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Abstract
Nowadays data mining in large databases of complex

objects from scientific, engineering or multimedia applica-
tions is getting more and more important. In many different
application domains complex object representations along
with complex distance functions are used for measuring the
similarity between objects. Often not only these complex dis-
tance measures are available but also simpler distance func-
tions which can be computed much more efficiently.
Traditionally, the well known concept of multi-step query
processing which is based on exact and lower-bounding
approximative distance functions is used independently of
data mining algorithms. In this paper, we will demonstrate
how the paradigm of multi-step query processing can be
integrated into the two density-based clustering algorithms
DBSCAN and OPTICS resulting in a considerable efficiency
boost. Our approach tries to confine itself to ε-range queries
on the simple distance functions and carries out complex dis-
tance computations only at that stage of the clustering algo-
rithm where they are compulsory to compute the correct
clustering result. In a broad experimental evaluation based
on real-world test data sets, we demonstrate that our
approach accelerates the generation of flat and hierarchical
density-based clusterings by more than one order of magni-
tude. 

1.  Introduction 

Effective data mining in large databases of complex objects,
e.g. chemical compounds, CAD drawings, XML data, web
sites or images, is a very challenging task, but often cannot be
performed due to efficiency problems. An important area
where this complexity problem is a strong handicap is that of
density-based clustering. Density-based clustering algorithms
like DBSCAN [7] and OPTICS [1] are based on ε-range queries
for each database object. Each range query requires a lot of
exact distance calculations, especially when high ε-values are
used. Therefore, these algorithms are only applicable to large
collections of complex objects, if those range queries are sup-
ported efficiently. When working with complex objects, the
necessary distance calculations are the time-limiting factor.
Thus, the ultimate goal is to save as many as possible of these
complex distance calculations.

The core idea of our approach is to integrate the multi-step
query processing paradigm directly into the clustering algo-

rithm rather than using it “only” for accelerating the single
range queries. Our clustering approach itself exploits the infor-
mation provided by simple distance measures lower-bounding
complex and expensive exact distance functions. Expensive
exact distance computations are only used when the informa-
tion provided by simple distance computations, which are often
based on simple object representations, is not enough to com-
pute the exact clustering. 

The remainder of this paper is organized as follows: In Sec-
tion 2, we first introduce the basics of density-based clustering
before discussing the flat density-based clustering algorithm
DBSCAN [7] and the hierarchical density-based clustering
algorithm OPTICS [1]. Then, we will present the related work
on efficient density-based clustering and describe its limita-
tions. Thereafter, we present our new approach which inte-
grates the multi-step query processing paradigm directly into
the clustering algorithms rather than using it independently.
Finally, in Section 3, we present a detailed experimental eval-
uation showing that the presented approach can accelerate the
generation of density-based clusterings on complex objects by
more than one order of magnitude. We close this paper, in Sec-
tion 4, with a short summary and a few remarks on future work.

2.  Efficient Density-Based Clustering

In this section, we will discuss in detail how we can effi-
ciently compute a flat (DBSCAN) and a hierarchical (OPTICS)
density-based clustering. First, in Section 2.1, we present the
basic concepts of density-based clustering along with the two
algorithms DBSCAN and OPTICS. Then we look in Section
2.2 at different approaches presented in the literature for effi-
ciently computing these algorithms. We will explain why the
presented algorithms are not suitable for expensive distance
computations if we are interested in the exact clustering struc-
ture. In Section 2.3, we will present our new approach which
tries to use lower-bounding distance functions before comput-
ing the expensive exact distances. 

2.1. Density-based Clustering

The key idea of density-based clustering is that for each
object of a cluster the neighborhood of a given radius ε has to
contain at least a minimum number of MinPts objects, i.e. the
cardinality of the neighborhood has to exceed a given thresh-
old. In the following, we will present the basic definitions of
density-based clustering. 
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Definition 1 (directly density-reachable)
Object p is directly density-reachable from object q w.r.t. ε and
MinPts in a set of objects D, if p ∈  Nε(q) and |Nε(q)| ≥ MinPts,
where Nε(q) denotes the subset of D contained in the ε-neigh-
borhood of q.

The condition |Nε(q)| ≥ MinPts is called the core object con-
dition. If this condition holds for an object q, then we call q a
core object. Other objects can be directly density-reachable
only from core objects.

Definition 2 (density-reachable and density-connected) 
An object p is density-reachable from an object q w.r.t. ε and
MinPts in the set of objects D, if there is a chain of objects
p1, ..., pn, p1 = q, pn = p such that pi ∈ D and pi+1 is directly den-
sity-reachable from pi w.r.t. ε and MinPts. Object p is den-
sity-connected to object q w.r.t. ε and MinPts in the set of
objects D, if there is an object o ∈ D such that both p and q are
density-reachable from o w.r.t. ε and MinPts in D. 

Density-reachability is the transitive closure of direct den-
sity-reachability and does not have to be symmetric. On the
other hand, density-connectivity is a symmetric relation. 

2.1.1. DBSCAN. A flat density-based cluster is defined as a
set of density-connected objects which is maximal w.r.t. den-
sity-reachability. Then the noise is the set of objects not con-
tained in any cluster. Thus a cluster contains not only core
objects but also objects that do not satisfy the core object con-
dition. These border objects are directly density-reachable
from at least one core object of the cluster. 

The algorithm DBSCAN [7], which discovers the clusters
and the noise in a database, is based on the fact that a cluster is
equivalent to the set of all objects in O which are density-reach-
able from an arbitrary core object in the cluster (cf. lemma 1
and 2 in [7]). The retrieval of density-reachable objects is per-
formed by iteratively collecting directly density-reachable
objects. DBSCAN checks the ε-neighborhood of each point in
the database. If the ε-neighborhood Nε(q) of a point q has more
than MinPts elements, q is a so-called core point, and a new
cluster C containing the objects in Nε(q) is created. Then, the
ε-neighborhood of all points p in C which have not yet been
processed is checked. If Nε(p) contains more than MinPts
points, the neighbors of p which are not already contained in C
are added to the cluster and their ε-neighborhood is checked in
the next step. This procedure is repeated until no new point can
be added to the current cluster C. Then the algorithm continues
with a point which has not yet been processed trying to expand
a new cluster.

2.1.2. OPTICS. While the partitioning density-based clus-
tering algorithm DBSCAN [7] can only identify a “flat” clus-
tering, the newer algorithm OPTICS [1] computes an ordering
of the points augmented by additional information, i.e. the
reachability-distance, representing the intrinsic hierarchical

(nested) cluster structure. The result of OPTICS, the clus-
ter-ordering, is displayed by the so-called reachability plot.
Thus, it is possible to explore interactively the clustering struc-
ture, offering additional insights into the distribution and cor-
relation of the data. 

In the following, we will shortly introduce the definitions
underlying the OPTICS algorithm, the core-distance of an
object p and the reachability-distance of an object p w.r.t. a pre-
decessor object o. 

Definition 3 (core-distance)

Let p be an object from a database D, let ε be a distance value,
let Nε(p) be the ε-neighborhood of p, let MinPts be a natural
number and let MinPts-dist(p) be the distance of p to its
MinPts-th neighbor. Then, the core-distance of p, denoted as
core-distε,MinPts(p) is defined as MinPts-dist(p) if |Nε(p)| ≥
MinPts and UNDEFINED otherwise.

Definition 4 (reachability-distance)

Let p and o be objects from a database D, let Nε(o) be the
ε-neighborhood of o, let dist(o,p) be the distance between o and
p, and let MinPts be a natural number. Then, the reachability-
distance of p w.r.t. o denoted as reachability-distε,MinPts(p, o) is
defined as max(core-distε,MinPts(o), dist(o,p)) if |Nε(o)| ≥ MinPts
and UNDEFINED otherwise.

The OPTICS algorithm (cf. Figure 1) creates an ordering of
a database, along with a reachability-value for each object. Its
main data structure is a seedlist, containing tuples of points and
reachability-distances. The seedlist is organized w.r.t. ascend-
ing reachability-distances. Initially the seedlist is empty and all
points are marked as not-done. 

The procedure update-seedlist (o1) executes an ε-range
query around the point o1, i.e. the first object of the sorted seed-
list, at the beginning of each cycle. For every point p in Nε(o1)
it computes r = reachability-distε,MinPts(p, o1). If the seedlist
already contains an entry (p, s), it is updated to (p, min(r, s)),
otherwise (p, r) is added to the seedlist. Finally, the order of the
seedlist is reestablished.

Figure 1. The OPTICS algorithm.

Algorithm OPTICS:
repeat {

if the seedlist is empty {
if all points are marked “done”, terminate;
choose “not-done” point q;
add (q, infinity) to the seedlist;

}
(o1,r) = seedlist entry with smallest reachability value;
remove (o1, r) from seedlist;
mark o1 as “done”;
output (o1, r);
update-seedlist(o1);

}



2.2. Related Work

DBSCAN and OPTICS determine the local densities by
repeated range queries. In this section, we will sketch different
approaches from the literature to accelerate these density-based
clustering algorithms and discuss their unsuitability for com-
plex object representations. 

Multi-Dimensional Index Structures. The most common
approach to accelerate each of the required single range queries
is to use multi-dimensional index structures. For objects mod-
elled by low-, medium-, or high-dimensional feature vectors
there exist several specific R-tree [10] variants. For more detail
we refer the interested reader to [9]. 

Metric Index Structures. Besides feature vectors, there exist
quite a few other promising and approved modelling
approaches for complex objects, e.g. trees, graphs, and vector
sets, which cannot be managed by the index structures men-
tioned in the last paragraph. Nevertheless, we can use index
structures, such as the M-tree [6] for efficiently carrying out
range queries as long as we have a metric distance function for
measuring the similarity between two complex objects. For a
detailed survey on metric access methods we refer the
reader to [5].

Multi-Step Query Processing. The main goal of multi-step
query processing is to reduce the number of complex and,
therefore, time consuming distance calculations in the query
process. In order to guarantee that there occur no false drops,
the used filter distances have to fulfill a lower-bounding dis-
tance criterion. For any two objects p and q, a lower-bounding
distance function df in the filter step has to return a value that is
not greater than the exact object distance do of p and q,

i.e. df (p, q) ≤ do (p, q). With a lower-bounding distance func-
tion it is possible to safely filter out all database objects which
have a filter distance greater than the current query range
because the exact object distance of those objects cannot be less
than the query range. Using a multi-step query architecture
requires efficient algorithms which actually make use of the fil-
ter step. Agrawal, Faloutsos and Swami proposed such an algo-
rithm for range queries [2] which form the foundation of
density-based clustering. For efficiency reasons, it is crucial
that df (p, q) is considerably faster to evaluate than do (p, q),
and, furthermore, in order to achieve a high selectivity df (p, q)
should be only marginally smaller than do (p, q).

Using Multiple Similarity Queries. In [3] a schema was pre-
sented which transforms query intensive KDD algorithms into
a representation using the similarity join as a basic operation
without affecting the correctness of the result of the considered
algorithm. The approach was applied to accelerate the cluster-
ing algorithm DBSCAN and the hierarchical cluster structure
analysis method OPTICS by using an R-tree like index struc-
ture. In [4] an approach was introduced for efficiently support-
ing multiple similarity queries for mining in metric databases.

It was shown that many different data mining algorithms can be
accelerated by multiplexing different similarity queries. 

Summary. Multi-dimensional index structures based on
R-tree variants and clustering based on the similarity join are
restricted to vector set data. Furthermore, the main problem of
all approaches mentioned above is that distance computations
can only be avoided for objects located outside the ε-range of
the actual query object. In order to create, for instance, a reach-
ability plot without loss of information, the authors in [1] pro-
pose to use a very high ε-value. Therefore, all of the above

mentioned approaches lead to O(|DB|2) exact distance compu-
tations for OPTICS.

Furthermore, there exist other approaches which do not aim
at producing the exact density-based clustering structure, but
try to compute efficiently an approximated on. In this paper, we
will propose an approach which computes an exact den-
sity-based clustering trying to confine itself to simple distance
computations lower-bounding the exact distances. Basically,
we do not carry out ε-range queries on the exact object dis-
tances but MinPts-nearest-neighbor queries on the exact object
distances which are based on ε-range queries on the filter infor-
mation. Further expensive exact distance computations are
postponed as long as possible, and are only carried out at that
stage of the algorithm where they are compulsory to compute
the exact clustering. 

2.3. Accelerated Density-Based Clustering 

In this section, we will demonstrate how to integrate the
multi-step query processing paradigm into the two den-
sity-based clustering algorithms DBSCAN and OPTICS. We
discuss in detail our approach for OPTICS and sketch how a
simplified version of this extended OPTICS approach can be
used for DBSCAN.

2.3.1. Basic Idea. DBSCAN and OPTICS are both based on
numerous ε-range queries. None of the approaches dis-
cussed in literature can avoid that we have to compute the
exact distance to a given query object q for all objects con-
tained in Nε(q). Especially for OPTICS, where ε has to be
chosen very high in order to create reachability plots with-
out loss of information, we have to compute |DB| exact dis-
tance computations for each single range query, even when
one of the methods discussed in Section 2.2 is used. In the
case of DBSCAN, typically, the ε-values are much smaller.
Nevertheless, if we apply the traditional multi-step query
processing paradigm with non-selective filters, we also have
to compute up to |DB| many exact distance computations.

In our approach, the number of exact distance computations
does not primarily depend on the size of the database and the
chosen ε-value but rather on the value of MinPts, which is typ-
ically only a small fraction of |DB|, e.g. MinPts = 5 is a suitable
value even for large databases [1, 7]. Basically, we use



MinPts-nearest neighbor queries instead of ε-range queries on
the exact object representations in order to determine the
“core-properties” of the objects. Further exact complex dis-
tance computations are only carried out at that stage of the
algorithms where they are compulsory to compute the cor-
rect clustering result. 

2.3.2. Extended OPTICS. The main idea of our approach is
to carry out the range queries based on the lower-bounding
filter distances instead of using the expensive exact distanc-
es. In order to put our approach into practice, we have to
slightly extend the data structure underlying the OPTICS al-
gorithm, i.e. we have to add additional information to the
elements stored in the seedlist.

The Extended Seedlist. We do not any longer use a single
seedlist as in the original OPTICS algorithm (cf. Figure 1)
where each list entry consists of a pair (ObjectId, Reachabili-
tyValue). Instead, we use a list of lists, called Xseedlist, as
shown in Figure 2. The Xseedlist consists of an ordered list of
objects, called object list, quite similar to the original seedlist
but without any reachability information. The order of this
object list, cf. the horizontal arrow in Figure 2, is determined by
the first element of the second list anchored at each object of the
first list. This second list is called predecessor list PL, cf. the
vertical arrows in Figure 2. 

An entry located at position l of the predecessor list PL(oi)
belonging to object oi consists of the following information: 
  • Predecessor ID. An object oi,l which was already report-

ed throughout the OPTICS run, i.e. oi,l was already added
to the reachability plot, which is computed from left to
right. 

  • Filter Flag. A flag F indicating whether we already com-
puted the exact object distance between oi and oi,l, i.e.
do (oi, oi,l), or whether we only computed the distance of
these two objects based on the lower-bounding filter infor-
mation, i.e. df (oi, oi,l).

  • Predecessor Distance. PreDist (oi, oi,l) is equal to either
max(core-distε,MinPts(oi,l), do(oi,oi,l)) or to df(oi,oi,l) depen-
dent on the fact whether we already computed the exact
object distance do(oi,oi,l) or only the filter distance
df(oi,oi,l).

Throughout our new algorithm, the conditions depicted in
Figure 2 belonging to this extended OPTICS algorithm are
maintained. In the following, we will describe the extended
OPTICS algorithm trying to minimize the number of exact dis-
tance computations. 

Algorithm. The extended OPTICS algorithm exploiting the
filter information is depicted in Figure 3. The algorithm always
takes the first element o1 from the sorted object list. If it is at the
first position due to a filter computation, we compute the exact
distance do(o1, o1,1) and reorganize the Xseedlist. The reorgani-
zation might displace o1,1 from the first position of PL(o1). Fur-
thermore, object o1 might be removed from the first position of
the object list. On the other hand, if the filter flag F1,1 indicates
that an exact distance computation was already carried out, we
add object o1 to the reachability plot with a reachability-value
equal to PreDist(o1, o1,1). Furthermore, we carry out the proce-
dure update-Xseedlist(o1).

Update-Xseedlist. This is the core function of our extended
OPTICS algorithm. First, we carry out a range query around
object o1 based on the filter information. Then we compute the
core-level of the current query object o1 by computing the
MinPts-nearest neighbors of o1 as follows: 

ordered object list such that the following conditions hold:

DBSCAN:

OPTICS:

i j<( ) PL oi( ) NIL≠( )∧ (PL oj( ) NIL≠  ∧⇒

 PreDist oi oi 1,,( ) PreDist oj oj 1,,( )≤ )

i j<( ) PreDist oi oi 1,,( ) PreDist oj oj 1,,( )≤⇒

Figure 2.  Data structure Xseedlist.
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Figure 3.  The extended OPTICS algorithm.

Algorithm OPTICS:
repeat {

if the Xseedlist is empty {
if all points are marked “done”, terminate;
choose “not-done” point q;
add (q, empty_list) to the seedlist;

}
(o1,list) = first entry in the Xseedlist;
if list[1].Flag == Filter{

compute do(o1, list[1].PredecessorID); (*)
update list[1].PredecessorDistance;
list[1].Flag = Exact;
reorganize Xseedlist according to
the two conditions of Figure 2;

}
else{

remove (o1, list) from Xseedlist;
mark o1 as “done”;
output (o1, list[1].PredecessorDistance);
update-Xseedlist(o1);

}
}



  • We carry out an ε-range query around o1 based on the fil-
ter information, yielding the result set N filter

ε (o1). 
  • We order all elements in N filter

ε (o1) in ascending order ac-
cording to their filter distance to o1 yielding a
SortListε(o1).

  • We walk through SortListε(o1) starting at the first ele-
ment. For the first element we compute the exact distance
and reorder the SortListε(o1) which might move o1 up-
ward in this sorted list. This step is repeated until the first
MinPts elements of SortListε(o1) are at their final position
due to an exact distance computation. The core-level of
our current query object o1 is equal to the distance be-
tween o1 and the object stored at the MinPts-th position
of the final SortListε(o1). 

Some of the elements oj ∈ N filter
ε (o1) along with their

actual reachability values w.r.t. o1 are inserted into the Xseed-
list. 

  • Elements oj for which we already computed the exact dis-
tance to o1 and for which oj ∈ Nε(o1) holds, are inserted
as follows: If there exists no entry in the object list for oj,
(oj, <(o1, Exact, max(do(oj, o1), core-distε,MinPts(o1)))>) is
inserted into the object list. If there already exists an entry
in the object list belonging to oj , (o1, Exact, max(do(oj, o1),
core-distε,MinPts(o1))) is inserted into PL(oj). Note that in
both cases the ordering of Figure 2 has to be maintained.
On the other hand, if oj ∉ Nε(o1), oj is not inserted into the
Xseedlist. 

  • If we have not yet computed do(oj, o1), oj is inserted into
the Xseedlist. If there exists no entry in the object list be-
longing to oj, (oj, <(o1, Filter, df(oj, o1))>) is inserted into
the object list. If there already exists an entry in the object
list for oj , (o1, Filter, df(oj, o1)) is inserted into PL(oj).
Again, the ordering of Figure 2 has to be maintained. 

Note that this approach carries out exact distance computa-
tions only for those objects o which are very close to the actual
query object q according to the filter information. On the other
hand, the traditional multi-step query approach would compute

exact distance computations for all objects o ∈ N filter
ε (q). As ε

has to be chosen very high in order to create reachability plots
without loss of information [1], the traditional approach has to
compute |DB| exact distance computations, even when one of
the approaches discussed in Section 2.2 is used. On the other
hand, the number of exact distance computations in our
approach does not depend on the size of the database but rather
on the value of MinPts, which is only a small fraction of the car-
dinality of the database. Note that our approach only has to
compute |DB|•MinPts, i.e. O(|DB|), exact distance
computations if we assume an optimal filter, in contrast to

the O(|DB|2) distance computations carried out by the
original OPTICS run. Only if necessary, we carry out further

additional exact distance computations (cf. line (*) in
Figure 3). 

2.3.3. Extended DBSCAN. Our extended DBSCAN algo-
rithm is a simplified version of the extended OPTICS algo-
rithm using also the Xseedlist as the main data structure.
Again, we carry out an ε-range query for each database ob-
ject q on the lower-bounding filter distances yielding a re-

sult set N filter
ε (q). Due to the lower-bounding properties of

the filters, Nε(q) ⊆ N filter
ε (q) holds. Therefore, if |N filter

ε (q)| <
MinPts holds, q is certainly no core-point. Otherwise, we
test whether q is a core-point as follows.

We organize all o ∈ N filter
ε (q) in ascending order according

to their filter distance df (o, q) yielding a SortListε(q). We walk
through this sorted list, and compute for each visited object oi

the exact distance do(oi,q) until for MinPts elements do(oi,q)≤
ε holds or until we reach the end. If we reached the end, we cer-
tainly know that q is no core point. Otherwise q is a core point
and in the case of DBSCAN this information is enough. The
main difference to the extended OPTICS algorithm is that we
do not have to reorder SortListε(q), as we do not have to com-
pute the core-level of q. 

If our current object q is a core object, some of the objects

oi ∈ N filter
ε (q) are inserted into the Xseedlist (cf. Figure 2). All

objects for which we have already computed do (oi, q), and for

which do (oi, q) ≤ ε holds, certainly belong to the same cluster
as the core-object q. At the beginning of the object list, we add
the entry (oi, NIL), where PL(oi) = NIL indicates that oi cer-
tainly belongs to the same cluster as q. Objects oi for which

do (oi, q) > ε holds are discarded. All objects o ∈ N filter
ε (q) for

which we did not yet compute do (oi, q) are handled as follows: 

  • If there exists no entry in the object list belonging to oi,
(oi, < (q, Filter, df (oi, q)>) is inserted into the object list in
such a way that the ordering conditions of Figure 2 still
hold.

  • If there already exists an entry in the object list for oi and,
furthermore, PL(oi) = NIL holds, nothing is done.

  • If there already exists an entry in the object list for oi and,
furthermore, PL(oi) ≠ NIL holds, (q, Filter, df (oi, q)) is
inserted into PL(oi) in such a way that the ordering con-
ditions of Figure 2 still hold. 

DBSCAN expands a cluster C as follows. We take the first
element o1 from the object list and, if PL(o1) = NIL holds, we
add o1 to the current cluster, delete o1 from the object list, carry
out a range query around o1, and try to expand the cluster C. If
PL(o1) ≠ NIL holds, we compute do (o1, o1,1). If do (o1, o1,1) ≤
ε, we process similar to the case where PL(o1) = NIL holds. If
do (o1, o1,1) > ε holds and length of PL(o1) > 1, we delete (o1,1,
F1,1, PreDist(o1, o1,1)) from PL(o1). If do (o1, o1,1) > ε holds



and length of PL(o1) = 1, we delete o1 from the object list. Iter-

atively, we try to expand the current cluster by examining the
first entry of PL(o1) until the current object list is empty. 

2.3.4. Length-Limitation of the Predecessor Lists. In this
section, we introduce an approach for limiting the size of the
predecessor lists to a constant lmax trying to keep the main

memory footprint as small as possible. 

OPTICS. For each object oi in the object list, we store all

potential predecessor objects oi,p along with PreDist (oi, oi,p) in

PL(oi). Due to the lower-bounding property of df, we can delete

all entries in PL(oi) which are located at positions l’ > l, if we

have already computed the exact distance between oi and the

predecessor object oi,l located at position l. So each exact dis-

tance computation might possibly lead to several delete opera-
tions in the corresponding predecessor list. In order to limit the
main memory footprint, we introduce a parameter lmax which

restricts the allowed number of elements stored in a predeces-
sor list. If more than lmax elements are contained in the list, we

compute the exact distance for the predecessor oi,1 located at

the first position. Such an exact distance computation between
oi and oi,1 usually causes oi,1 to be moved upward in the list. All

elements located behind its new position l are deleted. So if

l ≤ lmax holds, the predecessor list is limited to at most lmax

entries. Otherwise, we repeat the above procedure. 

DBSCAN. If the predecessor list of oi is not NIL, we can

limit its length by starting to compute do (oi, oi,1), i.e. the exact

distance between oi and the first element of PL(oi). If

do (oi, oi,1) ≤ ε holds, we set PL(oi) = NIL indicating that oi cer-

tainly belongs to the current cluster. Otherwise, we delete (oi,1,

Fi,1, PreDist(oi, oi,1)) and if the length of PL(oi) is still larger

than lmax, we iteratively repeat this limitation procedure.

3.  Evaluation

In this section, we present a detailed experimental evalua-
tion which demonstrates the characteristics and benefits of our
new approach. 

3.1. Settings

Test Data Sets. As test data, we used real-world CAD data
represented by 81-dimensional feature vectors [13] and vector
sets consisting of 7 6D points [12]. Furthermore, we used
graphs [14] to represent real-world image data. If not otherwise
stated, we used 1,000 complex objects from each data set. The
used filter and exact object distance functions can be character-
ized as follows: 

  • The exact distance computations on the graphs are very
expensive. On the other hand, the used filter is rather se-
lective and can efficiently be computed [14].

  • The exact distance computations on the feature vectors
and vector sets are also very expensive as normalization
aspects for the CAD objects are taken into account. We
compute 48 times the distance between two 81-dimen-
sional feature vectors, and between two vector sets, in or-
der to determine a normalized distance between two CAD
objects [12, 13]. The filter used for the feature vectors is
not very selective, but can be computed very efficiently
as we only have to compute once the distance between
two numerical values. The filter used for the vector sets
is more selective than the filter for the feature vectors but
also computationally more expensive. 

Implementation. The original OPTICS and DBSCAN algo-
rithms, along with their extensions introduced in this paper and
the used filter and exact object distances were implemented in
Java 1.4. The experiments were run on a workstation with a
Xeon 2.4 GHz processor and 2 GB main memory under Linux. 

Parameter Setting. As suggested in [1], we used for an
OPTICS run a maximum ε-parameter in order to create reach-
ability plots containing the complete hierarchical clustering
information. For DBSCAN, we chose an ε-parameter yielding
as many flat clusters as possible. Furthermore, if not otherwise
stated, the MinPts-parameter is set to 5, the length of the pre-
decessor lists is not limited, and the used filters are the ones
sketched above. 

Comparison Partners. As a comparison partner for
extended OPTICS, we chose the full table scan based on the
exact distances, because any other approach would include an
unnecessary overhead and is not able to reduce the number of

the required |DB|2 exact distance computations. Furthermore,
we compared our extended DBSCAN algorithm to the original
DBSCAN algorithm based on a full table scan on the exact
object distances, and we compared it to a version of DBSCAN
which is based on ε-range queries efficiently carried out
according to the multi-step query processing paradigm [2].
According to all our tests, this second comparison partner out-
performs a DBSCAN algorithm using ε-range queries based on
an M-tree [6] and the DBSCAN algorithm according to [4]. 

3.2. Experiments

In this section, we first investigate the dependency of our
approach on the filter quality, the MinPts-parameter, and the
maximum allowed length of the predecessor lists. For these
tests, we concentrate on the discussion of the overall number of
distance computations. Furthermore, we investigate the influ-
ence of the ε-value in the case of DBSCAN, and, finally, we
present the absolute runtimes, in order to show that the required
overhead of our approach is negligible compared to the saved
exact distance computations.



Dependency on the Filter Quality. In order to demonstrate
the dependency of our approach on the quality of the filters, we
utilized in a first experiment artificial filter distances df lower
bounding the exact object distances do, i.e. df (o1, o2) =
κ • do (o1, o2)  where κ is between 0 and 1. Figure 4a depicts the
number of distance computations ndist w.r.t. κ. In the case of
DBSCAN, even rather bad filters, i.e. small values of κ, help to
reduce the number of required distance computations consider-
ably, indicating a possible high speed up compared to both
comparison partners of DBSCAN. For good filters, i.e. values
of κ close to 1, ndist is very small for DBSCAN and OPTICS
indicating a possible high speed up compared to a full table
scan based on the exact distances do. 

Dependency on the MinPts-Parameter. Figure 4b demon-
strates the dependency of our approach for a varying
MinPts-parameter while using the filters introduced in [12, 13,
14]. As our approach is based on MinPts-nearest neighbor
queries, obviously, the efficiency of our approach is the
better the smaller the MinPts-parameter. Note that even for
rather high MinPts-values around 10 = 1% • |DB|, our
approach saves up to one order of magnitude of exact

distance computations compared to a full table scan based
on do, if selective filters are used, e.g. the filters for the
vector sets and the graphs. Furthermore, even for the filter of
rather low selectivity used by the feature vectors, our
approach needs only 1/9 of the maximum number of
distance computations in the case of DBSCAN and about
1/4 in the case of OPTICS. 

Dependency on the Maximum Allowed Length of the
Predecessor Lists. Figure 4c depicts how the number of dis-
tance computations ndist depends on the available main mem-
ory, i.e. the maximum allowed length lmax of the predecessor
lists. Obviously, the higher the value for lmax, the less exact dis-
tance computations are required. The figure shows that for
OPTICS we have an exponential decrease of ndist w.r.t. lmax,
and for DBSCAN ndist is almost constant w.r.t. changing lmax

parameters indicating that small values of lmax are sufficient to
reach the best possible runtimes. 

Dependency on the ε-parameter. Figure 5 shows how the
speed-up for DBSCAN between our integrated multi-step
query processing approach and the traditional multi-step query
processing approach depends on the chosen ε-parameter. The
higher the chosen ε-parameter, the more our new approach out-
performs the traditional one which has to compute the exact

distances between o and q for all o ∈ N filter
ε (q). In contrast,

our approach confines itself to MinPts-nearest neighbor queries
on the exact distances and computes further distances only if
compulsory to compute the exact clustering result. 

Absolute Runtimes. Figure 6 presents the absolute runt-
imes of the new extended DBSCAN and OPTICS algorithms
which integrate the multi-step query processing paradigm com-
pared to the full-table scan on the exact object representations.
Furthermore, we compare our extended DBSCAN also to a
DBSCAN variant using ε-range queries based on the traditional
multi-step query processing paradigm. Note, that this compar-
ison partner would induce an unnecessary overhead in the case
of OPTICS where we have to use very high ε-parameters in
order to detect the complete hierarchical clustering order. In all
experiments, our approach was always the most efficient one.
For instance, for DBSCAN on the feature vectors, our approach
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b) Dependency on the MinPts-Parameter.
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outperforms both comparison partners by an order of magni-
tude indicating that already rather bad filters are useful for our
new extended DBSCAN algorithm. Note that the traditional
multi-step query processing approach does not benefit much
from non-selective filters even when small ε-values are used. In
the case of OPTICS, the performance of our approach improves
with increasing filter quality. For instance, for the graphs we
achieve a speed-up of more than 30 indicating as well the suit-
ability of our extended OPTICS algorithm. 

4.  Conclusion

In many different application areas, density-based cluster-
ing is an effective approach for mining complex data. Unfortu-
nately, the runtime of these data-mining algorithms is very
high, as the distance functions between complex object repre-
sentations are often very expensive. In this paper, we showed
how to integrate the well-known multi-step query processing
paradigm directly into the two density-based clustering algo-
rithms DBSCAN and OPTICS. We replaced the expensive
exact ε-range queries by MinPts-nearest neighbor queries
which themselves are based on ε-range queries on the

lower-bounding filter distances. Further exact complex dis-
tance computations are only carried out at that stage of the
algorithms where they are compulsory to compute the cor-
rect clustering result. 

In a broad experimental evaluation based on real-world test
data sets we demonstrated that our new approach leads to a sig-
nificant speed-up compared to a full-table scan on the exact
object representations as well as compared to an approach,
where the ε-range queries are accelerated by means of the tra-
ditional multi-step query processing concept. 

In our future work, we will demonstrate that other data min-
ing algorithms dealing with complex object representations
also benefit from a direct integration of the multi-step query
processing paradigm. 
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