
Density Connected Clustering with Local Subspace Preferences
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Abstract

Many clustering algorithms tend to break down in
high-dimensional feature spaces, because the clusters of-
ten exist only in specific subspaces (attribute subsets) of
the original feature space. Therefore, the task of projected
clustering (or subspace clustering) has been defined re-
cently. As a novel solution to tackle this problem, we
propose the concept of local subspace preferences, which
captures the main directions of high point density. Us-
ing this concept we adopt density-based clustering to cope
with high-dimensional data. In particular, we achieve the
following advantages over existing approaches: Our pro-
posed method has a determinate result, does not depend
on the order of processing, is robust against noise, per-
forms only one single scan over the database, and is lin-
ear in the number of dimensions. A broad experimental
evaluation shows that our approach yields results of sig-
nificantly better quality than recent work on clustering
high-dimensional data.

1. Introduction

Clustering is one of the major data mining tasks.
Many useful clustering methods proposed in the
last decade (see e.g. [6] for an overview) com-
pute flat or hierarchical partitions of the data points
in a complete feature space, i.e. each dimension is
equally weighted when computing the distance be-
tween points. These approaches are successful for
low-dimensional data sets. However, in higher dimen-
sional feature spaces, their accuracy and efficiency
deteriorates significantly. The major reason for this be-
havior is the so-called curse of dimensionality: In high
dimensional feature spaces, a full-dimensional dis-
tance is often no longer meaningful, since the near-
est neighbor of a point is expected to be almost as far
as its farthest neighbor [7].

A common approach to cope with high dimensio-
nal feature spaces is the application of a global dimen-

sionality reduction technique such as Principal Com-
ponent Analysis (PCA). A standard clustering method
can then be used to compute clusters in this subspace.
But if different subsets of the points cluster well on dif-
ferent subspaces of the feature space, a global dimen-
sionality reduction will fail.

To overcome these problems of global dimensional-
ity reduction, recent research proposed to compute sub-
space clusters. Subspace clustering aims at computing
pairs (C,S) where C is a set of objects representing a
cluster and S is a set of attributes spanning the sub-
space in which C exists. Mapping each cluster to an
associated subspace allows more flexibility than global
methods projecting the entire data set onto a single
subspace. In the example given in Figure 1, a subspace
clustering algorithm will find the two clusters (C1, A1)
and (C2, A2) (see Figure 1(a)). As a d-dimensional data
set has 2d subspaces which may contain clusters, the
output of subspace clustering algorithms is usually very
large. However, a lot of application domains require
that the data set is divided into one single partitioning,
where each point belongs exclusively to one cluster. For
this case, projected clustering algorithms have been in-
troduced, where each point is assigned to a unique clus-
ter. One of the problems of this approach is shown in
Figure 1(a): the points in the black circle can only be
assigned to one of the two clusters. In this case, it is
not clear to which cluster they should be assigned.

In this paper, we introduce the concept of subspace
preferences to avoid this ambiguity. Our new approach
PreDeCon is founded on the concept of density con-
nected sets proposed in density-based clustering (DBC-
SAN) [5]. In the example it will generate the two clus-
ters (C1, A1) and (C2, A2) visualized in Figure 1(b).
Of course, in this example DBSCAN itself could have
found the two clusters. But in high-dimensional spaces
the parameter ε specifying the density threshold must
be chosen very large, because a lot of dimensions con-
tribute to the distance values. Thus, using the Euclid-
ian distance measure and a large ε will result in large
and unspecific clusters, while a small ε will yield only
noise. To ensure the quality of the clusters in high-
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Figure 1: Clusters according to projected/subpace clus-
tering (a) and according to subspace preference cluster-
ing (b).

dimensional spaces we suggest to use a weighted Eu-
clidean distance measure to compute smaller but more
specific clusters instead of trying to cluster all avail-
able points, resulting in large and unspecific clusters.
Thus, we build for each point a so-called subspace pref-
erence vector based on the variance in each attribute
and use a weighted Euclidean distance measure based
on this subspace preference vector. Using this more
flexible model, we propose the algorithm PreDeCon
(subspace PREference weighted DEnsity CONnected
clustering) to efficiently compute exact solutions of the
subspace preference clustering problem. PreDeCon per-
forms a single scan over the database, and is linear in
the number of dimensions. The user can select a pa-
rameter λ indicating the dimensionality threshold of
the searched clusters. Only those clusters with a sub-
space dimensionality of no more than λ are determined.

The remainder of the paper is organized as follows:
In Section 2, we discuss related work and point out our
contributions. In Section 3, we formalize our notion of
subspace preference clusters. We present the algorithm
PreDeCon to efficiently compute such subspace prefer-
ence clusters in Section 4. Section 5 contains an exten-
sive experimental evaluation and Section 6 concludes
the paper.

2. Related Work and Contributions

2.1. Density-Based Clustering

The density-based notion is a common approach for
clustering used by various clustering algorithms such
as DBSCAN [5], DENCLUE [8], and OPTICS [4]. All
these methods search for regions of high density in a
feature space that are separated by regions of lower

density. A typical density-based clustering algorithm
needs two parameters to define the notion of density:
First, a parameter µ specifying the minimum number
of points, and second, a parameter ε specifying a vol-
ume. These two parameters determine a density thresh-
old for clustering. Our approach follows the formal defi-
nitions of density connected clusters underlying the al-
gorithm DBSCAN [5]. In this model, a cluster is de-
fined as a maximal set of density connected points.

2.2. Projected and Subspace Clustering

The pioneering approach to subspace clustering is
CLIQUE [3], a grid-based algorithm using an Apri-
ori -like method to recursively navigate through the set
of possible subspaces in a bottom-up way. A density
connected version of subspace clustering is SUBCLU
[9]. As the number of subspaces which possibly con-
tain clusters is 2d, the output of those clustering al-
gorithms is usually very large, because points may be
assigned to multiple clusters. However, for a lot of ap-
plication domains a single partitioning of the data is
mandatory. Thus, we focus on projected clustering al-
gorithms.

PROCLUS (PROjected CLUStering) [2] is a pro-
jected clustering algorithm, which picks up the con-
cepts of k-medoid clustering. The number of clus-
ters k and the average subspace dimension l are in-
put parameters. PROCLUS iteratively computes good
medoids for each cluster. The Manhattan Distance di-
vided by the subspace dimension is used as normal-
ized metric for trading between subspaces of different
dimensionality. For performance reasons, the iterative
medoid-searching phase is performed on a sample us-
ing a greedy hill-climbing technique. After this itera-
tive search, an additional pass over the data is per-
formed for refinement of clusters, medoids and associ-
ated subspaces. An extension to PROCLUS is the al-
gorithm ORCLUS [1] which computes arbitrarily ori-
ented (i.e. not axis-parallel) projected clusters which
are usually hard to interpret and thus, are not suit-
able for many applications.

In [11] a mathematical definition of an “optimal
projected cluster” is presented along with a Monte
Carlo algorithm called DOC to compute approxima-
tions of such optimal projected clusters. Using the user-
specified input parameters w and α, an optimal pro-
jected cluster is defined as a set of points C associated
with a subspace of dimensions D such that C contains
more than α% points of the database and the projec-
tion of C onto the subspace spanned by D must be
contained in a hyper-cube of width w whereas in all
other dimensions d 6∈ D the points in C are not con-



tained in a hyper-cube of width w. The proposed algo-
rithm DOC only finds approximations because it gen-
erates projected clusters of width 2w. In addition, no
assumption on the distribution of points inside such a
hyper-cube is made. The reported projected clusters
may contain additional noise objects (especially when
the size of the projected cluster is considerably smaller
than 2w) and/or may miss some points that naturally
belong to the projected cluster (especially when the
size of the projected cluster is considerably larger than
2w).

Both methods are limited to computing approxima-
tions using sampling techniques and therefore, the as-
signment of points to clusters is no longer determinate
and may vary for different runs of the algorithm.

2.3. Our Contributions

In this paper, we make the following contributions:
Analogously to projected clustering which was intro-
duced to enhance the quality of k-means like cluster-
ing algorithms in high-dimensional space, we extend
the well-founded notion of density connected clusters
to ensure high quality results even in high-dimensional
spaces. We do not use any sampling or approximation
techniques, thus the result of our clustering algorithm
is determinate. We propose an efficient method called
PreDeCon which is able to compute all subspace pref-
erence clusters of a certain dimensionality in a single
scan over the database and is linear in the number of
dimensions. And finally, we successfully apply our algo-
rithm PreDeCon to several real-world data sets, show-
ing its superior performance over existing approaches.

3. The Notion of Subspace Preference
Clusters

In this section, we formalize the notion of sub-
space preference clusters. Let D be a database of d-
dimensional points (D ⊆ R

d), where the set of at-
tributes is denoted by A = {A1, . . . Ad}. The projec-
tion of a point p onto an attribute Ai ∈ A is denoted
by πAi

(p). Let dist : Rd × Rd → R be a metric dis-
tance function between points in D, e.g. one of the Lp-
norms. Let Nε(p) denote the ε-neighborhood of p ∈ D,
i.e. Nε(p) contains all points q where dist(p, q) ≤ ε.

Intuitively, a subspace preference cluster is a den-
sity connected set of points associated with a certain
subspace preference vector. In order to identify sub-
space preference clusters, we are interested in all sets
of points having a small variance along one or more at-
tributes, i.e. a variance smaller than a given δ ∈ R.

Definition 1 (variance along an attribute)
Let p ∈ D and ε ∈ R. The variance of Nε(p) along an
attribute Ai ∈ A, denoted by VarAi

(Nε(p)), is defined
as follows:

VarAi
(Nε(p)) =

∑
q∈Nε(p)(dist(πAi

(p), πAi
(q)))2

|Nε(p)|

Definition 2 (subspace preference dimensionality)

Let p ∈ D and δ ∈ R. The number of attributes
Ai with VarAi

≤ δ is called the subspace preference di-
mensionality ofNε(p), denoted by PDim(Nε(p)).

The intuition of our formalization is to consider
those points as core points of a cluster which have
enough dimensions with a low variance in their neigh-
borhood. Therefore, we associate each point p with a
subspace preference vector w̄p which reflects the vari-
ance of the points in the ε-neighborhood of p along
each attribute in A.

Definition 3 (preference weighted similarity measure)

Let p ∈ D, δ ∈ R and κ ∈ R be a constant with
κ � 1. Let w̄p = (w1, w2, ...wd) be the so-called sub-
space preference vector of p, where

wi =
{

1 if VarAi(Nε(p)) > δ
κ if VarAi(Nε(p)) ≤ δ

The preference weighted similarity measure associated
with a point p is denoted by

distp(p, q) =

√√√√ d∑
i=1

wi · (πAi
(p)− πAi

(q))2

where wi is the i-th component of w̄p.

Let us note, that the preference weighted similar-
ity measure distp(p, q) is simply a weighted Euclidean
distance. The parameter δ specifies the threshold for a
low variance. As we are only interested in distinguish-
ing between dimensions with low variance and all other
dimensions, weighting the dimensions inversely propor-
tional to their variance is not useful. Thus, our weight
vector has only two possible values.

The preference weighted similarity measure is vi-
sualized in Figure 2. The ε-neighborhood of a
2-dimensional point p exhibits low variance along at-
tribute A1 and high variance along attribute A2. The
similarity measure distp weights attributes with low
variance considerably lower (by the factor κ) than at-
tributes with a high variance. However, we face the
problem that the similarity measure in Definition 3
is not symmetric, because distp(p, q) = distq(q, p)
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Figure 2: ε-neighborhood of p according to (a) simple
Euclidean and (b) preference weighted Euclidean dis-
tance.

does obviously not hold in general. If an asymmet-
ric similarity measure is used in DBSCAN, a dif-
ferent clustering result can be obtained depending
on the order of processing (e.g. which point is se-
lected as the starting point). Although the result is
typically not seriously affected by this ambiguity ef-
fect, we avoid this problem easily by an extension
of our similarity measure which makes it symmet-
ric. We simply combine both similarity measures
distp(p, q) and distq(p, q) by a suitable arithmetic op-
eration such as the maximum of the two.

Definition 4 (general preference weighted similarity)

The general preference weighted similarity of two
arbitrary points p, q ∈ D, denoted by distpref (p, q), is de-
fined as the maximum of the corresponding prefer-
ence weighted similarity measures of p (distp) and q
(distq), formally:

distpref (p, q) = max{distp(p, q), distq(q, p)}.

Based on these considerations, we define the pref-
erence weighted ε-neighborhood as a symmetric con-
cept:

Definition 5 (preference weighted ε-neighborhood)

Let ε ∈ R. The preference weighted ε-neighborhood of
a point o ∈ D, denoted byN w̄o

ε (o), is defined by:

N w̄o
ε (o) = {x ∈ D | distpref (o, x) ≤ ε}.

Preference weighted core points can now be defined
as follows.

Definition 6 (preference weighted core point)
Let ε, δ ∈ R and µ, λ ∈ N. A point o ∈ DB is called pref-
erence weighted core point w.r.t. ε, µ, δ, and λ (denoted

by Corepref
den (o)), if the preference dimensionality of its

ε-neighborhood is at most λ and its preference weighted
ε-neighborhood contains at least µ points, formally:

Corepref
den (o) ⇔ PDim(Nε(o)) ≤ λ ∧ |N w̄o

ε (o) | ≥ µ.

Let us note that in Corepref
den the acronym “pref”

refers to the parameters δ and λ which are responsi-
ble for preference weighting. In the following, we omit
the parameters ε, µ, δ, and λ wherever the context is
clear and use “den” and “pref” instead.

Definition 7 (direct preference weighted reachability)

Let ε, δ ∈ R and µ, λ ∈ N. A point p ∈ D is di-
rectly preference weighted reachable from a point q ∈ D
w.r.t. ε, µ, δ, and λ (denoted by DirReachpref

den (q,p)), if
q is a preference weighted core point, the subspace pref-
erence dimensionality of Nε(p) is at most λ, and
p ∈ N w̄q

ε (q), formally:
DirReachpref

den (q, p) ⇔
(1) Corepref

den (q)
(2) PDim(Nε(p)) ≤ λ

(3) p ∈ N w̄q
ε (q).

Direct preference weighted reachability is symmetric
for preference weighted core points. Both distp(p, q) ≤
ε and distq(q, p) ≤ ε must hold.

Definition 8 (preference weighted reachability)

Let ε, δ ∈ R and µ, λ ∈ N. A point p ∈ D is pref-
erence weighted reachable from a point q ∈ D w.r.t. ε,
µ, δ, and λ (denoted by Reachpref

den (q,p)), if there is a
chain of points p1, · · · pn such that p1 = q, pn = p and
pi+1 is directly preferenceweighted reachable from pi, for-
mally:

Reachpref
den (q, p) ⇔

∃p1, . . . , pn ∈ D : p1 = q ∧ pn = p ∧
∀i ∈ {1, . . . , n− 1} : DirReachpref

den (pi, pi+1).

It is easy to see, that preference weighted reachabil-
ity is the transitive closure of direct preference weighted
reachability.

Definition 9 (preference weighted connectivity)

Let ε, δ ∈ R and µ, λ ∈ N. A point p ∈ D is pref-
erence weighted connected to a point q ∈ D, if there
is a point o ∈ D such that both p and q are prefer-
ence weighted reachable from o, formally:

Connectpref
den (q, p) ⇔

∃o ∈ D : Reachpref
den (o, q) ∧ Reachpref

den (o, p).
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Figure 3: p and q are preference weighted connected
via o.

Preference weighted connectivity is a symmetric re-
lation. The concept is visualized in Figure 3. A sub-
space preference cluster can now be defined as a max-
imal preference weighted connected set:

Definition 10 (subspace preference cluster)
Let ε, δ ∈ R and µ, λ ∈ N. A non-empty subset C ⊆ D
is called a subspace preference cluster w.r.t. ε, µ, δ, and
λ, if all points in C are preference weighted connected and
C is maximal w.r.t. preference weighted reachability, for-
mally:

ConSetpref
den (C) ⇔

Connectivity: ∀o, q ∈ C : Connectpref
den (o, q)

Maximality: ∀p, q ∈ D : q ∈ C ∧Reachpref
den (q, p) ⇒ p ∈

C.

The following two lemmata are important for vali-
dating the correctness of our clustering algorithm. In-
tuitively, they state that we can discover a subspace
preference cluster for a given parameter setting in a
two-step approach: First, choose an arbitrary prefer-
ence weighted core point o from the database. Second,
retrieve all points that are preference weighted reach-
able from o. This approach yields the subspace prefer-
ence cluster containing o.

Lemma 1
Let p ∈ D. If p is a preference weighted core point, then
the set of points, which are preference weighted reachable
from p is a subspace preference cluster, formally:

Corepref
den (p) ∧ C = {o ∈ D |Reachpref

den (p, o)}
⇒ ConSetpref

den (C).

Proof.
(1) C 6= ∅:
By assumption, Corepref

den (p) and thus, PDim(Nε(p)) ≤
λ
⇒DirReachpref

den (p, p)
⇒Reachpref

den (p, p)
⇒ p ∈ C.
(2) Maximality:

Let x ∈ C and y ∈ D and Reachpref
den (x, y)

⇒Reachpref
den (p, x) ∧Reachpref

den (x, y)
⇒Reachpref

den (p, y) (since preference weighted reachabil-
ity is a transitive relation)
⇒ y ∈ C.
(3) Connectivity:
∀x, y ∈ C : Reachpref

den (p, x) ∧Reachpref
den (p, y)

⇒Connectpref
den (x, y) (via p). �

Lemma 2
Let C ⊆ D be a subspace preference cluster. Let p ∈ C
be a preference weighted core point. Then C equals the set
of points which are preference weighted reachable from p,
formally:

ConSetpref
den (C) ∧ p ∈ C ∧Corepref

den (p)
⇒ C = {o ∈ D |Reachpref

den (p, o)}.

Proof. Let C̄ = {o ∈ D |Reachpref
den (p, o)}. We have to

show that C̄ = C:
(1) C̄ ⊆ C: obvious from the definition of C̄.
(2) C ⊆ C̄: Let q ∈ C. By assumption, p ∈ C and
ConSetpref

den (C)
⇒∃o ∈ C : Reachpref

den (o, p) ∧Reachpref
den (o, q)

⇒ Reachpref
den (p, o) (since both o and p are preference

weighted core points and preference weighted reachabil-
ity is symmetric for preference weighted core points.
⇒ Reachpref

den (p, q) (transitivity of preference weighted
reachability)
⇒ q ∈ C̄. �

4. Efficiently Computing Subspace
Preference Clusters

4.1. Algorithm PreDeCon

PreDeCon performs one pass over the database to
find all subspace preference clusters for a given param-
eter setting. The pseudo code of the algorithm is given
in Figure 4. At the beginning each point is marked as
unclassified. During the run of PreDeCon all points are
either assigned a certain cluster identifier or marked as
noise. For each point which is not yet classified, PreDe-
Con checks whether this point is a preference weighted
core point. If so, the algorithm expands the cluster be-
longing to this point. Otherwise the point is marked as
noise. To find a new cluster, PreDeCon starts with an
arbitrary preference weighted core point o and searches
for all points that are preference weighted reachable
from o. This is sufficient to find the whole cluster con-
taining the point o, due to Lemma 2. When PreDeCon



algorithm PreDeCon(D, ε, µ, λ, δ)

// assumption: each point inD is marked as unclassified

for each unclassified o ∈ D do

if Corepref
den (o) then // expand a new cluster

generate new clusterID;
insert all x ∈ N w̄o

ε (o) into queue Φ;
while Φ 6= ∅ do

q = first point in Φ;
computeR = {x ∈ D |DirReachpref

den (q, x)};
for each x ∈ R do

if x is unclassified then
insert x into Φ;

if x is unclassified or noise then
assign current clusterID to x

remove q from Φ;

else // o is noise

mark o as noise;

end.

Figure 4: Pseudo code of the PreDeCon algorithm.

has found a preference weighted core point, a new clus-
ter identifier “clusterID” is generated which will be as-
signed to all points found in the generation of the sub-
space preference cluster. PreDeCon begins by inserting
all points in the preference weighted ε-neighborhood
of point o into a queue. For each point in the queue,
it computes all directly preference weighted reachable
points and inserts those points into the queue which
are still unclassified. This is repeated until the queue
is empty and the entire cluster is computed.

As mentioned above, the results of PreDeCon do
not depend on the order of processing, i.e. the result-
ing clustering (number of clusters and association of
core points to clusters) is determinate.

4.2. Complexity Analysis

As the performance of most index structures dete-
riorates in high-dimensional spaces, we base our com-
plexity analysis of PreDeCon on the assumption of no
index structure.

Lemma 3 The overall worst-case time complexity of
our algorithm based on the sequential scan of the data
set is O(d · n2).

Proof. Our algorithm has to associate each point of the
data set with a preference weighted similarity weight vec-
tor that is used for searching neighbors (cf. Definition
3). The corresponding vector must be computed once for
each point. The computation of the preference weighted
similarity weight vector w̄ is based on the result of a Eu-
clidean range query which can be evaluated in O(d · n)

time. Then the vector is built by checking the variance of
the points in the Euclidean ε-neighborhood along each di-
mension which requires O(d · n) time. For all points to-
gether, this sums up to O(d · n2).
Checking the preference weighted core point property
according to Definition 6, and expanding a preference
weighted cluster, requires for each point in the Euclidean
ε-neighborhood the evaluation of a weighted Euclidean
distance which can be done in O(d ·n) time. For all points
together (including the above cost for the determination
of the preference weighted similarity weight vector), we
obtain a worst-case time complexity of O(d · n2). �

Let us note, that the runtime of our algorithm does
not depend on the dimensionality of the subspace pref-
erence clusters.

4.3. Input Parameters

PreDeCon has four input parameters, two density
parameters ε and µ and two preference parameters λ
and δ.

The parameter λ ∈ N specifies the preference di-
mension of the subspace preference clusters to be com-
puted, i.e. the maximum number of attributes that
have a low variance (cf. Definition 2). In our experi-
ments, it turns out that the clusters computed by Pre-
DeCon need not to have a preference dimension of λ.
In fact, λ rather specifies a upper bound for the prefer-
ence dimensions of the computed clusters. The param-
eter δ ∈ R specifies the upper bound for the variance
in an attribute. If the variance along an attribute is less
than δ, this attribute is considered to yield a dense pro-
jection. The choice of δ depends on the maximum value
MAXAi

in each attribute Ai. It empirically turned
out that PreDeCon is rather robust against different
choices for δ. Our experiments showed that δ ≤ 5 is
usually a good choice for data sets with MAXAi = 100.
We suggest to normalize data sets that contain at-
tributes not scaled within [0, 100] accordingly.

The parameters ε ∈ R and µ ∈ N specify the den-
sity threshold which clusters must exceed. They should
be chosen as suggested in [5].

5. Evaluation

In this section, we present a broad evaluation of Pre-
DeCon. We implemented PreDeCon as well as the three
comparative methods DBSCAN, PROCLUS, and DOC
in JAVA. All experiments were run on a Linux work-
station with a 2.0 GHz CPU and 2.0 GB RAM.

We evaluated PreDeCon using several synthetic data
sets generated using a self-implemented data generator.



We varied the dimension of the data sets from 2 to 50,
the number of clusters from 2 to 5, the subspace dimen-
sionality of the clusters from 2 to 10 and the amount of
noise from 50% to 75%. The density of the clusters was
chosen randomly. In all experiments, PreDeCon sepa-
rated the generated clusters hidden in the data from
each other and from noise.

Due to space limitations we focus on the following
experiments using two different real world data sets:
The first data set is derived from a gene expression
experiment studying the yeast cell cycle by extract-
ing the expression level of approximately 2800 genes
at 17 time spots [12]. Since the genes have no class la-
bel, we have to judge the accuracy of the clustering by
looking at the results. The aim is to find clusters of co-
expressed genes that share similar functions. Biological
criteria for similar functions of genes are direct interac-
tions of genes, common complexes of gene products, or
gene products participating in common pathways. We
analyzed the clustering results according to these crite-
ria using the publicly available Saccharomyces Genome
Database (SGD) 1. The second data set [10] is derived
by a newborn screening and contains the concentra-
tions of 43 metabolites in 2000 newborns. Each new-
born has a class label attached indicating its genetic
disease. All attribute values were normalized between
0 and 100.

Gene Expression Data. The clusters in the gene
expression data set were generated using the follow-
ing parameter setting: ε = 80.0, µ = 7, δ = 4.0, and
λ = 12. PreDeCon found several clusters with vary-
ing size of around 10 to 40 genes. Each cluster con-
tains functionally related genes according to the biolog-
ical criteria mentioned above. For example, one cluster
contains several genes that are involved in chromatin
modelling and maintenance (NHP10, DPB4, IES3, and
TAF9) where IES3 and NHP10 are even direct interac-
tion partners. A second cluster contains more than 30
genes coding for structural components of the ribosome
and 4 genes that are localized in the ribosome and build
a larger complex (CDC33, TEF4, EFB1, and NHP2).
A third cluster contains several genes involved in the
glycolysis pathway (CDC19, TPI1, TDH2, FBA1, and
GPM1). Let us note, that each cluster also contains a
few genes of different or unknown function, which is
no wonder since gene expression data is very noisy due
to experimental impacts during data generation. Sum-
ming up, the clusters found by PreDeCon contained
genes that interact with each other, build complexes
with each other or participate in common pathways,
and thus are functionally related. The detected groups

1 http://www.yeastgenome.org/

Table 1: Confusion matrix of clustering results on
metabolome data.

cluster class labels
id size control PKU LCHAD MCAD others

1 269 264 3 2 0 0

2 29 0 29 0 0 0

3 38 0 38 0 0 0

4 10 0 10 0 0 0

of co-expressed genes are therefore biologically relevant
and meaningful.

Metabolome Data. The clusters in the
metabolome data set were generated using the follow-
ing parameter setting: ε = 150.0, µ = 10, δ = 3.0,
and λ = 4. PreDeCon found 4 clusters. The con-
tents of these clusters are visualized as confusion ma-
trix in Table 1. As it can be seen, more than 98% of
the points in the first cluster are healthy newborns (la-
bel “control”). The other three clusters contain
100% newborns suffering from the PKU (phenylke-
tonuria), one of the prevalent inborn metabolic
diseases. Newborns suffering from one of the other dis-
eases were classified as noise, i.e. they were not
separated by PreDeCon. However, a significant ma-
jority of healthy newborns and newborns suffering
from PKU were separated by PreDeCon. In addi-
tion, the list of attributes (metabolites) exhibiting
low variance in each cluster give useful hints for fur-
ther medical research.

Comparison with DBSCAN. DBSCAN is a
full-dimensional clustering algorithm, i.e. it computes
clusters giving each dimension equal weights. For each
run of DBSCAN on the biological data sets, we chose
the parameters according to [5] using a k-nn-distance
graph. Applied to the gene expression data, DBSCAN
found 6 relatively large clusters where the fraction of
genes with functional relationships was rather small.
We made similar observations when we applied DB-
SCAN to the metabolome data: the computed clusters
contained newborns with all sorts of class labels.

Comparison with PROCLUS. We imple-
mented PROCLUS [2] as an axis-parallel version
of ORCLUS [1] as the authors of ORCLUS state
that this version is slightly more stable and accu-
rate than the original PROCLUS implementation. We
tested PROCLUS on the metabolome data set us-
ing different values of k (from 5 to 13) and l (from 3 to
15). But in all cases, we did not get any cluster con-
taining objects of less than 4 different classes. In all
larger clusters almost all class labels appear. The clus-
ters obtained for the gene expression data set seem



equally unspecific — independent of the chosen pa-
rameters.

Comparison with DOC. DOC is a projected
clustering algorithm proposed recently. Since the sug-
gestions on how to choose the parameters for DOC pre-
sented in [11] are rather misleading, we had to choose
valid parameters to run DOC on the biological data
sets. In particular, we chose the following parameter
settings for both data sets: the number m of random
sets generated for each seed was set to 10 and the size
r of these random sets was set to 20. In addition, we
tested two density thresholds of the clusters, α = 0.05
and α = 0.005, where as the width w of the hyper-
cubes was set to 30. The fraction of the cluster points
that must be conserved, when an attribute is added to
the cluster, was set to β = 0.9. Thus, for the compu-
tation of one cluster, DOC generated b 2

αc = 40 ran-
dom points as seeds. We performed multiple runs of
DOC on both biological data sets. The results of the
runs on each data set were rather different. Applied to
the gene expression data set, DOC found 2 to 7 clus-
ters with varying dimensionality (ranging from 1 to 14
dimensions) in 10 runs. In all cases, the clusters con-
tained more than 200 members. Each detected func-
tional relationship was statistically meaningless. Ap-
plied to the metabolome data set, DOC found 4 to 24
clusters of a dimensionality varying from 26 to 38. In
most clusters, the instances from different classes (new-
borns with different diseases) were rather equally dis-
tributed.

6. Conclusions

In this paper, we proposed PreDeCon, an algorithm
for computing clusters of subspace preference weighted
connected points. This algorithm searches for local sub-
groups of a set of feature vectors having a low vari-
ance along one or more (but not all) attributes. The
attributes with low variance may vary between dif-
ferent clusters. PreDeCon is designed to find clus-
ters in moderate-to-high dimensional feature spaces
where traditional, “full-dimensional” clustering algo-
rithms tend to break down. PreDeCon is determinate,
robust against noise, and efficient with a worst case
time complexity of O(d · n2). Our extensive experi-
mental evaluation shows a superior clustering accu-
racy of PreDeCon over relevant methods like DBSCAN,
CLIQUE, ORCLUS, and DOC.
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Connected Subspace Clustering for High-Dimensional
Data”. In Proc. SIAM Int. Conf. on Data Mining
(SDM’04), Lake Buena Vista, FL, 2004.

[10] B. Liebl, U. Nennstiel-Ratzel, R. von Kries, R. Finger-
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