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Abstract

Mining frequent itemsets is at the core of mining association rules, and is by now
quite well understood algorithmically. However, most algorithms for mining frequent
itemsets assume that the main memory is large enough for the data structures used
in the mining, and very few efficient algorithms deal with the case when the database
is very large or the minimum support is very low. Mining frequent itemsets from
a very large database poses new challenges, as astronomical amounts of raw data is
ubiquitously being recorded in commerce, science and government.

In this paper, we discuss approaches to mining frequent itemsets when data struc-
tures are too large to fit in main memory. Several divide-and-conquer algorithms are
given for mining from disks. Many novel techniques are introduced. Experimental re-
sults show that the techniques reduce the required disk accesses by orders of magnitude,
and enable truly scalable data mining.

1 Introduction

Mining frequent itemsets is a fundamental problem for mining association rules [4, 5, 11,
13, 14, 17, 20, 18]. It also plays an important role in many other data mining tasks such as
sequential patterns, episodes, multi-dimensional patterns and so on [6, 12, 10]. In addition,
frequent itemsets are one of the key abstractions in data mining.

The description of the problem is as follows. Let I = {i1, i2, . . . , ij , . . . in}, be a set of
items. Items will sometimes also be denoted a, b, c, . . .. An I-transaction τ is a subset of I.
An I-transactional database D is a finite bag of I-transactions. The support of an itemset
S ⊆ I is the proportion of transactions in D that contain S. The task of mining frequent
itemsets is to find all S such that the support of S is greater than some given minimum
support ξ, where ξ either is a fraction in [0, 1], or an absolute count.

Most of the algorithms, such as Apriori [5], DepthProject [3], and dEclat [21] work well
when the main memory is big enough to fit the whole database or/and the data struc-
tures (candidate sets, FP-trees, etc). When a database is very large or when the minimum
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support is very low, either the data structures used by the algorithms may not be accom-
modated in main memory, or the algorithms spend too much time on multiple passes over
the database. In the First IEEE ICDM Workshop on Frequent Itemset Mining Implemen-
tations, FIMI ’03 [18], many well known algorithms were implemented and independently
tested. The results show that “none of the algorithms is able to gracefully scale-up to very
large datasets, with millions of transactions” [19].

At the same time very large databases do exist in real life. In a medium sized business or
in a company big as Walmart, it’s very easy to collect a few gigabytes of data. Terabytes
of raw data is ubiquitously being recorded in commerce, science and government. The
question of how to handle these databases is still one of the most difficult problems in data
mining.

A few researchers have tried to mine frequent itemsets from very large databases. One
approach is by sampling. For instance, [16] picks a random sample of the database, finds
all frequent itemsets from the sample, and then verifies the results with the rest of the
database. This approach needs only one pass of the database. However, the results are
probabilistic, meaning that some critical frequent itemsets could be missing.

Partitioning [15] is another approach for mining very large databases. This approach
first partitions the database into many small databases, and mines candidate frequent
itemsets from each small database. One more pass over the original database is then done
to verify the candidate frequent itemsets. The approach thus needs only two database
scans. However, when the data structures used for storing candidate frequent itemsets are
too big to fit in main memory, a significant amount of disk I/O’s is needed for the disk
resident data structures.

In [8, 9], Han et. al. introduce the FP-growth method, which uses two database scans
for constructing an FP-tree from the database, and then mines all frequent itemsets from
the FP-tree. Two approaches are suggested for the case that the FP-tree is too large to fit
into main memory.

The first approach writes the FP-tree to disk, then mines all frequent sets by reading
the frequency information from the FP-tree. However, the size of the FP-tree could be
same as the size of the database, and for each item in the FP-tree, we need at least one
FP-tree traversal. Thus the I/O’s for writing and reading the disk-resident FP-tree could
be prohibitive.

The second approach projects the original database on each frequent item, then mines
frequent itemsets from the small projected databases. One advantage of this approach
is that any frequent itemset mined from a projected database is a frequent itemset in
the original database. To get all frequent itemsets, we only need to take the union of the
frequent itemsets from the small projected databases. This is in contrast to the partitioning
approach, where all candidate frequent itemsets have to be stored and later verified by
another pass of database. The biggest problem of the projection approach is that the total
size of the projected databases could be too large, and there will be too many disk I/O’s
for the projected databases.
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Contributions

In this paper we consider the problem of mining frequent itemsets from very large databases.
We adopt a divide-and-conquer approach. First we give three algorithms, the general
divide-and-conquer algorithm, then an algorithm using naive projection, and an algorithm
using aggressive projection. We also analyze the number of steps and disk I/O’s required
by these algorithms.

In a detailed divide-and-conquer algorithm, called Diskmine, we use the highly efficient
FP-growth* method [7] to mine frequent itemsets from an FP-tree in main memory. We
describe several novel techniques useful in mining frequent itemsets from disks, such as the
array technique, the item-grouping technique, and memory management techniques.

Finally, we present experimental results that demonstrate the fact that our Diskmine-
algorithm outperforms previous algorithms by orders of magnitude, and scales up to ter-
abytes of data.

Overview

The remainder of this paper is organized as follows. In Section 2 we introduce approaches
for mining frequent itemsets from disks. Three algorithms are introduced and analyzed.
Section 3 gives a detailed divide-and-conquer algorithm Diskmine, in which many novel
optimization techniques are used. These techniques are also described in Section 3. Ex-
perimental results are given in Section 4. Section 5 concludes, and outlines directions for
future research.

2 Mining from disk

How should one go about when mining frequent itemsets from very large databases residing
in a secondary memory storage, such as disks? Here “very large” means that the data
structures constructed from the database for mining frequent itemsets can not fit in the
available main memory.

Basically, there are two strategies for mining frequent itemsets, the datastructures
approach, and the divide-and-conquer approach.

The datastructures approach consists of reading the database buffer by buffer, and
generate datastructures (i.e. candidate sets or FP-trees). Since the datastructure don’t fit
into main memory, additional disk I/O’s are required. The number of passes and disk I/O’s
required by the approach depends on the algorithm and its datastructures. For example, if
the algorithm is Apriori [5] using a hash-tree for candidate itemsets [15], disk based hash-
trees have to be used. Then the number of passes for the algorithm is same as the length
of the longest frequent itemset, and the number of disk I/O’s for the hash-trees depend on
the size of the hash-trees on disk.
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The basic strategy for the divide-and-conquer approach is shown in Figure 1. In the
approach, |D| denotes the size of the data structures used by the mining algorithm, and
M is the size of available main memory. Function mainmine is called if candidate frequent
itemsets (not necessary all) can be mined without writing the data structures used by a
mining algorithm to disks. In Figure 1, a very large database is decomposed into a number
of smaller databases. If a “small” database is still too large, i.e, the data structures are
still too big to fit in main memory, the decomposition is recursively continued until the
data structures fit in main memory. After all small databases are processed, all candi-
date frequent itemsets are combined in some way (obviously depending on the way the
decomposition was done) to get all frequent itemsets for the original database.

Procedure diskmine(D,M)

if |D| ≤ M then return mainmine(D)
else decompose D into D1, . . .Dk.

return combine diskmine(D1,M),
.... ,

diskmine(Dk,M).

Figure 1: General divide-and-conquer algorithm for mining frequent itemsets from disk.

The efficiency of diskmine depends on the method used for mining frequent itemsets in
main memory and on the number of disk I/O’s needed in the decomposition and combi-
nation phases. Sometimes the disk I/O is the main factor. Since the decomposition step
involves I/O, ideally the number of recursive calls should be kept small. The faster we can
obtain small decomposed databases, the fewer recursive call we will need. On the other
hand, if a decomposition cuts down the size of the projected databases drastically, the
trade-off might be that the combination step becomes more complicated and might involve
heavy disk I/O.

In the following we discuss two decomposition strategies, namely decomposition by
partition, and decomposition by projection.

Partitioning is an approach in which a large database is decomposed into cells of small
non-overlapping databases. The cell-size is chosen so that all frequent itemsets in a cell
can be mined without having to store any data structures in secondary memory. However,
since a cell only contains partial frequency information of the original database, all frequent
itemsets from the cell are local to that cell of the partition, and could only be candidate
frequent itemsets for the whole database. Thus the candidate frequent itemsets mined
from a cell have to be verified later to filter out false hits. Consequently, those candidate
sets have to be written to disk in order to leave space for processing the next cell of the
partition. After generating candidate frequent itemsets from all cells, another database
scan is needed to filter out all infrequent itemsets. The partition approach therefore needs
only two passes over the database, but writing and reading candidate frequent itemsets will
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involve a significant number of disk I/O’s, depending on the size of the set of candidate
frequent itemsets.

We can conclude that the partition approach to decomposition keeps the recursive levels
down to one, but the penalty is that the combination phase becomes expensive.

To get an easier combination phase, we adopt another decomposition strategy, which we
call projection. Suppose for simplicity that there are four items, a, b, c, and d, and let D be
a database of transactions containing some or all of these items. We could then decompose
D into for instance Dab and Dcd. Typically, we would do this when the descending order
of frequency of the items is a, b, c, d. In Dcd we put all transactions containing at c or d (or
both). In Dab we put transactions containing a or b (or both), and for each transaction we
store only the a, b-part. Thus we will have shorter transactions in Dab, and both Dab and
Dcd contain fewer transactions than D. We can then recursively mine all frequent itemsets
from Dab, and Dcd. Since this decomposition is not a partition, the projected databases
might not be that much smaller that the original database. The upside is though that the
set of all frequent itemsets in D now simply is the union of the frequent itemsets in Dab

and Dcd. This means that the combination phase in diskmining is a simple union.
To illustrate this decomposition, let D contain the transactions {a, b, d}, {b, c, d}, {a, c}

and {a, b}. Suppose the minimum support is 50%, then Dcd = {{a, b, d}, {b, c, d}, {a, c}},
Dab = {{a, b}, {b}, {a}, {a, b}}. From Dcd, we get all frequent itemsets {d}, {b, d}, and {c}.
Note though {a} and {b} are also frequent in Dcd, they’re not listed since they contain
neither c nor d. They will be listed in the frequent itemsets of Dab, which are {a}, {b}, and
{a, b}.

To analyze the recurrence and required disk I/O’s of the general divide-and-conquer
algorithm when the decomposition strategy is projection, let us suppose that:

- The original database size is D bytes.

- The data structure is an FP-tree.

- The FP-tree constructed from original database D is T , and its size is |T | bytes.

- If a conditional FP-tree T ′ is constructed from an FP-tree T , then |T ′| ≤ c · |T |, for some
constant c < 1.

- The main memory mining method is the FP-growth method [8, 9]. Two database scans are
needed for constructing an FP-tree from a database.

- The block size is B bytes.

- The main memory available for the FP-tree is M bytes

In the first line of the algorithm in Figure 1, if T can not fit in memory, then projected
databases will be generated. We assumed that the size of the FP-tree for a projected
database is c·|T |. If c·|T | ≤ M , functionmainmine can be called for the projected database,
otherwise, the decomposition goes on. At pass m, the size of the FP-tree constructed from
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a projected database is cm · |T |. Thus, the number of passes needed by the divide-and-
conquer projection algorithm is 1+ ⌈logcM/T ⌉. Based on our experience and the analysis
in [8, 9], we can say that for all practical purposes the number of passes will be at most
two. For example, Let D = 100 Giga and T = 10 Giga, M = 1 Giga, c = 10%. Then the
number of passes is 1 + ⌈log0.1 2

30/(10× 230)⌉ = 2. In five passes we can handle databases
up to 100 Terabytes. Namely, we get 1 + ⌈log0.1 2

30/(10 × 240)⌉ = 5.
Assume that there are two passes, and that the sum of the sizes of all projected

databases is D′. There are two database scans for D, one for finding all frequent sin-
gle items, one for decomposition. Two scans need 2 × D/B disk I/O’s. The projected
databases have to be written to the disks first, then later each scanned twice for building
the FP-tree. This step needs 3 × D′/B disk I/O’s. Thus, the total disk number of disk
I/O’s for the general divide-and-conquer projection algorithm is at least

2 ·D/B + 3 ·D′/B. (1)

Obviously, the smaller D′, the better the performance.
One of the simplest projection strategies is to project the database on each frequent

item, which we call naive projection. First we need some formal definitions.

Definition 1 Let I be a set of items. By I∗ we will denote strings over I, such that each
symbol occurs at most once in the string. If α, β are strings, and ij an item, then α.β
denotes the concatenation of the string α with the string β.

For a string α, we shall denote by {α}, the set of items occurring in it.
Let D be an I-database. Then freqstring(D) is the string over I, such that each

frequent item in D occurs in it exactly once, and the items are in decreasing order of
frequency in D.

As an example, consider the {a, b, c, d}-database D = {{a, b, c}, {a, b, c, d}, {a, c}}. If
the minimum support is 60%, then freqstring(D) = acb. Note that {acb} = {a, c, b}.

Definition 2 Let D be an I-database, and let freqstring(D) = i1i2 · · · ik. For j ∈
{1, . . . , k} we define Dij = {τ ∩ {i1, . . . , ij} : ij ∈ τ, τ ∈ D}.

Let α ∈ I∗. We define Dα inductively: Dǫ = D, and let freqstring(Dα) = i1i2 · · · ik.
Then, for j ∈ {1, . . . , k}, Dα.ij = {τ ∩ {i1, . . . , ij} : ij ∈ τ, τ ∈ Dα}.

Obviously, Dα.ij is an {i1, . . . , ij}-database. The decomposition of Dα into Dα.i1 , . . . ,
Dα.ik is called the naive projection.

Definition 3 Let α ∈ I∗, ij ∈ I, and let Dα.ij be an I-database. Then freqsets(ξ,Dα.ij )
denotes the subsets of I that contain ij and are frequent in Dα.ij when the minimum
support is ξ. Usually, we shall abstract ξ away, and write just freqsets(Dα.ij)
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Lemma 1 Let Dα be an I-database, and freqstring(Dα) = i1i2 · · · ik. Then

freqsets(Dα) =
⋃

j∈{1,...,k}

freqsets(Dα.ij )

Proof. (⊆-direction). Let S ∈ freqsets(Dα), and suppose in is the item in S that is
least frequent in Dα. Since Dα.in is an {i1, . . . , in}-database, and transactions in Dα that
contain item ij are all in Dα.ij , if S is frequent in Dα, then S must be frequent in Dα.ij .
(⊇-direction). For any frequent itemset S ∈ freqsets(Dα.ij ), according to the definition,
the support of any itemset in Dα.ij is not greater than the support of it in Dα. Therefore,
S must be frequent in Dα.

Figure 2 gives a divide-and-conquer algorithm that uses naive projection. A transaction
τ in Dα will be partly inserted into Dα.ij if and only if τ contains ij . The parallel projection
algorithm introduced in [9] is an algorithm of this kind.

Procedure naivediskmine(Dα,M)

if |Dα| ≤ M then return mainmine( Dα)
else let freqstring(Dα) = i1i2 · · · in

return naivediskmine(Dα.i1 ,M) ∪
. . . ∪

naivediskmine(Dα.in ,M).

Figure 2: A simple divide-and-conquer algorithm for mining frequent itemsets from disk

Let’s analyze the disk I/O’s of the algorithm in Figure 2. As before, we assume that
there are two passes, that the data structure is an FP-tree, and that the main memory
mining method is FP-growth. If in Dǫ, each transaction contains on the average n frequent
items, each transaction will be written to n projected databases. Thus the total length of
the associated transactions in the projected databases is n+(n−1)+ · · ·+1 = n(n+1)/2,
the total size of all projected databases is (n+ 1)/2 ·D ≈ n/2 ·D.

There are two database scans for Dǫ, one for finding all frequent single items, and one
for decomposition. Two scans need 2 · D/B disk I/O’s. The projected databases have to
be written to the disks first, then later scanned twice each for building an FP-tree. This
step needs at least 3 · n/2 × D/B. Thus, the total disk I/O’s for the divide-and-conquer
algorithm with naive projection is

2 ·D/B + n · 3/2 ·D/B (2)

The recurrence structure of algorithm naivediskmine is shown in Figure 3. The reader
should ignore nodes in the shaded area at this point, they represent processing in main
memory.

In a typical application n, the average number of frequent items could be hundreds, or
thousands. It therefore makes sense to devise a smarter projection strategy. Before we go
further, we introduce some definitions and a lemma.
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D

D .a D .b D .c D .d

T .c T .dT .a

Ta.b Ta.c Ta.d

Tab.c Tab.d Tac.d

Tabc.d

Tb.c

Tbc.d

Tb.d Tc.d

T .b

Figure 3: Recurrence structure of Naive Projection

Definition 4 Let Dα be an I-database, and let freqstring(Dα) = β1.β2. · · · .βk, where
each βj is a string in I∗. We call β1.β2. · · · .βk a grouping of freqstring(Dα). For j ∈
{1, . . . , n}, we now define Dα.βj

= {τ ∩ {β1, . . . , βj} : τ ∈ Dα, τ ∩ βj 6= ∅}.
In Dα.βj

, items in {βj} are called master items, items in {β1, . . . , βj−1} are called slave
items.

For example, if freqstring(Dα) = abcde, β1 = abc, β2 = de gives the grouping abc.de
of abcde.

Definition 5 Let {α, β} ⊂ I∗, and let Dα.β be an I-database. Then freqsets(Dα.β)
denotes the subsets of I that contain at least one item in {β} and are frequent in Dα.β.

Lemma 2 Let α ∈ I∗, Dα be an I-database, and freqstring(Dα) = β1β2 · · · βk. Then

freqsets(Dα) =
⋃

j∈{1,...,k}

freqsets(Dα.βj
)

Proof. Straightforward from Lemma 1 and the definition of Dα.β.

Based on Lemma 2, we can obtain a more aggressive divide-and-conquer algorithm for
mining from disks. Figure 4 shows the algorithm aggressivediskmine. Here, freqstring(Dα)
is decomposed into several substrings βj , each of which could have more than one item.
Each substring corresponds to a projected database. A transaction τ in Dα will be partly
inserted into Dα.βj

if and only if τ contains at least one item a such that a ∈ {βj}. Since
there will be fewer projected databases, there will be less disk I/O’s. Compared with the
algorithm in Figure 2, we can expect that a large amount of disk I/O will be saved by the
algorithm in Figure 4.

Let’s analyze the recurrence and disk I/O’s of the aggressive divide-and-conquer algo-
rithm. The number of passes needed by the algorithm is still 1 + ⌈logcM/T ⌉ ≈ 2, since
grouping items doesn’t change the size of an FP-tree for a projected database. However,

8



Procedure aggressivediskmine(Dα,M)

if |Dα| ≤ M then return mainmine( Dα)
else let freqstring(Dα) = β1β2 · · · βk

return aggressivediskmine(Dα.β1
,M) ∪

. . . ∪
aggressivediskmine(Dα.βk

,M).

Figure 4: A more aggressive divide-and-conquer algorithm for mining frequent itemsets from disk

for disk I/O, suppose in Dǫ, each transaction contains on average n frequent items, and
that we can group them into k groups of equal size. Then the n items will be written to
the projected databases with total length n/k + 2 · n/k + . . . + k · n/k = (k + 1)/2 · n.
Total size of all projected databases is (k+1)/2 ·D ≈ k/2 ·D. The total disk I/O’s for the
aggressive divide-and-conquer algorithm is then

2 ·D/B + k · 3/2 ·D/B (3)

The recurrence structure of algorithm aggressivediskmine is shown in Figure 5. Com-
pared to Figure 3, we can see that the part of the tree that corresponds to decomposition
(the nonshaded part) is much smaller in Figure 5. Although the example is very small, it
exhibits the general structure of the two trees.

D

T .ab T .cd

T .b T .c T .dT .a

Ta.b Ta.c Ta.d

Tab.c Tab.d Tac.d

Tabc.d

Tb.c

Tbc.d

Tb.d Tc.d

D .ab D .cd

Figure 5: Recurrence structure of Aggressive Projection

If k ≪ n, we can expect that the aggressive divide and conquer algorithm will signifi-
cantly outperform the naive one.

3 Algorithm Diskmine

In this section we give the details of our divide-and-conquer algorithm for mining frequent
itemsets from secondary memory. We call the algorithm Diskmine. In the algorithm, the
FP-tree is used as data structure and the extension of FP-growth method, FP-growth* [7],

9



as method for mining frequent itemsets from an FP-tree. Before introducing the algorithm,
let’s first recall the FP-tree and the FP-growth* method.

3.1 The FP-tree and FP-growth* method

The FP-tree (Frequent Pattern tree) is a data structure used in the FP-growth method by
Han et al. [8]. It is a compact representation of all relevant frequency information in a
database. The nodes of the FP-tree stores an item name, item count, and a link. Every
branch of the FP-tree represents a frequent itemset, and the nodes along the branches
are stored in decreasing order of the frequency of the corresponding items, with leaves
representing the least frequent items. Compression is achieved by building the tree in such
a way that overlapping itemsets share prefixes of the corresponding branches.

The FP-tree has a header table associated with it. Single items and their counts are
stored in the header table in decreasing order of their frequency. The entry for an item
also contains the head of a list that links all the nodes of the item in the FP-tree.

The FP-growth method needs two database scans when mining all frequent itemsets.
The first scan counts the number of occurrences of each item. The second scan constructs
the initial FP-tree, which contains all frequency information of the original dataset. Mining
the database then becomes mining the FP-tree.

The FP-growth method relies on the following principle: if X and Y are two itemsets,
the count of itemset X ∪ Y in the database is exactly that of Y in the restriction of the
database to those transactions containing X. This restriction of the database is called the
conditional pattern base of X, and the FP-tree constructed from the conditional pattern
base is called X’s conditional FP-tree, which we denote by TX . We can view the FP-tree
constructed from the initial database as T∅, the conditional FP-tree for ∅. Note that for
any itemset Y that is frequent in the conditional pattern base of X, the set X ∪ Y is a
frequent itemset for the original database.1

The recursive structure of FPgrowth can be seen from the shaded area in Figure 3. In
the figure, we will enter the main memory phase for instance for the conditional database
Da. Then FP-growth first constructs the FP-tree Ta from Da. The tree rooted at Ta shows
the recursive structure of FP-growth, assuming for simplicity that the relative frequency
remains the same in all conditional pattern bases.

In [7], we extend the FP-growth method into the FP-growth* method by using an array
technique and other optimizations. The experimental results in the paper and those done
by the FIMI-organizers show that the FP-growth* method outperforms the FP-growth
method especially when the database is big or sparse [7, 18].

1In keeping with the notation introduced so far, we shall in the sequel write Tα when we mean the

FP-tree T{α}. Similarly we shall write Tα.i instead of T{α}∪{i}.
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The array technique

In the original FP-growth method [8], to construct an FP-tree from a database D, two
database scan are required. The first scan gets all frequent items, the second constructs
the FP-tree. And later, for each item a in the header of a conditional FP-tree Tα, two
traversals of Tα are needed for constructing the new conditional FP-tree Tα.i. The first
traversal finds all frequent items in the conditional pattern base of α.i, and initializes the
FP-tree Tα.i by constructing its header table. The second traversal constructs the new tree
Tα.i.

In the boosted FP-growth* method [7], a simple data structure, an array, is introduced
to omit the first scan of Tα. This is achieved by constructing an array Aα while building
Tα. More precisely, in the second scan of the original database we construct Tǫ, and an
array Aǫ. The array will store the counts of all 2-itemsets, each cell [j, k] in the array is a
counter of the 2-itemset {ij , ik}. All cells in the array are initialized to 0. When an itemset
is inserted into Tǫ, the associated cells in Aǫ are updated. After the second scan, the array
Aǫ contains the counts of all pairs of items frequent in Dǫ.

Next, the FP-growth* method is recursively called to mine frequent itemsets for each
item in header table of Tǫ. However, now for each item i, instead of traversing Tǫ along
the linked list starting at i to get all frequent items in i’s conditional pattern base, Aǫ[i, ∗]
gives all frequent items for i. Therefore, for each item i in Tǫ the array Aǫ makes the first
traversal of Tǫ unnecessary, and Tǫ.i can be initialized directly from Aǫ.

For the same reason, from a conditional FP-tree Tα, when we construct a new condi-
tional FP-tree for α.i, for an item i, a new array Aα.i is calculated. During the construction
of the new FP-tree Tα.i, the array Aα.i is filled. The construction of arrays and FP-trees
continues until the FP-growth method terminates.

Note that if for a database, if we have the array that stores the count of all pairs of
frequent items, then only one database scan is needed to construct an FP-tree from the
database.

3.2 Divide-and-conquer by aggressive projection

The algorithm Diskmine is shown in Figure 6. In the algorithm, Dα is the original database
or a projected database, and M is the maximal size of main memory that can be used by
Diskmine.

Diskmine uses the FP-tree as data structure and FP-growth* [7] as main memory mining
algorithm. Since the FP-tree encodes all frequency information of the database, we can
shift into main memory mining as soon as the FP-tree fits into main memory.

Since an FP-tree usually is a significant compression of the database, our Diskmine al-
gorithm begins optimistically, by calling trialmainmine, which starts scanning the database
and constructing the FP-tree. If the tree can be successfully completed and stored in main
memory, we have reached the bottom level of the recursion, and can obtain the frequent
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Procedure Diskmine(Dα,M)

scan Dα and compute freqstring(Dα)
call trialmainmine(Dα,M)
if trialmainmine(Dα,M) aborted then

compute a grouping β1β2 · · · βk of freqstring(Dα).
Decompose Dα into Dα.β1

, . . . ,Dα.βk

for j = 1 to k do begin

if {βj} is a singleton then

Diskmine(Dα.βj
,M)

else

mainmine(Dα.βj
)

end

else return freqsets(Dα)

Figure 6: Algorithm Diskmine

itemsets of the database by running FP-growth* on the FP-tree in main memory.

Procedure trialmainmine(Dα,M)
start scanning Dα and building the FP-tree

Tα in main memory.
if |Tα| exceeds M then

return the incomplete Tα

else

call FP-growth* (Tα) and return freqsets(Dα).

Figure 7: Trial main memory mining algorithm

If, at any time during trialmainmine we run out of main memory, we abort and
return the partially constructed FP-tree, and a pointer to where we stopped scanning
the database. We then resume processing Diskmine(Dα,M) by computing a grouping
β1, . . . , βk of freqstring(Dα), and then decomposing Dα into Dα.β1

, . . . ,Dα.βk
. We recur-

sively process each decomposed database Dα.βj
. During the first level of the recursion,

some groups βj will consist of a single item only. If {βj} is a singleton, we call Diskmine,
otherwise we call mainmine directly, since we put several items in a group only when we
estimate that the corresponding FP-tree will fit into main memory.

In computing the grouping β1, . . . , βk we assume that transactions in a very large
database are evenly distributed, i.e., if an FP-tree is constructed from part of a database,
then this FP-tree represents the whole FP-tree for the whole database. In other words, if
the size of the FP-tree is n for p% of the database, then the size of the FP-tree for whole
database is n/p · 100. Most of the time, this gives an overestimation, since an FP-tree
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increases fast only at the beginning stage, when items are encountered for the first time
and inserted into the tree. In the later stages, the changes to the FP-tree will be mostly
counter updates.

Procedure mainmine(Dα.β)
build a modified FP-tree Tα.β for Dα.β

for each i ∈ {β} do begin

construct the FP-tree Tα.i for Dα.i from Tα.β

call FP-growth* (Tα.i) and return freqsets(Dα.i).
end

Figure 8: Main memory mining algorithm

Since we know that there is only one master item in the database (for Dǫ, no master
item at all), an FP-tree is constructed without the master item. In Figure 8, since Dα.β is
for multiple master items, the FP-tree constructed from Dα.β has to contain those master
items. However, the item order is a problem for the FP-tree, because we only want to
mine all frequent itemsets that contain master items. To solve this problem, we simply use
the item order in the partial FP-tree returned by the aborted trialmainmine(Dα). This is
what we mean by a “modified FP-tree” on the first line in the algorithm in Figure 8.

The entire recurrence structure of Diskmine can be seen in Figure 5. Compared to the
naive projection in Figure 3 we see that since the aggressive projection uses main memory
more effective, the decomposition phase is shorter, resulting in less I/O.

Theorem 1 Diskmine(D) returns freqsets(D).

Proof. The correctness of Diskmine can be derived from the correctness of the FP-growth*
method in [7] and Lemma 2 in Section 2. In Diskmine, each item acts as master item in
exactly one projected database. If a projected database is only for one master item ij , the
result of FP-growth* method or a recursive call of Diskmine will be freqsets(Dij). If a
projected database is for a set {β} of master items, it contains all frequency information
associated with the master items. Since in the FP-growth* method, the order of the
items in an FP-tree doesn’t influence the correctness of the FP-growth* method, mainmine
indeed returns only frequent itemsets that contain master item(s), i.e. mainmine gives the
exact value of freqsets(Dα.β). According to Lemma 2, algorithm Diskmine then correctly
outputs all itemsets in frequent the original database.

3.3 Memory Management

Given a database Dα, to successfully apply the FP-growth* method, the basic main memory
requirement is that the size of the FP-tree Tα constructed from Dα, is less than the available
amount M of main memory. In addition, we need space for the descendant conditional
FP-trees that will be constructed during the recursive calls of FP-growth*.
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Suppose the main memory requirement for Tα plus its descendant FP-trees is m. If
M < m, but the difference m −M is not very big, the FP-growth* method could still be
run because the operating system uses virtual memory. However, there could be too many
page swappings which takes too much time and makes FP-growth* very slow. Therefore,
given M , for a very large database Dα, we have to stop the construction of the FP-tree Tα

and the execution of FP-growth* method before all physical main memory is used up.
Another problem is that we will construct a large number of FP-trees. Since there can

be millions of nodes in those FP-trees, inserting and deleting nodes is time consuming.
In the implementation of the algorithm, we use our own main memory management

for allocating and deallocating nodes, and calculating the main memory we have already
used. We assume that the main memory needed by an FP-tree is proportional to the
number of nodes in the FP-trees. We also assume that the workspace needed for calling
FP-growth*(T) method on an FP-tree is roughly 10% of the size of the FP-tree T . Here,
10% is a liberal assumption according to the experimental result in [8]. Later in this
section, a more accurate value will be given. If the size of FP-tree is more than 0.9 ·M , we
conclude that M is not big enough to store whole FP-tree Tα.

Since all memory for nodes in an FP-tree is deallocated after a call of FP-growth* ends,
a chunk of memory is allocated for each FP-tree when we create the tree, and the chunk
size is changeable. After generating all frequent itemsets from the FP-tree, the chunk is
discarded, and all nodes in the tree are deleted. Thus we successfully avoid freeing nodes
in FP-trees one by one, which would take too much time.

3.4 Applying the Array Technique

In Diskmine, the array technique is also be applied to save FP-tree traversals. Furthermore,
when projected databases are generated, the array technique can save a great number of
disk I/O’s.

Recall that in trialmainmine, if an FP-tree can not be accommodated in main memory,
the construction stops. Suppose now we decided to stop scanning the database. Then later,
after generating all projected databases, for a projected database with only one master item,
two database scans are required to construct an FP-tree for the master item. The first
scan gets all frequent items for the master item, the second scan constructs the FP-tree.
For a projected database with several master items, though the FP-tree constructed from
the database uses the modified item order (the order from the header of the FP-tree in
the previous level of the recursion), to construct new FP-trees for the master items, two
FP-tree traversals are needed. To avoid the extra scan, in Diskmine we calculate an array
for each FP-tree. When constructing the FP-tree from Dα, if it is found that the tree
can not fit in main memory, the construction of the FP-tree Tα stops, but the scan of the
database Dα continues so that we finish filling the cells of the array Aα. Here, some extra
disk I/O’s are spent, but the payback will be that we save one database scan for each
projected database. Furthermore, finishing the scanning of Dα doesn’t require any more
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main memory, since the array Aα is already there.
From the array, for each projected database, the count of each pair of master items

and the count of each pair of master item and slave item can be known. As an ex-
ample, suppose a projected databases is only for one master item ij and slave items
i1, . . . , ij−1. To mine all frequent itemsets, from the line for ij in the array, accurate counts
for [ij , ij−1], [ij , ij−2], . . . , [ij , i1] can be easily found. If there were no array we would need
an extra database scan.

With the array, we can also make a projected database drastically smaller. In the
definition of Dα.βj

, we see that Dα.βj
is an {β1, . . . , βj}-database. Actually, by checking

the array Aα, if a slave item is found not frequently co-occurring with any master item
in βj , it’s useless to include the slave item in Dα.βj

, because no frequent itemsets mined
from Dα.βj

will contain that slave item. For same reason, if we also find that a master
item a is not frequent with any other master item or slave item, it will be not written
to Dα.βj

, either. However, the frequent itemset α.a is outputted. Furthermore, if from
the array, we see that a master item a is only frequent with one item (master or slave)
b, frequent itemsets α.a and α.a.b are outputted directly, and item a will not appear in
Dα.βj

. Therefore, by looking through the array, we find all slave items, such that they are
not frequent with any master item in βj , and all master items, such that their number
of frequent items in {β1, . . . , βj} is 0 or 1. When generating Dα.βj

, all those items are
removed from the transactions we put in Dα.βj

.

3.5 Statistics

t(Dα) Number of transactions in Dα

Aα[j, k] Count of frequent item pair {ij , ik} in Dα

t(Tα) Number of transactions used for constructing Tα

ν(Tα) Number of nodes in Tα

ν[j](Tα) Number of nodes in Tα if we retain only nodes for items i1, . . . , ij
µ[j](Tα) Number of nodes in T , where a node P for item ik is counted if

it satisfies the following conditions: 1) P is in a branch that contains ij
2) ik ∈ {i1, . . . , ij} 3) Aα[j, k] > ξ

Table 1: Statistics Information

Algorithm Diskmine collects some statistics on the partial FP-tree Tα and the rest of
database Dα, for the purpose of grouping items together. Table 1 shows the statistics
information. In the table, Dα is the original database or the current projected database,
and freqstring(Dα)= i1 . . . ij . . . ik . . . in. The partial FP-tree is Tα and ξ is the absolute
value of the minimum support.

In the table, the array discussed in Section 3.4 is also listed as statistics. Values for the
cells of the array are accumulated during the construction of the partial Tα. If trialmain-
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mine is aborted, the rest of the statistics is collected by scanning the remaining part of Dα.
Values in ν[j](Tα) can also be obtained during the construction of Tα. Here ν[j](Tα) records
the size of the FP-tree after Tα is trimmed and only contains items i1, . . . , ij . Notice that
ν(Tα) is equal to ν[n](Tα). This is also the size of a tree that can fit in main memory. The
value for µ[j](Tα) can be obtained by traversing Tα once, it gives the size of the FP-tree
Tα.ij .

It might seem that collecting all this statistics is a large overhead, however, since all
work is done in main memory, it doesn’t take much time. And the time saved for disk
I/O’s is far more than the time spent on gathering statistics.

3.6 Grouping items

In Figure 6, the fourth line computes a grouping β1β2 · · · βk of freqstring(Dα). Each
string β corresponds to a group and each β consists of at least one item. For each β, a
new projected database Dα.β will be computed from Dα, then written to disk and read
from disk later. Therefore, the more groups, the more disk I/O’s. In other words, there
should be as many items in each β as possible. To group items, two questions have to be
answered.

1. If β currently only has one item ij , after projection, is the main memory big enough
for accommodating Tα.ij constructed from Dα.ij and running the FP-growth* method
on Tα.ij?

2. If more items are put in β, after projection, is the main memory big enough for
accommodating Tα.β constructed from Dα.β and running FP-growth* on Tα.β only
for items in β?

Answering the first question is pretty easy, since for each item ij , the number µ[j](Tα)
gives the size of an FP-tree if the tree is constructed from the partial FP-tree Tα. Therefore
µ[j](Tα) can be used to estimate the size of FP-tree Tα.ij . By the assumption that the
transactions in Dα are evenly distributed and that the partial Tα represents the whole
FP-tree for Dα, the estimated size of FP-tree Tα.ij is µ[j](Tα) · t(Dα)/t(Tα).

Before answering the second question, we introduce the cut point from which the first
group can be easily found.

Finding the cut point. Recall the order that FP-growth* uses in mining frequent item-
sets. Starting from the least frequent item in, all frequent itemsets that contains in are
mined first. Then the process is repeated for in−1, and so on. Notice that when min-
ing frequent itemsets for ik, all frequency information about ik+1, . . . , in is useless. Thus,
though a complete FP-tree Tα constructed from Dα could not fit in main memory, we can
find many k’s such that the trimmed FP-tree containing only nodes for items ik, . . . , i1
will fit into main memory. All frequent itemsets for ik, . . . , i1 can be then mined from one
trimmed tree. We call the biggest of such k’s the cut point. At this point, main memory
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is big enough for storing the FP-tree containing only ik, . . . , i1, and there is also enough
main memory for running FP-growth* on the tree. Obviously, if the cut point k can be
found, items ik, . . . , i1 can be grouped together. Only one projected database is needed for
ik, . . . , i1.

There are two ways to estimate the cut point. One way is to get cut point from
the value of t(Dα) and t(Tα) in Table 1. Figure 9 illustrates the intuition behind the
cut point. In the figure, since the partial FP-tree for t(Tα) of t(Dα) transactions can be
accommodate in main memory, we can expect that the FP-tree containing ik, . . . , i1, where
k = ⌊n · t(Tα)/t(Dα)⌋, also will fit in main memory.

τ
1

τ
2

i
1

i
2

i
k

i
n

τ
l

τ
m

Figure 9: Cut Point. Here l = t(Tα), and m = t(Dα)

The above method works well for many databases, especially for those databases whose
corresponding FP-trees have plenty of sharing of prefixes for items from i1 to the cut point.
However, if the FP-tree constructed from a database doesn’t share prefixes that much, the
estimation could fail, since now the FP-tree for items from i1 to the cut point could be too
big. Thus, we have to consider another method. In Table 1, ν[j](Tα) records the size of the
FP-tree after the partial FP-tree Tα is trimmed and only contains items i1, . . . , ij . Based
on ν[j](Tα) the number of nodes in the complete FP-tree for item ij can be estimated as
ν[j](Tα) · t(Dα)/t(Tα). Now, finding the cut point becomes finding the biggest k such that
ν[k](Tα) · t(Dα)/t(Tα) ≤ ν(Tα), and ν[k + 1](Tα) · t(Dα)/t(Tα) > ν(Tα).

Sometimes the above estimation only guarantees that the main memory is big enough
for the FP-tree which contains all items between i1 and the cut point, while it doesn’t guar-
antee that the descendant trees from that FP-tree can fit in main memory. This is because
the estimation doesn’t consider the size of descendant trees correctly (in Section 3.3, we
assumed that the size of a conditional tree is 10% of its nearest ancestor tree). Actually,
from µ[j](Tα) we can get a more accurate estimation of the size of the biggest descen-
dant tree. To find the cut point, we need to find the biggest k, such that (ν[k](Tα) +
µ[j](Tα)) · t(Dα)/t(Tα) ≤ ν(Tα), and (ν[k + 1](Tα) + µ[m](Tα)) > ν(Tα), where j ≤ k,
µ[j](Tα) = maxj∈{1,...,k}µ[j](Tα), and m ≤ k + 1, µ[m](Tα) = maxm∈{1,...,k+1}µ[m](Tα).

Grouping the rest of the items. Now we answer the second question, how to put more
items into a group? Here we still need µ[j](Tα). Starting with µ[cutpoint+ 1](Tα), we test
if µ[cutpoint+ 1](Tα) · t(Dα)/t(Tα) > ν(Tα). If not, we put next item cutpoint+2 into the
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group, and test if (µ[cutpoint+ 1](Tα) + µ[cutpoint+ 2](Tα)) ·t(Dα)/t(Tα) > ν(Tα). We
repeatedly put next item in freqstring(D) into the group until we reach an item ij , such
that

j∑

m=cutpoint+1

µ[m](Tα) · t(Dα)/t(Tα) > ν(Tα).

Then starting from ij , we put items into next group, until all items find its group.
Why can we group items together? This is because even if we construct Tα.ij , . . . , Tα.ik

from the projected databases Dα.βij
, . . . ,Dα.βik

and put all of them into main memory,

the main memory is big enough according to the grouping condition. At this stage,
Tα.ij , . . . , Tα.ik all can be constructed by scanning Dα once. Then we mine frequent item-
sets from the FP-trees. However, we can do better. Obviously Tα.ij , . . . , Tα.ik overlap a
lot, and the total size of the trees is definitely greater than the size of Tα.β. It also means
that we can put more items into each β, only if the size of Tα.β is estimated to fit in main
memory. To estimate the size of Tα.β, part of Tα has to be traversed by following the links
for the master items in Tα.

3.7 Database projection

After all items have found their groups, the original database will be projected to small
databases according to Definition 4. To save disk I/O’s, three techniques can be used:

1. In a group β, if the number of master items is greater than half of the number
of frequent items (this often happens in the group that contains cut point), then
Dα.β is not necessary computed. To mine all frequent itemsets, Tα.β can be directly
constructed from Dα by reading it once. This is because Dα.β is not much smaller
than Dα, while the disk I/O’s for reading from Dα once is less than the disk I/O’s
for writing and reading Dα.β once.

2. Since the partial tree Tα now in main memory, records all frequency information of
those transactions that have been read so far, when computing projected databases,
the frequency information of those transactions can be gotten from Tα. Thus disk
I/O’s are only spent on reading from those transactions that did not contribute to
Tα.

3. As discussed in Section 3.4, by using the array technique, in group βj , we find all
slave items, such that they are not frequent with any master item in βj , and all
master items, such that their number of frequent items in {β1, . . . , βj} is 0 or 1.
When computing Dα.βj

, all those items are removed from new transactions in Dα.βj
.
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3.8 The disk I/O’s

Let’s re-count the disk I/O’s used in Diskmine. From the first scan we get all frequent
items in Dǫ, which needs D/B disk I/O’s. In the second scan we construct a partial FP-
tree Tǫ, then continue scanning the rest database for statistics, which needs another D/B
disk I/O’s. Suppose then that k projected databases have to be computed. According to
Section 2, the total size of the projected databases is approximately k/2·D. For computing
the projected databases, the frequency information in Tǫ is reused, so only part of Dǫ is
read. We assume on average half of Dǫ is read at this stage, which means 1/2 ·D/B disk
I/O’s. Writing and later reading k projected databases will take 2·k/2·D/B = k ·D/B disk
I/O’s. Suppose all frequent itemsets can be mined from the projected databases without
going to the third level. Then the total disk I/O’s is

3/2 ·D/B + k ·D/B (4)

Compared with formula 3, Diskmine saves at least k/2 ·D/B disk I/O’s, thanks to the
various techniques used in the algorithm.

4 Experimental Evaluation and Performance Study

In this section, we present the results from a performance comparison of Diskmine with
the Parallel Projection Algorithm in [9] and the Partitioning Algorithm introduced in [15].
The scalability of Diskmine is also analyzed, and the accurateness of our memory size
estimations are validated.

As mentioned in Section 2, the Parallel Projection Algorithm is a naive divide-and-
conquer algorithm, since for each item a projected database is created. For performance
comparison, we implemented Parallel Projection Algorithm, by using FP-growth as main
memory method, as introduced in [9]. The Partitioning Algorithm is also a divide-and-
conquer algorithm. We implemented the partitioning algorithm by using the Apriori imple-
mentation [2]. We chose this implementation, since it was well written and easy to adapt
for our purposes.

We ran the three algorithms on both synthetic datasets and real datasets. Some syn-
thetic datasets have millions of transactions, and the size of the datasets ranges from several
megabytes to several hundreds gigabytes. Without loss of generality, only the results for
some synthetic datasets and a real dataset are shown here.

All experiments were performed on a 2.0Ghz Pentium 4 with 256 MB of memory under
Windows XP. For Diskmine and the Parallel Projection Algorithm, the size of the main
memory is given as an input. For the Partitioning Algorithm, since it only has two database
scans and each main-memory-sized partition and all data structures for Apriori are stored
into main memory, the size of main memory is not controlled, and only the running time
is recorded.
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We first compared the performance of three algorithms on synthetic dataset. Dataset
T100I20D100K was generated from the application of [1]. The dataset has 100,000 transac-
tions and 1000 items, and occupies about 40 megabytes of memory. The average transaction
length is 100, and the average pattern length is 20. The dataset is very sparse and FP-tree
constructed from the dataset is bushy. For Apriori, a large number of candidate frequent
itemsets will be generated from the dataset. When running the algorithms, the main mem-
ory size was given as 128 megabytes. Figure 10(a) shows the experimental result. In the
figure, “Naive Algorithm” represents the Parallel Projection Algorithm, and “Aggressive
Algorithm” represents the Diskmine algorithm.
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Figure 10: Experiments on Synthetic Data and Real Data

From Figure 10 (a), we can see that the Partitioning Algorithm is the slowest is the
group. The Naive Algorithm, however, is not slower than the Aggressive Algorithm if we
only compare their CPU time. In [7], where we concerned about main memory mining,
we found that if a dataset is sparse the boosted FPgrowth* method has a much better
performance than the original FProwth. The reason here the CPU time of the Aggressive
Algorithm is not always less than that of Naive Algorithm is that the Aggressive Algorithm
has to spend CPU time on calculating statistics. On the other hand, as expected, we can
see in the figure that the disk I/O time of the Aggressive Algorithm is orders of magnitude
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smaller than that of the Naive Algorithm. In Figure 10 (b) we compare the total runnng
times. We can see that the CPU overhead used by the Aggressive Algorithm now become
insignificant compared to the savings in disk I/O.

We then ran the algorithms on a real dataset Kosarak, which is used as a test dataset
in [18]. The dataset is about 40 megabytes. Since it is a dense dataset and its FP-tree is
pretty small, we set the main memory size as 16 megabytes for the experiments. Results
are shown in Figure 10 (c).

In Figure 10 (b), the Partitioning Algorithm is still the slowest. This is because it
generates too many candidate frequent itemsets. Together with the data structures, these
candidate sets use up main memory and virtual memory was used. We can also again notice
that the CPU time of the Naive Algorithm is less than that of the Aggressive Algorithm.
This is because Kosarak is a dense dataset so the array technique doesn’t help a lot. In
addition, calculating the statistics takes much time. The disk I/O’s for the Aggressive
Algorithm are still remarkably fewer than the disk I/O’s for the Naive Algorithm.

To test the effectiveness of the techniques for grouping items, we run Diskmine on
T100I20D100K and see how close the estimation of the FP-tree size for each group is to
its real size. We still set the main memory size as 128 megabytes, the minimum support
is 2%. When generating the projected databases, items were grouped into 7 groups (the
total number of frequent items is 826). As we can see from Figure 11 (a), in all groups, the
estimated size is always slightly than the real size. Compared with the Naive Algorithm,
which constructs an FP-tree for each item from its projected database, the Aggressive
Algorithm almost fully uses the main memory for each group to construct an FP-tree.
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Figure 11: Estimation Effect and Scalability of Diskmine

As a divide-and-conquer algorithm, one of the most important properties of Diskmine
is its good scalability. We ran Diskmine on a set of synthetic datasets. In all datasets, the
item number was set as 10000 items, the average transaction length as 100, and the average
pattern length as 20. The number of the transactions in the datasets varied from 200,000
to 2,000,000. Datasets size ranges from 100 megabytes to 1 gigabyte. Minimum support
was set as 1.5%, and the available main memory was 128 megabytes. Figure 11 (b) shows
the results. In the figure, the CPU and the disk I/O time is always kept in a small range
of acceptable values. Even for the datasets with 2 million transactions, the total running
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time is less than 1000 seconds. Extrapolating from these figures using formula (4), we can
conclude that a dataset the size of the Library of Congress collection (25 Terabytes) could
be mined in around 18 hours with current technology.

5 Conclusions

We have introduced several divide-and-conquer algorithms for mining frequent itemset from
secondary memory. We have analyzed the recurrences and disk I/O’s of all algorithms.

We then gave a detailed divide-and-conquer algorithm which almost fully uses the
limited main memory and saves an numerous number of disk I/O’s. We introduced many
novel techniques used in our algorithm.

Our experimental results show that our algorithm successfully reduces the number
of disk access, sometimes by orders of magnitude, and that our algorithm scales up to
terabytes of data. The experiments also validates that the estimation techniques used in
our algorithm are accurate.

For future work, we notice that there are very few efficient algorithm for miningmaximal
frequent itemsets and closed frequent itemsets [13, 14, 17, 20] from very large databases.
Unlike in Diskmine, where the frequent itemsets mined from all projected databases are
globally frequent, a maximal frequent itemset or a closed frequent itemset mined from a
projected database is only locally maximal or closed. As a challenge, a data structure,
whose size may be also very big, must be set for recording all already discovered maximal
or closed frequent itemsets. We also notice that our implementation of the partitioning
algorithm is based on an existing Apriori implementation, which is not necessary highly
optimized. As we know, there are situations when there are not too many candidate
itemsets in a database, but the FP-tree constructed from the database is pretty big. In
this situation the Partitioning Algorithm only needs two database scans and all frequent
items can be nicely mined in main memory, or with very little I/O for keeping the candidate
sets in virtual memory. In this situation Diskmine also needs two database scans, and it
additionally needs to decompose the database. Therefore, exploring whether some clever
disk-based datastructure would make the partition approach scale, is another interesting
direction for further research.
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