that the throughput of TCP over wireless link is lower than
what it could be. Several studies have highlighted the bad
behaviour of TCP over wireless link (e.g. [17]).

2Packet losses are also detected if after some fixed timeout the sender
has not received any acknowledgment from the receiver. This type of
packet loss will not be considered in this paper.

2



2.2 Proposed machine learning solution

A straightforward solution to increase the throughput of
TCP over wireless links is to prevent it from reducing its
rate when it faces a loss due to a link error as it does when it
faces a congestion. Several approaches have been proposed
in the networking literature (e.g. [2, 15]) that assumes the
support of the network. The approach adopted in this paper
is to endow one of the end systems (i.e the sender or the
receiver) with an algorithm able to determine the cause of a
packet loss only from information available at this end sys-
tem. With such a classifier, the modified protocol will pro-
ceed as follows: each time a loss is detected by a triple du-
plicate, its cause is determined by the classification model.
If the loss is classified as due to a congestion, the sender
proceeds as usual (i.e. it divides its congestion window by
two). Otherwise, it maintains its congestion window con-
stant. The advantage of such end-to-end methods is that
they do not require the support of the networks and hence
they can be more easily deployed in practice.

Several rough classification rules for losses have been
proposed in the literature based on heuristics or analytical
derivations (e.g. in Veno [11] or Westwood [16]) but our
experiment in Section 5.1 will show that these rules do not
classify very well the loss causes in practice. In this pa-
per, we propose to use supervised machine learning tech-
niques to automatically derive a classification model for loss
causes. This model will use as inputs statistics computed on
packets received by the sender or by the receiver and it will
be induced from a database obtained by simulations of ran-
dom network topologies.

2.3 Constraints on the classifier

For this application to be practically feasible and use-
ful, there are several specific constraints that should be
taken into account when choosing a particular classification
model. They are discussed below.

2.3.1 Computational constraint

In this application, the computing times to make a predic-
tion and the computer resource needed to store the model
are not to be neglected. What we can afford according to
these criteria will depend on which side we decide to put
the classification algorithm. If the sender is in charge of
the classification, using a relatively complex classification
algorithm could be a problem if the sender has a great num-
ber of clients (which is usually the case). So, it could be
desirable to trade some accuracy for more efficiency. Of
course, if the sender has a benefit in providing the highest
rate to the receivers, or if it has a few number of clients (e.g.
proxy), it may still prefer to use more accurate classifier at
the expense of computational costs.

On the other hand, if the receiver is in charge of the clas-
sification, the complexity of the classifier will not be an is-
sue anymore (providing it remains reasonable) and there is
no reason to avoid using the more accurate models. How-
ever, in this case, once a loss is classified, the receiver will
need to send the classification result to the sender or at least
a message where it asks the sender not to decrease its rate.
The problem is that by allowing this kind of exchange, we
will open greatly the door to distrusted receivers. Hence, we
cannot decide straightforwardly to implement the classifier
at the receiver side.

This discussion shows that in this application the com-
putational constraint should be taken into account when se-
lecting a model and thus there is an interest even in less
accurate models for computational efficiency reasons.

2.3.2 Adaptive misclassification costs

Since TCP is so popular in nowadays networks, one impor-
tant constraint that any new protocol should satisfy before
being practically used is that it should be TCP-Friendly ([9],
[13]). A TCP-Friendly protocol is a protocol that, when
sharing the network with TCP, allows this latter to have a
throughput similar to the one it would get if it were in com-
petition with another TCP in similar conditions. This con-
straint ensures that the new protocol would not be unfair
towards the most widely used protocol on the Internet.

If our classifier misclassifies quite often congestion
losses, it will be unfair towards TCP since it will force its
competitor to decrease its rate to avoid the congestion and
at the same time it will maintain its congestion window un-
changed. Even if it only competes with the same protocol, a
global misclassification of congestion losses will lead the
network to a blackout as nobody will reduce its conges-
tion window. So, for their own benefit and the benefit of
the community, one should not use a classifier that makes
many errors on the detection of losses due to congestion.
On the other hand, a classifier that perfectly detects conges-
tion losses and misclassifies many link error losses will be
no better than TCP and hence is not worth consideration.

The best strategy is thus to determine the maximum ad-
missible error on the classification of congestion losses that
ensures TCP-friendliness and choose a classifier that satis-
fies this constraint and minimizes errors on the link error
losses. Actually, we show in [7] that it is possible to derive
analytically an upper bound on the misclassification error
that ensures TCP-friendliness. This bound is of the form:

ErrC ≤ f(RTT, p), (1)

where ErrC is the probability of misclassifying a conges-
tion loss as a link error loss, RTT is the round-trip-time,
and p is the actual loss rate, i.e. the percentage of lost pack-
ets whatever the cause. However, RTT and p, and conse-

3



quently the bound on ErrC , depend on the particular net-
work topology and furthermore they may change with time.
We thus have two solutions to select a classifier. First, we
can determine a conservative value of ErrC such that (1) is
satisfied for all reasonable values of RTT and p and then
choose a classifier that satisfies this bound on ErrC . How-
ever, as usually allowing greater error on congestion losses
will allow to reduce error on link error losses, a better solu-
tion is to dynamically adapt the classifier such that it always
satisfies the constraint for the current (estimated) value of
RTT and p. This is the strategy adopted in this paper.

This implies two constraints on the classifier. First, it
should be possible to tune the classifier in order to get dif-
ferent tradeoffs between the two kinds of error. In prefer-
ence, this tuning should not require to rerun the learning
algorithm or to store several models (corresponding to dif-
ferent error costs) because of the computational constraint.
Second, the model should be as good as possible indepen-
dently of the error costs. This will imply to evaluate our
classifiers using ROC curves (see Section 4.2).

3 Database generation

To solve our problem of losses classification, each ob-
servation < xi, yi > of our learning sample will be an in-
put/output pair where the inputs xi are some variables that
describe the state of the network at the occurrence of a loss
and the (discrete) output yi is either C to denote a loss due
to a congestion or LE to denote a loss due to a link error.

To make the model generally applicable, the observa-
tions in the database must be as much as possible represen-
tative of the conditions under which we will apply the clas-
sification model. So, the database generation should take
into account all the uncertainties we have a priori about the
topology of the networks, the user behaviours, and the pro-
tocols. The way we generated our observations is described
in Section 3.1. Another important question is the choice of
the input variables which is discussed in Section 3.2.3

3.1 Simulations

The database was generated by simulations with a net-
work simulator called ns-2[14]. To generate our observa-
tions of losses, we have used the following procedure: a net-
work topology is generated randomly and then the network
is simulated during a fixed amount of time, again by gener-
ating the traffic randomly. At the end of the simulation, all
losses that have occurred within this time interval are col-
lected in the database. This procedure is repeated until we
have a sufficient number of observations in the database. In

3The database is available electronically at
http://www.montefiore.ulg.ac.be/˜geurts/BD-Fifo.dat.gz.

practice, the larger the learning sample, the better it is for
supervised learning algorithms. In our study, we have col-
lected 35,441 losses (among which 22,426 are due to con-
gestion) that correspond to more than one thousand different
random network topologies.

To generate a random topology, we first select a random
number of nodes and then choose randomly the presence
or the absence of a connection between two nodes and the
bandwidths of these connections. Concerning the traffic,
60% of the flows at least were TCP flows4 and the others
were chosen randomly among TCP and other types of traffic
proposed by the network simulator ns-2. The senders, the
receivers, and the duration of each traffic were set randomly.
The number of wireless links, their loss rate, and their place
in the network were also randomized. Further details about
our simulations may be found in [7].

3.2 Input variables selection

The choice of the inputs variables is mainly directed by
two constraints. First, of course, it should be possible to
predict a congestion from the observation of these variables.
Second, for our classification models to be practically use-
ful, these variables should also be measurable, either at the
receiver or at the sender side.

At the end system (sender or receiver), the only informa-
tion we can measure to predict a congestion is some statis-
tics on the packet departure and arrival times. The one-way
delay of a packet is the delay between the instant the packet
was sent and the instant it is received (e.g. the one-way de-
lay of the first packet in right part of Figure 1 is t′

1
−t1). The

inter-packet time corresponding to a packet is the difference
between the time it is sent and the time the previous packet
was sent (e.g. the inter-packet time of the second packet in
Figure 1 is t2− t1). These two indicators are certainly influ-
enced by the state of congestion of the network and thus we
believe that it should be possible to predict the occurrence
of a congestion by monitoring these indicators for a number
of packets.

To define our inputs, we thus compute these two val-
ues for the three packets following the loss and the packet
that precedes it. In Figure 1, they are respectively pack-
ets P3,P4,P5, and P1. Since the absolute value of these
indicators are highly dependent on the particular network
topology, it is not a good idea to introduce them as it in the
inputs. Instead, we propose to use as inputs only relative
values of these measures normalized in different ways.

To this end, we further compute the average, the standard
deviation, the minimum, and the maximum of the one-way
delay and inter-packet time for the packets that are sent dur-
ing each round-trip-time and we maintain these values at

4 We have chosen a particular variant of TCP called Newreno but any
other version of TCP could be used.

4



each time for the last two round-trip-times before the cur-
rent time. Our final inputs are then various simple functions
(for example, the ratio) relating these (4 × 2) values at the
occurrence of a loss to the inter-packet times and the one-
way delays of the three plus one packets surrounding the
loss. All in all, this results in a set of 40 numerical input
variables.

4 Machine learning techniques

In this study, we propose to use mainly decision tree
based algorithms. Indeed, they provide usually very good
results for classification problems. Furthermore, they are
among the fastest methods when it comes to make a pre-
diction. Nevertheless, we also compare these methods to
neural networks and the k-nearest neighbors. Section 4.1
briefly describes these algorithms and Section 4.2 explains
ROC curves that are used to evaluate them.

4.1 Algorithms

Decision trees are among the most popular supervised
learning algorithms. A decision tree partitions the input
space into hyper-rectangular regions where the classifica-
tion is constant. The partition is determined recursively by
successive binary axis-parallel cuts. The main advantage
of this method for our application is that pruned trees are
usually quite small and the computation of a prediction that
consists in a sequence of comparisons is very fast. To build
a decision tree, we have adopted the standard CART algo-
rithm described in [6] (with cost-complexity pruning by ten-
fold cross-validation).

Decision tree ensembles. One drawback of standard re-
gression trees is that they suffer from a high variance which
sometimes prevents them from being competitive in terms
of accuracy with other learning algorithms. Ensemble
methods are generic techniques that improves a learning al-
gorithm by learning several models (from the same learning
sample) and then by aggregating their predictions. In our
experiment, we have used four ensemble methods that have
been proposed for decision trees:

Bagging [4]. In bagging, each tree of the ensemble is
built by the CART algorithm (without pruning) but from a
bootstrap sample drawn from the original learning sample.
The predictions of these trees are aggregated by a simple
majority vote.

Random forests[5]. This method is a slight modifica-
tion of bagging, which improves often both accuracy and
computational efficiency. In this method, when splitting a
node, k variables are selected at random among all input
variables, an optimal split threshold is determined for each
one of these and the best split is selected among these latter.

In our experiments, the value of k has been fixed to its de-
fault value which is equal to the square root of the number
of attributes.

Extra-trees[12]. Unlike bagging and random forests,
this method generates each tree from the whole learning
sample. During tree growing, the best split is selected
among k totally random splits, obtained by choosing k in-
puts and split thresholds at random. The main advantage
of this algorithm is its computational efficiency since there
is no threshold optimization stage. In the experiments, the
value of k for this method has also been fixed to the square
root of the number of attributes.

Boosting. While in the three preceeding methods the
different trees are built independently of each other, boosted
trees are built in a sequential way. Each tree of the sequence
is grown with the classical induction algorithm (with prun-
ing) but by increasing the weights of the learning sample
cases that are misclassified by the previous trees of the se-
quence. Furthermore, unlike in previous methods, when
making a prediction, the votes of the different trees are
weighted according to their accuracy on the learning sam-
ple. In our experiments, we use the original Adaboost algo-
rithm proposed in [10].

Usually all these methods improve very much the ac-
curacy with respect to a single tree. However, since they
require to grow T decision trees, the computing times for
testing and the memory required to store a model is T times
higher than for a classical decision tree.

Multilayer perceptrons [3] Multilayer perceptrons are a
particular family of artificial neural networks. Neural net-
works represent a model as the interconnection of several
small units called perceptrons that compute a weighted av-
erage of their inputs and send this average through a non
linear functions (usually a hyperbolic tangent). This method
usually gives more accurate models than decision trees but it
is also much more demanding in terms of computing times
and computer resources. In our experiments, we have used
a Levenberg-Marquard optimization algorithm to learn neu-
ral networks.

k-Nearest Neighbors. To make a prediction at some point
of the input space, the k-NN algorithm simply computes the
k nearest neighbors of this point in the learning sample (ac-
cording to the euclidian distance) and then outputs the ma-
jority class among the k neighbors. An important drawback
of this method for this application is that the computation of
a prediction is quite demanding and furthermore it requires
to store the entire learning sample.

Of course, there exist many other learning algorithms
that could have been used for our application but we believe
that these methods already provide interesting results.

5



4.2 ROC curves

One very desirable characteric of the chosen classifier
discussed in Section 2.3.2 is that it should be possible to ad-
just its error on congestion losses dynamically. Actually, all
classification methods presented in the previous section, not
only provide a class prediction for each value of the inputs
x but also provide an estimate of the conditional probabil-
ity of each class, C or LE, given the inputs x. In the two
class case, the default use of the model is to classify a loss
as a congestion loss if the probability estimate P̂ (C|x) is
greater than 0.5. However, by using a user defined threshold
Pth different from 0.5, we can change the misclassification
probability of each class and hence adjust our classifier so
that it satisfies (1).

A natural way to evaluate our models independently of
the value of Pth is to use receiver operating characterisic
(ROC) curves (see [8] for an introduction). A ROC curve
plots for every possible value of the threshold Pth the true
positive rate versus the false positive rate of a given class
(among two classes). In our case, the true positive rate is
taken as 1 − ErrC and the false positive rate is the prob-
ability of misclassifying a link error loss, that will be de-
noted ErrLE . A classifier is thus strictly better for our ap-
plication than other classifiers if for every possible value of
ErrC the value of ErrLE is lower than with the other clas-
sifiers or, in other words, if its ROC curves lies to the left
of the ROC curves of other classifiers. While ROC curves
are two-dimensional, a common one-dimensional summary
of a ROC curve to compare classifiers is the area under the
ROC curve (AUC) which we will also use to rank our packet
loss classifiers. ROC curves and AUC are computed accord-
ing to the algorithms presented in [8].

5 Experiments

First, we evaluate classifiers and then we evaluate the
improvement obtained by the enhanced version of TCP with
the best classifier only.

5.1 Comparison of loss classifiers

To make a reliable estimate of the error of each model,
we have randomly divided the whole database into two
parts: a learning set of 25,000 cases and a validation set con-
taining the remaining 10,441 cases. A classification model
is built with every method on the learning sample and its
ROC curve, AUC, and error rate are evaluated on the valida-
tion sample. The methods are compared from these criteria
in Table 1 and in Figure 2. Since computing times for test-
ing are important for our application, we also give in Table
1 the time needed to classify the validation set with each
method. For ensemble methods, we build T = 25 trees.
As the ROC curves of all ensemble methods are very close,

Table 1. Comparison of different ML methods

Method AUC Error (%) Time (msec)
DT 0.9424 8.92 150

Bagging 0.9796 6.65 650
Random forests 0.9823 6.48 600

Extra-trees 0.9813 6.91 940
Boosting 0.9840 6.34 570

MLP 0.9761 7.67 1680
k-NN 0.9541 10.16 316,870
Veno 0.7260 34.52 -

Westwood 0.6627 41.54 -

we only give the results obtained by boosting in Figure 2.
The value of k for the k nearest neighbors was determined
by leave-one-out cross-validation (the optimum is k = 7).
For the MLP, we tried several structures of one and two lay-
ers with a number of neurons going from 10 to 50 neurons
in each layer. Table 1 only shows the best result that was
obtained with two layers of 30 neurons.

The results are quite good, especially considering the
diversity of the network topologies represented in the
database. The decision tree has the lowest AUC but it is by
far the fastest method to make a prediction. The k-NN has
a better AUC than decision tree but its ROC curve is worst
for small values of ErrC , which is the region of interest
of our application. It is also the slowest method in terms
of computing times. MLP improves upon both methods in
terms of accuracy but it remains below ensemble methods
in terms of accuracy and computing times. All ensemble
methods are very close but boosting is superior along the
two criteria. As it combines pruned trees, it also builds the
less complex models.

For comparison, we put also in Table 1 the result ob-
tained on the validation set by two ad-hoc classification
rules that have been proposed in the networking literature
in the context of two extensions of TCP for wireless net-
works called Veno [11] and Westwood [16]. The results
obtained by these rules are far below the results obtained
by machine learning algorithms. This clearly shows the in-
terest of a machine learning approach in the context of this
application, both to improve existing classifiers but also to
assess their validity.

Another reason to prefer one method over the others that
does not appear in Figure 2 is the discretization of the ROC
curves, i.e. the number of sensible values of Pth. Indeed, in
our application, it is highly desirable to be able to finely
control the value of ErrC by means of Pth. From this
point of view also, all methods are not equal. Figure 3
illustrates these differences by drawing Errc versus Pth

for some methods. Decision tree and k-NN provide only
a few sensible values of Pth (about 80 for the pruned tree

6



0.7

0.75

0.8

0.85

0.9

0.95

1

0 1

1-
E

rr
C

ErrLE

DT
Boosting

k-NN
MLP

Figure 2. Comparison of the ROC curves of
different ML methods

0

20

40

60

80

100

0 1

E
rr

C
 (

%
)

Pth

DT
Random forests

Boosting
MLP
kNN

Figure 3. ErrC versus Pth for different meth-
ods

on Figure 3 and 7 for k-NN). MLP on the other hand allows
to control very finely the value of ErrC . From this point
of view, boosting is also superior to other ensemble meth-
ods (represented by Random forests in Figure 3). Indeed,
other ensemble methods build unpruned trees that provide
only 0-1 conditional probability estimates. Hence, if T trees
are built, there are only T different possible values of Pth.
Boosting, on the other hand, builds pruned trees that pro-
vide finer probability estimates and thus its ErrC curve is
much smoother.

This analysis tells us that boosting is the best candidate
for our application. Our experiments with the simulated
protocol in the next section will thus focus on this method.

5.2 Simulations of the modified protocol

We propose to use the boosting classifier in the following
way to improve TCP. Each time a loss occurs, the minimal
value of Pth such that (1) is satisfied is determined from
the current (estimated) values of RTT and p. Then, the
ensemble of trees together with this value of Pth are used
to classify the loss. If the loss is predicted as caused by a
congestion, TCP works as usual. Otherwise, it maintains its
congestion window constant. The correspondence between
ErrC and Pth is obtained on the validation set by inverting
the curve in Figure 3.

The two main criteria to evaluate this protocol are
bandwidth usage in the case of wireless links and TCP-

Sender 1

Sender n

Sink 1

Sink n 

Sender 11Mb, 0.01ms Sink 

BS
45Mb, 35ms

Figure 4. Two topologies used in our simula-
tions

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
at

io
 (

T
C

P
-C

/T
C

P
)

Packet loss rate (%) 

Perfect
Veno

Boosting

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20
B

w
 (

%
)

Time (s)

Boosting
TCP

Figure 5. Top, the gain in wireless link, bot-
tom, TCP-Friendliness

friendliness in the case of wired networks. In this paper,
we only describe two simple experiments showing the in-
terest of the machine learning solution along these criteria.
A more detailed validation of the protocol may be found in
[7].

Improvement on wireless links. To illustrate the gain of
our protocol over wireless link, we simulated the simple hy-
brid network illustrated in the left part of Figure 4 with the
network simulator ns-2. The first link (Sender to BS) is
wired, and the second part, which connects the base sta-
tion to the sink, is wireless. The bottleneck is the wireless
link, which has a bandwidth equal to 11Mb/s. We compare
the ratio between the throughput obtained by the classifier
and the one obtained by a standard TCP when we vary the
packet loss rate from 0 to 5% over the wireless link. Each
simulation is run 50 times. To have some points of compar-
ison, we run also simulations with two other classification
rules: the classification rule proposed in Veno and, as our
system is simulated, a hypothetic perfect classification rule.
The graph at the top of Figure 5 illustrates the ratio obtained
by TCP enhanced with the three classifiers. A standard TCP
would have a ratio of 1 whatever the loss rate over the wire-
less link. The superiority of boosting over Veno and stan-
dard TCP is clear. It is also very close to the perfect model.
Its gain with respect to TCP reaches about 300% when the
loss rate is equal to 3%. In other words, the file tranfer with

7



our protocol is three times faster than with standard TCP.

TCP-friendliness. To test the behaviour of our protocol
when it competes with another TCP, we use the topology
illustrated in the right part of Figure 4 with n = 2 which
is often used to test the fairness of a new protocol. The
experiment consists in running a standard TCP in competi-
tion with our TCP plus the boosting classifier. The bottom
graph of Figure 5 illustrates the evolution of the throughput
obtained by each traffic. This figure shows that the link is
fairly shared between the two protocols. The same exper-
iment was run with Veno’s classification rules and in this
case, the bandwidth used by Veno was five times higher than
that of TCP. This unfairness is not surprising as Veno’s clas-
sification rule misclassifies many congestions and, hence, it
reduces its bandwidth less often than a standard TCP.

6 Conclusions

In this paper, we have presented the application of ma-
chine learning techniques to the improvement of congestion
control protocol in wireless networks. The idea is to en-
hance TCP with a loss classifier and to adapt its behaviour
according to the predictions of this classifier. A particularity
of this application from the machine learning point of view
is the need to adapt dynamically the misclassification costs
of the classifier that requires to evaluate machine learning
algorithms with ROC curves. A database has been gener-
ated by simulating a thousand random network topologies
and several machine learning algorithms have been com-
pared for this task. Decision tree boosting turns out to be
the best method in terms of accuracy. Its application in the
context of TCP shows a significant improvement of band-
width usage in wireless networks and no deterioration in
traditional wired networks. Furthermore, the resulting clas-
sifier also compares very favorably to existing ad-hoc clas-
sification rules that have been proposed in the networking
literature. This study thus shows the interest of the applica-
tion of machine learning techniques to help designing new
protocol in computer networks.

There nevertheless remain several possible improve-
ments. From the point of view of computing times, the
model induced by boosting may still be too complex for
some practical applications. Several techniques could be
used to reduce its computational requirement. For exemple,
we could try to reduce the number of trees in the ensemble
or build smaller trees. As the size of decision trees is pro-
portional to the size of the learning sample, it is also possi-
ble to use subsampling techniques to reduce the size of our
models. Another drawback of our approach is that we have
to store and update continuously about 40 variables based
on different statistics measured on the packets. It would be
desirable to reduce this set of variables as much as possi-
ble for computational efficiency reason. In all cases, the

selection of the best tradeoff between accuracy and compu-
tational efficiency will require to consider the real impact of
a reduction of accuracy on the behaviour of the protocol.

References

[1] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP
congestion control, 1999.

[2] A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for
mobile hosts. 15th International Conference on Distributed
Computing Systems, 1995.

[3] C. Bishop. Neural Networks for Pattern Recognition. Ox-
ford: Oxford University Press, 1995.

[4] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[5] L. Breiman. Random forests. Machine learning, 45:5–32,
2001.

[6] L. Breiman, J. Friedman, R. Olsen, and C. Stone. Classifi-
cation and Regression Trees. Wadsworth International (Cal-
ifornia), 1984.

[7] I. El Khayat, P. Geurts, and G. Leduc. Classification of
packet loss causes in wired/wireless networks by decision
tree boosting. Submitted, 2004.

[8] T. Fawcett. Roc graphs: Notes and practical considerations
for researchers. Technical report, HP Labs, 2004.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based congestion control for unicast applications. In SIG-
COMM 2000, pages 43–56, Stockholm, Sweden, August
2000.

[10] Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. In
Proceedings of the second European Conference on Compu-
tational Learning Theory, pages 23–27, 1995.

[11] C. P. Fu and S. C. Liew. TCP veno: TCP enhancement for
transmission over wireless access networks. IEEE (JSAC)
Journal of Selected Areas in Communications, Feb. 2003.

[12] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized
trees. Submitted, 2004.

[13] M. Mathis, J. Semke, Mahdavi, and T. Ott. The macroscopic
behavior of the TCP congestion avoidance algorithm. ACM
Computer Communication Review, 3:67–82, July 1997.

[14] S. McCanne and S. Floyd. The LBNL Network Simulator.
Lawrence Berkeley Laboratory, 1997.

[15] C. Parsa and J. J. Garcia-Luna-Aceves. Improving TCP per-
formance over wireless networks at the link layer. Mob.
Netw. Appl., 5(1):57–71, 2000.

[16] R. Wang, M. Valla, M. Sanadidi, B. Ng, and M. Gerla. Ef-
ficiency/friendliness tradeoffs in TCP westwood. In In Pro-
ceedings of the Seventh IEEE Symposium on Computers and
Communications, Taormina, July 2002.

[17] G. Xylomenos, G. Polyzos, P. Mahonen, and M. Saaranen.
TCP performance issues over wireless links. Communica-
tions Magazine, IEEE, 39(4):52–58, 2001.

8


