
Online Hierarchical Clustering in a Data Warehouse Environment

Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger

Institute for Computer Science, University of Munich
{achtert,boehm,kriegel,kroegerp}@dbs.ifi.lmu.de

Abstract

Many important industrial applications rely on data
mining methods to uncover patterns and trends in large
data warehouse environments. Since a data warehouse
is typically updated periodically in a batch mode, the
mined patterns have to be updated as well. This re-
quires not only accuracy from data mining methods but
also fast availability of up-to-date knowledge, particu-
larly in the presence of a heavy update load. To cope
with this problem, we propose the use of online data
mining algorithms which permanently store the discov-
ered knowledge in suitable data structures and enable
an efficient adaptation of these structures after inser-
tions and deletions on the raw data. In this paper, we
demonstrate how hierarchical clustering methods can be
reformulated as online algorithms based on the hierar-
chical clustering method OPTICS, using a density esti-
mator for data grouping. We also discuss how this al-
gorithmic schema can be specialized for efficient online
single-link clustering. A broad experimental evaluation
demonstrates that the efficiency is superior with signif-
icant speed-up factors even for large bulk insertions and
deletions.

1 Introduction

Many companies store terabytes of corperate data in
large-scale data warehouses. This tremendous amount
of data can only be fully exploited and utilized by ef-
ficient and effective data mining tools. Industrial ap-
plications such as decision support systems in a data
warehouse environment require not only high accuracy
from data analysis methods but also fast availability of
up-to-date knowledge. The challenge is to recall cur-
rent knowledge from anywhere at any time with a delay
of no more than a few minutes — a prohibitive demand
for many data mining algorithms which are able to gain
knowledge only from scratch using highly complex op-

erations.

To cope with this problem of updating mined pat-
terns in a data warehouse environment, we propose the
use of data mining algorithms which permanently store
the acquired knowledge in suitable data structures and
facilitate an efficient adaptation of this stored knowl-
edge whenever the raw data from which the knowl-
edge is drawn changes. We call such a method an on-
line data mining algorithm, and its conventional coun-
terpart is called offline. When speaking of a data
warehouse environment, we do not anticipate a cer-
tain architecture, but address an environment in which
changes in the transactional database are collected over
some period (e.g. daily) and the data warehouse is up-
dated using batch operations, i.e. bulk insertions and
deletions. Therefore, it is important that online data
mining algorithms efficiently support insertions, dele-
tions and updates not only of single data items but
also for larger sets. Depending on the size of the bulk
to be inserted, deleted, or updated, the response of an
online data mining algorithm is much faster compared
to its offline competitor. Let us note that the concepts
presented in this paper are independent of the physical
process of incremental data warehouse maintainance
(cf. e.g. [11] for a discussion on that topic).

One of the major data mining tasks is clustering
which aims at partitioning the data set into groups
(clusters) of similar objects. Hierarchical algorithms
determine a hierarchy of nested clusters. Widespread
methods such as single-link, complete-linkage, aver-
age linkage [8] or OPTICS [1] represent and visual-
ize cluster hierarchies by dendrograms or reachability
diagrams. A dendrogram (cf. Figure 1 (right)) is a
(usually unbalanced) tree where the root represents the
complete data set, each leaf node represents a single ob-
ject and the internal nodes represent the cluster struc-
ture. A reachability diagram (cf. Figure 1 (left)) can
be regarded as a linearization of this tree by a depth-
first traversal, depicting only the degree of similarity of
the objects in a cluster. Both structures visualize the

In Proc. 5th IEEE International Conference on Data Mining (ICDM), Houston, TX, 2005

hierarchical cluster structure of the data set and can
be transferred into each other [12].

Both the dendrogram as well as the reachability dia-
gram are exactly those knowledge representations that
need to be stored permanently and need to be updated
accordingly when reformulating a hierarchical cluster-
ing algorithm from the conventional offline version into
the new online version. In this paper, we focus on
reachability diagrams, mainly because the online main-
tainance is easier to handle as we will see later. By
doing this we do not sacrifice generality, due to the
equivalence of dendrograms and reachability diagrams.
We show how this structure can be efficiently updated
whenever the data set changes due to insertions, dele-
tions or update operations.

The rest of the paper is organized as follows: In
Section 2 we discuss related work and different meth-
ods to represent the hierarchical clustering structure.
Section 3 proposes algorithms for hierarchical online
clustering. Section 4, presents a broad experimental
evaluation. Section 5 concludes the paper.

2 Related Work

2.1 Online Clustering Methods

Clustering is one of the primary data mining tasks.
A huge amount of clustering algorithms have been pro-
posed in the past years (see e.g. [8] for an overview).
Since we tackle the problem of hierarchical clustering,
we focus on discussing recent work on online hierar-
chical clustering in this paper, rather than online algo-
rithms for flat partitioning clustering algorithms.

Several methods have been proposed for online hier-
archical clustering, e.g. SLINK [13] for single-linkage,
CLINK [6] for complete-linkage, GRIN [5] based on the
gravity theory in physics, and IHC [14]. All thesse ap-
proaches suffer from at least one of the following draw-
backs: (1) The algorithms only provide the possibility
to handle insertions of data objects. Deletions cannot
be handled in an online fashion. (2) The algorithms
can only process one update object at a time and are
usually difficult to generalize to manage sets of update
objects. Thus, they are not efficient for large bulk up-
dates which frequently occur in a data warehouse en-
vironment. In this paper, we propose an algorithmic
schema that overcomes these limitations, i.e. enables
efficient online hierarchical clustering when inserting
and deleting huge bulks of data objects.

In [4] a compression technique for hierarchical clus-
tering called “Data Bubbles” is proposed (recently ex-
tended in [15]). In [10], the authors propose an incre-
mental summarization method based on Data Bubbles

which can be applied to dynamic hierarchical cluster-
ing. Since Data Bubbles tend to miss details in the
cluster hierarchy when increasing the compression rate,
the benefit of improving the runtime is limited by the
accuracy. The approach of compressing data by Data
Bubbles, however, is orthogonal to the approach pro-
posed in this paper: Online hierarchical clustering can
be applied to the original data or to compressed data.

The clustering of a data stream is to some degree re-
lated to the online clustering in data warehouses. Both
methodologies aim at providing the user with up-to-
date information on clusters very quickly in a dynamic
environment. However, data streams impose different
requirements on clustering algorithms and the entire
data mining process (see e.g. [2, 7]). In particular, in a
data warehouse, the clustering algorithm has access to
all points currently in the database and not necessar-
ily only to the most recently inserted points as usually
in case of stream data. In addition, when clustering
stream data, the algorithm is restricted to sequential
access to newly inserted objects. This restriction does
obviously not apply to algorithms for online cluster-
ing in a data warehouse environment. Our solutions
are therefore different from the data stream clustering
context in these two aspects. In particular, we empir-
ically show that our bulk update algorithms are con-
siderably more efficient than a sequential processing of
each single object in the update bulk.

In [9] an preliminary incremental version of OPTICS
is presented. However, this approach has no bulk up-
date mode and thus, cannot handle large sets of up-
dates.

2.2 Computing and Representing Hierarchical
Clustering Structures

Hierarchical clustering algorithms compute a hier-
archical decomposition of the data objects. The hier-
archical clustering structure is usually visualized using
a dendrogram (cf. Figure 1 (right)). One leaf of this
tree corresponds to one data object. The root repre-
sents the entire database. A node in the dendrogram
represents a cluster containing all child nodes.

A well-known algorithmic schema constructs a den-
drogram in an agglomerative fashion. It starts with
each object of the database placed in a unique clus-
ter (leaf nodes) and then merges in each step that pair
of clusters having minimal distance until all data ob-
jects are contained in one cluster. Algorithms differ
in the definition of the distance between clusters, e.g.
the single-link method [13] defines the distance between
two sets of objects as the distance of the closest pair
between both sets. Most popular distance measures be-

2

datasetreachability diagram dendrogram

Figure 1. A reachability diagram (left) and a dendrogram (right) for a sample data set (middle).

tween clusters (e.g. single-link, average-link, complete-
link) usually favor clusters of certain shapes.

In [1] the hierarchical algorithm called OPTICS is
presented which uses a density-based clustering notion.
In particular, OPTICS takes the density in the neigh-
borhood of an object into account, using two input
parameters, ε and minPts . The core distance of o ∈ D,
denoted by CDist(o), measures the density around o
and is computed as CoreDist(o) = nn-distminPts(o) if
|Nε(o)| ≥ minPts else CoreDist(o) = ∞. Nε(o) de-
notes the ε-neighborhood of o and nn-distk(o) denotes
the k-nearest neighbor distance of o. The reachabil-
ity distance of an object p ∈ D relative from object
o ∈ D w.r.t. ε ∈ � and minPts ∈ � is then de-
fined as RDist(o, p) = max(CDist(o), δ(o, p)), where
δ is the distance function. The reachability distance
of p from o is an asymmetric distance measure that
takes the density around o (its core distance) into ac-
count. Let us point out that for ε=∞ and minPts=2
the reachability distance of p from o is δ(o, p)), since
CDist(o) = δ(o, p)).

The OPTICS algorithm computes a so-called cluster
ordering of a database w.r.t. the two input parameters
ε and minPts . In addition, the core distance and a
“suitable” reachability distance is stored for each ob-
ject. This information is enough to extract the hierar-
chical clustering structure of the data set. The algo-
rithm starts with an arbitrary object o ∈ D, assigns a
reachability distance of ∞ to o and expands the cluster
order if the core distance of o is smaller than the input
parameter ε. The expansion is performed by inserting
the objects p ∈ Nε(o) into a seed list. This seed list is
organized as a heap, storing that object q as first object
in the list, having the minimum reachability distance
to all the already processed objects. The next object to
be inserted in the cluster ordering is always the first ob-
ject in the seed list. If the core distance of this object is
smaller or equal to ε, all objects in the ε-neighborhood
are again inserted into or updated in the seed list. If
the seed list is empty and there are still some not yet
processed objects in D, we have a so-called “jump”.

OPTICS selects another arbitrary not yet handled ob-
ject in D to further expand the cluster ordering CO as
described above.

The resulting cluster ordering can be visualized very
intuitively and clearly by means of a so-called reacha-
bility diagram, even for very large datasets. A reach-
ability diagram is a 2D visualization of a cluster or-
dering, where the objects are plotted according to the
cluster ordering along the x-axis, and the reachability
distance of each object along the y-axis (cf. Figure 1
(left)). Clusters are “valleys” in the diagram.

In contrast to other methods, OPTICS does not fa-
vor clusters of a particular size or shape. Single-link
clustering is in fact a special parametrisation of OP-
TICS. A single-link clustering can be computed using
OPTICS with ε=∞ and minPts=2.

3 Online Bulk Updates of Hierarchical
Clustering Structures

As discussed above, usually a reachability diagram
can be transformed into a dendrogram and vice versa
[12]. Due to these relationships, we can develop on-
line algorithms for bulk insertions and deletions using
reachability diagrams as a representation of a hierar-
chical clustering structure without loosing generality.
We propose algorithmic schemata called OnlineOP-
TICS that can be used for efficient online clustering
in both worlds — agglomerative single-link clustering
and density-based clustering.

In the following, we call the insertion or deletion
of a bulk of objects an update operation. The bulk of
update objects is denoted by U. We further assume
D to be a database of n objects and δ to be a metric
distance function on the objects in D.

3.1 General Ideas and Concepts

OPTICS computes a cluster ordering. In order to
maintain a cluster ordering, we first formalize it.

3

……

o q

o is predecessor of p and q: PRE(p)=o and PRE(q)=o

p and q are the successors of o: SUCC(o) = {p,q}

p
cluster

ordering

reachability

distance

Figure 2. Visualization of predecessor and
successors.

Definition 1 (cluster ordering) Let minPts ∈ �,
ε ∈ �, and CO be a permutation of the objects in
D. Each o ∈ D has additional attributes o.P , o.C and
o.R, where o.P ∈ {1, . . . , n} symbolizes the position of
o in CO. We call CO a cluster ordering w.r.t. ε and
minPts if the following conditions hold:

(1) ∀p ∈ CO : p.C = CDist(p)

(2) ∀p ∈ CO : p.P = i ⇒
p.R = min{RDist(x, y) |x.P < i ∧ y.P ≥ i},

where min ∅ = ∞.

Condition (1) states that p.C is the core distance of ob-
ject p. Intuitively, condition (2) states that the order is
built by starting at an arbitrary object in D and then
selecting at each position i in CO that object p hav-
ing the minimum reachability distance from any object
before i. p.R is this minimum reachability distance as-
signed to object p during the generation of CO. The
object p which is responsible for the choice of object
o at position o.P is called the predecessor of o in CO,
denoted by Pre(o). We say that o has been “reached”
from its predecessor. If o has not been reached from
any other object, its reachability distance o.R in CO
is ∞, and thus, its predecessor is undefined. Analo-
gously, the successors of on object o in CO, denoted
by Suc(o), are those objects having o as their prede-
cessor, i.e. Suc(o) = {p ∈ CO |Pre(p) = o}. The
successors of an object o include all objects in the clus-
ter ordering that have been reached from o. Obviously,
there may also be objects that do not have any succes-
sors. Both concepts of predecessor and successors are
visualized in Figure 2.

As stated above, the cluster ordering is exactly that
representation we need for an efficient online recon-
struction of the hierarchical clustering structure. In
particular, for each object o in the cluster ordering,
we compute its position (o.P), its core distance (o.C),
the “suitable” reachability distance (o.R), and in addi-

tion to the original OPTICS algorithm its predecessor
(Pre(o)) and its successors (Suc(o)) on the fly during
the original OPTICS run or during reorganization.

3.2 Affected Objects

In case of an update operation, condition (2) of Defi-
nition 1 may be violated. Recomputing the entire clus-
ter ordering using the offline OPTICS algorithm re-
quires the computation of one range query for each ob-
ject in the database. However, in most cases, several
parts of the cluster ordering remain unchanged. For
these parts of the cluster ordering, we do not need to
compute range queries. The idea of an online update is
to save unnecessary range queries and distance calcu-
lations during reconstruction. In the following, we say
that if we decide to compute a range query around an
object, this object is affected by the update and needs
reorganization.

To determine the objects that are affected by up-
date operations, we make the following considerations.
Due to an update operation, the core distance of some
objects may change. As a consequence, the reachabil-
ity distances of some objects that were “reached” from
these objects in the cluster ordering may also change,
causing the above mentioned violation of condition (2)
in Definition 1. We call the objects with changing core
distances directly affected objects. Let NNk(q) be the
set of the k-nearest neighbors of q ∈ D. The set of re-
verse k-nearest neighbors of an object p ∈ D is defined
as Revk(p) = {q ∈ D | p ∈ NNk(q)}.
Definition 2 (directly affected objects) Let U be
the update set and CO be a cluster ordering of D w.r.t.
ε ∈ � and minPts ∈ �. The set of directly affected ob-
jects due to an update operation, denoted by DAff(U),
is defined as
DAff(U) = {o ∈ RevminPts (u) | u ∈ U ∧ δ(o, u) ≤ ε}.

In fact, not all objects in DAff(U) must change
their core distances. It may happen that an object
o ∈ DAff(U) has a core distance of already ∞. Then,
in case of deletion, the core distance of o obviously re-
mains unchanged. In case of insertion, the change of
the core distance of o depends on whether the minPts-
nearest neighbor distance of o decreases under the limit
of ε. Obviously, an object not belonging to DAff(U)
cannot change its core distance due to the update op-
eration.

The set DAff(U) can be efficiently computed using
the following lemma.

Lemma 1 Let U be the update set and CO be a cluster
ordering of D. Then the following holds:

4

DAff(U) = {o | u ∈ U ∧ o ∈ Nε(u) ∧ δ(u, o) ≤
CDist(o)}.
Proof. Let X := {o |u ∈ U ∧ o ∈ Nε(u) ∧ δ(u, o) ≤
CDist(o)}. We show that DAff(U) = X:

∀o ∈ DAff(U) : u ∈ U ∧ δ(o, u) ≤ ε ∧ o ∈ RevminPts(u)
⇔ u ∈ U ∧ o ∈ Nε(u) ∧ o ∈ RevminPts(u)
⇔ u ∈ U ∧ o ∈ Nε(u) ∧ u ∈ NNminPts(o)
⇔ u ∈ U ∧ o ∈ Nε(u) ∧ δ(u, o) ≤ nn-distminPts(o)
⇔ u ∈ U ∧ o ∈ Nε(u) ∧ δ(u, o) ≤ CDist(o) ⇔ o ∈ X

Lemma 1 states that we can filter out a lot of objects
not belonging to DAff(U) by computing only one range
query around each update object u ∈ U. In addition,
for all u ∈ U we only have to test the objects o ∈ Nε(u)
whether o ∈ RevminPts (u) holds. The idea is that for
all o ∈ RevminPts (u), it holds that δ(u, o) ≤ CDist(o).
If the update operation is an insertion, the core dis-
tance of o decreases, whereas if the update operation
is a deletion, the core distance of o increases.

Due to mutating core distances, reachability dis-
tances of some objects may change. We call these ob-
jects indirectly affected. A changing reachability dis-
tance may cause the violation of condition (2) in Def-
inition 1. If a reachability distance of an object o de-
creases due to a changed core distance, o may move
forward in the cluster ordering, otherwise o may move
backwards. In addition, if an object o has changed its
postion in the cluster ordering, the successors and the
predecessor (if not yet handled) might also be affected
because these objects may now be reached earlier or
later, i.e. may be placed at a different position in the
new cluster ordering.

We call these objects that may be indirectly affected
by the reorganization of an object o the potential suc-
cessors of o. The set of potential successors Suc(o) of
an affected object o ∈ CO is recursively defined:

(1) if p ∈ Suc(o) then p ∈ Sucpot(o).

(2) if q ∈ Sucpot(o) and p ∈ Suc(q) and
x ∈ Sucpot(o) ∧ x.P = p.P − 1 ⇒ x.R ≤ p.R
then p ∈ Sucpot(o).

Condition (1) states that all direct successors of o
are also candidates for reorganization. The second
condition collects recursively the direct successors of
potential successors, as long as their assigned reacha-
bility distance increases. If the reachability distance
decreases, we enter a new cluster where the objects are
more densely packed. In this case, the objects can only
be affected by the local neighborhood. The intuition
behind condition (2) is visualized in Figure 3. The re-
cursive collection of the potential successors of object o
stops at object p. All objects in C will be reached from

q

o

p

o

CO

p

……

q

C

Figure 3. The recursive collection of potential
successors of o stops at p and may restart at
q.

p or another object in C but not from o. The recursive
collection may restart at q if q or any object after q is
the successor of p or of any object before p.

Lemma 2 Let U be the update set, CO be a cluster
ordering of D, and o, p ∈ CO. If p
∈ Sucpot(o), then
o
= Pre(p).

Proof. Let p
∈ Sucpot(o). We show o
= Pre(p) by
recursion over Sucpot(o):
(1) p
∈ Suc(o) ⇒ o
= Pre(p).
(2) q ∈ Sucpot(o) and p
∈ Suc(q) and
x ∈ Sucpot(o) ∧ x.P = p.P − 1 ∧ x.R > p.R:
Since x has been reached earlier than p from the ob-
jects before x, x.P = p.P − 1, and x.R > p.R, p
must have been reached from x, i.e. Pre(p) = x ⇒
o
= Pre(p).

Lemma 2 states, that only the points in PotSuc(o)
can be affected by a reorganization of an object o.
Now we are able to develop online versions to handle
insertions and deletions efficiently. In the following,
COold denotes the original cluster ordering before the
update. OnlineOPTICS will create COnew , the new
(valid) cluster ordering after the update, by perform-
ing a single pass over COold.

3.3 Online Bulk Insertions

The pseudo code of the online bulk insertion algo-
rithm is depicted in Figure 4. In the first step of the
insertion of all objects in U, the core distances of each
o ∈ DAff(U) are updated and all objects u ∈ U are
inserted into the seed list OrderedSeeds with u.R = ∞
and Pre(u) = ∅. This is because it is not yet clear,
from which object the objects in U are reached in
COnew .

After that, the reorganization is performed, imitat-
ing the original OPTICS algorithm. We manage the
objects that need reorganization in the seed list. In
each iteration of the reconstruction loop, we compare
the next not yet handled object c in COold with the

5

bulkInsert(SetOfObjects U, ClusterOrdering COold)

// all o ∈ COold and u ∈ U marked as not yet handled
// COnew is an empty cluster ordering
for each u ∈ U do

u.P := n + 1;
u.C := CDist(u);

for each o ∈ DAff(U) do
update the core distance of o;

insert u ∈ U into OrderedSeeds with u.R = ∞ and Pre(u) = ∅;
while COold contains unhandled objects or OrderedSeeds �= ∅
do

c := first not yet handled object in COold;
s := first not yet handled object in OrderedSeeds;
if s.R > c.R or (s.R = c.R and s.P > c.P) then

l:= c; append l to COnew ;
else

l:= s; OrderedSeeds.remove(s); append l to COnew;
mark l as handled;
if l is chosen from OrderedSeeds or l ∈ DAff(U) then

OrderedSeeds.update(Sucpot(l), l);
else

for each u ∈ U : u do
if u is not yet handled and l.C ≤ ε and u ∈ Nε(l) then

OrderedSeeds.update({u}, l);

Figure 4. Algorithm bulkInsert.

first object s in OrderedSeeds. The object among the
two (c and s) which has the smaller reachability dis-
tance value is appended to COnew . If the reachability
distance values of both objects are equal, we append
that object having the smaller position.

After the insertion of an object l into the new cluster
ordering COnew , we have to update OrderedSeeds. This
is done by the method update which is an adoption
of the corresponding method in [1]. If the recently
processed object l is derived from the original cluster
ordering COold, we have to test which update objects
u ∈ U have been already processed. If any u ∈ U has
not been processed and l.C
= ∞ and δ(l, u) ≤ ε, u
would have been inserted/updated in OrderedSeeds in
the original OPTICS run. Thus, l may be a potential
predecessor of u and OrderedSeeds has to be updated
accordingly. Other connections are not affected, since
we store the objects that need reorganization in the
seed list. If l is derived from OrderedSeeds or from
DAff(U), some connections may need reorganization.
Thus, all not yet processed potential successors x ∈
Sucpot(l) have to be inserted/updated in the seed list.

The reorganization stops if the original cluster or-
dering COold does not contain unprocessed objects any
more and the seed list is empty.

Lemma 3 The online bulk insert algorithm produces
a valid cluster ordering w.r.t. Definition 1.

Proof. Due to space limitations, we refer to the long
version of this paper for the proof.

bulkDelete(SetOfObjects U, ClusterOrdering COold)

// all o ∈ COold marked as not yet handled
// COnew is an empty cluster ordering
for each u ∈ U

mark u as handled;
rs := ∅;
for each o ∈ DAff(U) do

update the core distance of o;
insert Sucpot(o) into rs;

insert r ∈ rs into OrderedSeeds with r.R = ∞ and Pre(r) = ∅;
while COold contains unhandled objects or OrderedSeeds �= ∅
do

c := first unhandled object in COold not contained in rs;
s := first unhandled object in OrderedSeeds;
if s.R ≤ c.R or Pre(c) is not yet handled then

l:=s; OrderedSeeds.remove(s); append l to COnew ;
else

l:=c; append l to COnew;
mark l as handled;
if l.C ≤ ε then

OrderedSeeds.updateAll(l, ε);
OrderedSeeds.update(Suc (l), l);

Figure 5. Algorithm bulkDelete.

3.4 Online Bulk Deletion

The pseudo code of the online bulk deletion is de-
picted in Figure 5. In the first step, all objects
u ∈ U are marked as handled. In addition, for each
o ∈ DAff(U) the core distance of each o is updated and
its potential successors Sucpot(o) are inserted into Or-
deredSeeds with a reachability distance of ∞ and (yet)
undefined predecessor.

After that, the reorganization is performed, again
simulating the original OPTICS algorithm. In each
iteration of the reconstruction loop, we compare the
reachability distance of the next not yet handled object
c in COold which is not contained in DAff(U) with that
of the first object s in OrderedSeeds. If the predecessor
of c is not yet processed (i.e. inserted into COnew), c
cannot be taken from COold and cannot be appended
to COnew . Otherwise, that object of c and s, having
the smaller reachability distance value, is appended to
COnew .

After the insertion of an object l into the new cluster
ordering COnew , we have to update OrderedSeeds. This
is done by the methods update and updateAll which are
both adoptions of the according method in [1].

The reorganization stops if the original cluster or-
dering COold does not contain unprocessed objects any
more and the seed list is empty.

Lemma 4 The online bulk delete algorithm produces
a valid cluster ordering w.r.t. Definition 1.

Proof. Due to space limitations, we refer to the long
version of this paper for the proof.

6

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

100000 200000 300000

number of database tuples

s
p

e
e
d

-u
p

 f
a
c
to

r
3000 deleted objects
6000 deleted objects
9000 deleted objects
3000 inserted objects
6000 inserted object
9000 inserted objects

Figure 6. Speed-up w.r.t database size.

0,0

2,0

4,0

6,0

8,0

10,0

12,0

1000 3000 5000

number of update objects

s
p

e
e

d
-u

p
 f

a
c

to
r

2D delete

5D delete

9D delete

2D insert

5D insert

9D insert

Figure 7. Speed-up w.r.t data dimensionality.

4 Experimental Evaluation

We compared OnlineOPTICS with offline OPTICS.
We on several synthetic databases and a real-world
database containing TV-snapshots represented by 64D
color histograms. All tests were run under Linux on
a workstation with a 3.2 GHz CPU, and hard disk
with a transfer rate of 20 MByte/s for the sequential
scan. Random page accesses need 8ms including seek
time, latency delay, and transfer time. Unless other-
wise specified, we used an X-Tree [3] to speed-up the
range-queries required by both algorithms.

The speed-up factors of OnlineOPTICS over the of-
fline version w.r.t. the database size are depicted in
Figure 6. As it can be seen, the performance gain
achieved by the online update algorithm is growing
with an increasing number of data objects both for
insertions and deletions. In fact, an online update of
nearly 10% of the data objects is still more efficient
than an offline update.

We illustrate the speed-up factors of OnlineOPTICS
over offline OPTICS w.r.t. the dimensionality of the
database in Figure 7. With increasing dimensionality
of the database, the speed-up factors slightly decrease

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

8 30 100
epsilon

s
p

e
e
d

-u
p

 f
a
c
to

r

1000 deleted objects

3000 deleted objects

5000 deleted objects

1000 inserted objects

3000 inserted objects

5000 inserted objects

Figure 8. Speed-up w.r.t the choice of ε.

0

5000

10000

15000

20000

25000

30000

35000

500 1000 1500 2000 2500 3000

number of update objects

C
P

U
 +

 I
/O

-T
im

e

[m
in

] OPTICS

Online-OPTICS Delete

Online-OPTICS Insert

Figure 9. Results on real-world TV data.

due to the performance deterioration of the underlying
index.

The only parameter of offline OPTICS that affects
the performance is ε. In [1] the authors state, that ε
has to be chosen large enough. In particular, ε has to
be chosen large enough, such that there is no jump in
the ordering. In general, the optimal choice of ε is quite
hard to anticipated beforehand, so we copmared Onli-
neOPTICS to offline OPTICS w.r.t. several choices of
ε. The results are depicted in Figure 8 showing that
the higher the value for ε, the bigger is the performance
gain of the online update. This can be explained by the
decreasing selectivity of the underlying index.

We applied offline OPTICS and OnlineOPTICS to
the above mentioned real-world dataset of 64D color
histograms representing TV snapshots. The results
are illustrated in Figure 9, confirming the observations
made on the synthetic data. As it can be seen, On-
lineOPTICS also achieved impressive speed-up factors
over OPTICS for both insertion and deletion of a bulk
of objects.

We also tested offline OPTICS and OnlineOPTICS
computing all range queries on top of the sequential
scan using a synthetic database of 2D feature vectors.

7

The result is not shown due to space limitations. We
observed that for 200,000 data objects, the online up-
date of 10% of the data objects is still more efficient
than an offline update.

Our proposed bulk update algorithms can easily be
adopted to process the update set sequentially, i.e. pro-
cessing each object u in the update set separately as
it is required for data streams. We compared our bulk
schema with such a sequential update processing on a
2D dataset containing 10,000 points. We varied the
update load between 1% and 10% of the database size.
Figure 10 illustrates the speed-up factor of bulk Onli-
neOPTICS over sequential Online OPTICS. As it can
be seen, the bulk mode clearly outperforms the sequen-
tial update processing. The ratio between the speed-up
factors of the bulk mode and of the sequential mode
is increasing with growing update load, i.e. the bulk
mode outperforms the sequential mode the more, the
larger the size of the update set is. Obviously, this is
because the bulk mode only requires one run through
the old cluster ordering while the sequential update
processing requires multiple runs over the old cluster
ordering.

5 Conclusions

Online algorithms for data mining are important to
detect knowledge which is not only accurate but also
immediately available and up-to-date. In this paper,
we have proposed OnlineOPTICS, an online version of
the single-link method and its generalization OPTICS
which is able to process large bulk insertions and dele-
tions as occuring in a data warehouse environment. We
have shown that the performance of our algorithm is
superior to offline algorithms even in the presence of
a heavy update load (large bulk insertions and bulk
deletions). In addition, we empirically showed that the
bulk mode clearly outperforms a sequential processing
of the update set. Our solution could also serve as
a template for online versions of further data mining
algorithms such as single-link.

References

[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and
J. Sander. ”OPTICS: Ordering Points to Identify the
Clustering Structure”. In Proc. ACM SIGMOD, 1999.

[2] D. Barbara. ”Requirements for Clustering Data
Streams”. SIGKDD Explorations, 3:23–27, 2002.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. ”The
X-Tree: An Index Structure for High-Dimensional
Data”. In Proc. VLDB, 1996.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

1000 (1%) 2000 (2%) 5000 (5%) 10000 (10%)

number of update objects (% of database size)

s
p

e
e
d

-u
p

 b
u

lk
 m

o
d

e
 v

s
.
s
e
q

u
e
n

ti
a
l
m

o
d

e

delete

insert

Figure 10. Comparison of bulk update versus
sequential update processing.

[4] M. M. Breunig, H.-P. Kriegel, P. Kröger, and
J. Sander. “Data Bubbles: Quality Preserving Perfor-
mance Boosting for Hierarchical Clustering”. In Proc.
ACM SIGMOD, 2001.

[5] C. Chen, S. Hwang, and Y. Oyang. ”An Incremen-
tal Hierarchical Data Clustering Algorithm Based on
Gravity Theory”. In Proc. PAKDD, 2002.

[6] D. Defays. ”CLINK: An Efficient Algorithm for the
Complete Link Cluster Method”. The Computer Jour-
nal, 20(4):364–366, 1977.

[7] V. Ganti, J. Gehrke, and R. Ramakrishnan. ”Min-
ing Data Steams under Block Evolution”. SIGKDD
Explorations, 3:1–10, 2002.

[8] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Academic Press, 2001.

[9] H.-P. Kriegel, P. Kröger, and I. Gotlibovich. ”Incre-
mental OPTICS: Efficient Computation of Updates in
a Hierarchical Cluster Ordering”. In Proc. DaWaK,
2003.

[10] S. Nassar, J. Sander, and C. Cheng. ”Incremental and
Effective Data Summerization for Dynamic Hierarchi-
cal Clustering”. In Proc. ACM SIGMOD, 2004.

[11] P. Ram and L. Do. ”Extracting Delta for Incremental
Data Warehouse Maintenance”. In Proc. ICDE, pages
220–229, 2000.

[12] J. Sander, X. Qin, Z. Lu, N. Niu, and A. Kovarsky.
”Automatic Extraction of Clusters from Hierarchical
Clustering Representations”. In Proc. PAKDD, 2003.

[13] R. Sibson. ”SLINK: An Optimally Efficient Algorithm
for the Single-Link Cluster Method”. The Computer
Journal, 16(1):30–34, 1973.

[14] D. H. Widyantoro, T. R. Ioerger, and J. Yen. ”An In-
cremental Approach to Building a Cluster Hierarchy”.
In Proc. ICDM, pages 705–708, 2002.

[15] J. Zhou and J. Sander. ”Data Bubbles for Non-Vector
Data: Speeding-up Hierarchical Clustering in Arbi-
trary Metric Spaces”. In Proc. VLDB, 2003.

8

