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Abstract

We consider the problem of elastic matching of time se-
ries. We propose an algorithm that determines a subse-
quence of a target time series that best matches a query
series. In the proposed algorithm we map the problem of
the best matching subsequence to the problem of a cheap-
est path in a DAG (directed acyclic graph). The proposed
approach allows us to also compute the optimal scale and
translation of time series values, which is a nontrivial prob-
lem in the case of subsequence matching.

1 Introduction and Related Work

Time series are a ubiquitous and increasingly prevalent
type of data, therefore, there has been much research effort
devoted to time series data mining in recent years. Many
data mining algorithms have similarity measurement at their
core. Examples include motif discovery [3], anomaly detec-
tion [7], rule discovery [6], classification [11] and clustering
[1]. In this paper we deal with computation of time series
distances based on elastic matching.

As many researchers have mentioned in their work [6,
11, 10], the Euclidean distance is not always the optimal
distance measure for similarity searches. For example, in
some time series, different parts have different levels of sig-
nificance in their meaning. Also, the Euclidean distance
does not allow shifting in time axis, which is not unusual in
real life applications.

To solve the problem of time scaling in time series, Dy-
namic Time Warping (DTW) [13, 2] aligns the time axis
prior to the calculation of the distance. The DTW distance
between time series is the sum of distances of their corre-
sponding elements. Dynamic programming is used to find

corresponding elements so that this distance is minimal.
The DTW distance has been shown to be superior to the
Euclidean in many cases [1, 8, 4, 15] (see [12] for a detailed
discussion of DTW). As illustrated in Section 2, DTW re-
quires the matched time series to be well aligned, and it is
particularly sensitive to outliers, since it is not able to skip
any elements of the target series. DTW always matches the
query time series to the whole target time series.

The Longest Common Subsequence (LCSS) measure
has been used in time series [5, 14] to deal with the align-
ment and outliers problems. Given a query and a target se-
ries, LCSS determines their longest common subsequence,
i.e., LCSS finds subsequences of the query and target (of
the same length) that best correspond to each other. The
distance is based on the ratio between the length of longest
common subsequence and the length of the whole sequence.
The subsequence does not need to consist of consecutive
points, the order of points is not rearranged, and some points
can remain unmatched. When LCSS is applied to time se-
ries of numeric values, one needs to set a threshold that de-
termines when values of corresponding points are treated as
equal [14]. The performance of LCSS heavily depends on
correct setting of this threshold, which may be a particularly
difficult problem for some applications.

The proposed MVM (Minimal Variance Matching) algo-
rithm computes the distance value between two time series
directly based on the distances of corresponding elements,
just as DTW does, and it allows the query sequence to match
to only a subsequence of the target sequence, just as LCSS
does.

The main difference between LCSS and MVM is that
LCSS optimizes over the length of the longest common
subsequence (which requires the distance threshold), while
MVM directly optimizes the sum of distances of corre-
sponding elements (without any distance threshold). The



main difference between DTW and MVM is that MVM
can skip some elements of the target series when comput-
ing the correspondence while DTW requires that each point
of the query sequence is matched to each element of the
target sequence. LCSS allows skipping elements of both
the query and the target sequence. Therefore, MVM should
be used when one is interested in finding the best match-
ing part of the target sequence for a given query sequence,
since it guarantees that the whole query sequence will be
matched. This is, for example, the case, when the query
is a model sequence, one wants to find in a given data set.
However, when the query sequence contains outliers and
skipping them is allowed, then LCSS should be used.

2 Motivation

For many datasets we can easily and accurately extract
the beginning and ending of patterns of interest. However
in some domains it is non-trivial to define the exact begin-
ning and ending of a pattern within a longer sequence. This
is a problem because if the endpoints are incorrectly spec-
ified they can swamp the distance calculation in otherwise
similar objects. For concreteness we will consider an ex-
ample of just such a domain and show that Minimal Vari-
ance Matching (MVM), proposed in this paper, can be ex-
pected to outperform Dynamic Time Warping (DTW) and
Euclidean distance. There is increasing interest in index-
ing sports data, both from sports fans who may wish to find
particular types of shots or moves, and from coaches who
are interested in analyzing their athletes performance over
time. Let us consider the high jump. We can automatically
collect the athletes’ center of mass information from video
and convert it to time series. In Fig. 1, we see 3 time series
automatically extracted from 2 athletes.

Both sequence A and B are from one individual, a tall
male, and C is from a (relatively) short female with a rad-
ically different style. The difference in their technique is
obvious even to a non-expert, however A and C where au-
tomatically segmented in such a way that the bounce from
the mat is visible, whereas in B this bounce was truncated.
In Fig. 1(middle) we can see that DTW is forced to map this
bounce section to the end of sequence B, even though that
sequence clearly does not have a truly corresponding sec-
tion. In contrast, MVM is free to ignore the sections that do
not have a natural correspondence. It is this difference that
enables MVM to produce the more natural clustering shown
in Fig. 1(bottom). While this is a somewhat contrived ex-
ample on a specialized domain, similar remarks apply to
many commercially important domains including medical
data mining and oil exploration.
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Figure 1. (top) Three examples of athletes tra-
jectories as they attempt a high jump. The
sequence shows the height of their center of
mass (with possible parallax effects). Read-
ing left to right we can see their bounding run
followed by the takeoff and landing. (middle)
The alignment achieved by DTW and MVM on
two of the sequences. (bottom) The clustering
achieved by DTW and MVM.

3 Minimal Variance Matching

We now present an algorithm for elastic matching of two
time series of different lengths m and n, which we will call
Minimal Variance Matching (MVM). More specifically,
for two finite sequences of real numbers a = (a1, ..., am)
and b = (b1, ..., bn) with m < n, the goal is to find a sub-
sequence b′ of b of length m such that a best matches b′.
Thus, we want to find the best possible correspondence of
sequence a to a subsequence b′ of b. Formally we define a
correspondence as a monotonic injection

f : {1, ..., m} → {1, ..., n},

(i.e., a function f such that f(i) < f(i + 1)) such that ai

is mapped to bf(i) for all i ∈ {1, ..., m}. The set of indices
{f(1), ..., f(m)} defines the subsequence b′ of b. Recall
that in the case of DTW, the correspondence is a relation on
the set of indices {1, ..., m}×{1, ..., n}, i.e., a one-to-many
and many-to-one mapping.



Once the correspondence is known, it is easy to com-
pute the distance between the two sequences. We do not
have any restrictions on distance functions, i.e., any distance
function is possible. To allow for comparison to the exist-
ing time series matching techniques, we use the Euclidean
distance in this paper:

d(a, b, f) =

√

√

√

√

m
∑

i=1

(bf(i) − ai)2. (1)

Our goal is to find a correspondence f so that d(a, b, f)

is minimal. More precisely, an optimal correspondence f̂

of numbers in series a to numbers in series b is defined as
the one that yields the global minimum of d(a, b, f) over all
possible correspondences f :

f̂ = argmin{d(a, b, f) : f is a correspondence}. (2)

Finally, the optimal distance is obtained as

d(a, b) = d(a, b, f̂) =

√

√

√

√

m
∑

i=1

(b
f̂(i) − ai)2. (3)

In other words d(a, b) is the global minimum over all pos-
sible correspondences.

We can also state the correspondence problem in a statis-
tical framework. Let us assume that there is a subsequence
b′ of b that is a noisy version of a such that a ∼ b′−N (0, v),
whereN (0, v) denotes a zero-mean Gaussian noise variable
with variance v, i.e., b′ = (bf(i))i for i ∈ {1, ..., m}.

Since the mean of the differences (ai − bf(i))i is zero,
i.e., a − b′ ∼ N (0, v), the variance σ2 of difference se-
quence (ai − bf(i))i is given by

σ2(a, b, f) =
1

m

m
∑

i=1

(bf(i) − ai)
2. (4)

Clearly, σ2(a, b, f) = v (the variance of the Gaussian
noise). Observe that in this case the variance corresponds
to the Euclidean distance (1). Thus, the variance of the dif-
ference sequence is minimal when mapping f establishes a
correct correspondence of elements of both sequences.

Now we describe the method used to minimize (4). We
first form the difference matrix r = (rij) = (bj − ai). It
is a matrix with m rows and n columns with m < n. For
example, the difference matrix for two time series t1=( 1,
2, 8, 6, 8) and t2=( 1, 2, 9, 3, 3, 5, 9) is shown in Fig.
2. Observe that t1 and t2 are similar if we ignore the two
elements in t2 with value 3.

Clearly, (rij) can be viewed as a surface over a rectangle
of size m by n, where the height at point (i, j) is the value
rij . We obtain the correspondence with minimal variance
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Figure 2. In order to compute f̂ for t1=( 1, 2, 8,
6, 8) and t2=( 1, 2, 9, 3, 3, 5, 9), we first form the
difference matrix with rows corresponding to
elements of t1 and columns to elements of t2.

by solving the least-value path problem on the difference
matrix. To obtain the solution, we treat (rij ) as a directed
graph with the following links:

rij is directly linked to rkl if and only if (1) k − i = 1 and
(2) j < l. When traversing the obtained directed graph,
the meaning of both conditions is as follows. For any two
consecutive points rij , rkl in each path (1) means that we
always go to the next row, while (2) means that we can skip
some columns, but cannot go backwards.

We want to have a least-value path with respect
to the following cost function for each directed link,
linkcost(rij , rkl) = (rkl)

2, under the restrictions in (1),
(2), and the following ones: Each path can start in first
row, between columns 1 and n − m, i.e., at r1j for j =
1, ..., n−m and the path can end at rmj for j = n−m, ..., n.
The conditions (1) and (2) imply that we can obtain a DAG
(directed acyclic graph) G whose nodes are the elements of
(rij)ij and weights are defined by the function linkcost. It
is well known that we can solve the least-value path prob-
lem using the shortest path algorithm on G. The obtained
least-value path defines exactly correspondence f̂ , which
minimizes (4) in accordance with (2).

The shortest path for the example matrix in Fig. 2 is
marked with boxes. Following the boxes, the optimal cor-
respondence f̂ is given by

f̂(1) = 1, f̂(2) = 2, f̂(3) = 3, f̂(4) = 6, f̂(5) = 7.

Finally, from (3) we obtain the distance d(t1, t2) =
√

3 ≈
1.732.

The path computed this way gives us correspondence f̂

with the smallest variance of the differences of the corre-
sponding pairs. We recall that this is true, since we assumed
that the mean of the differences of the corresponding pairs
is zero. Observe that without this assumption, it would not
be possible to use the shortest path algorithm on a DAG.



4 MVM and Shift / Scale Estimation

The definition of MVM presented in Section 3 allows us
to estimate the linear transformation that best maps query
sequence a to a subsequence of target sequence b. This
gives a serious advantage with respect to existing time series
matching methods. The estimation is done while computing
the correspondence f̂ , and it does not increase the computa-
tional complexity of the algorithm. To focus our attention,
we present here the estimation of the translation (shift) of
values of time series b. The estimation of the scaling factor
can be computed analogously.

Now for two finite sequences of real numbers a =
(a1, ..., am) and b = (b1, ..., bn) with m < n, the goal is to
find a subsequence b′ of b of length m (i.e., correspondence
f̂) and a translation tr such that a best matches b′+ tr. This
means that we want to minimize:

d(a, b, f, t) =

√

√

√

√

m
∑

i=1

((bf(i) + tr − ai))2. (5)

Observe that if a matches to the whole sequence b, a sim-
ple normalization of values of both sequences solves the
translation problem. However, this is not the case when a

matches only to part of b as we described in the introduc-
tion.

Let fk be any correspondence from a = (a1, ..., ak) to
b = (b1, ..., bn) with k < m. Then we can estimate the
translation for fk as

tr(a, b, f, k) =

k
∑

i=1

bf(i) − ai. (6)

The main idea of the solution to (5) is the fact that we can
update tr(a, b, f, k) incrementally as

tr(a, b, f, k+1) =
k

k + 1
tr(a, b, f, k)+

1

k + 1
(bf(k+1)−ak+1).

(7)
By integrating this incremental update in the process of
computation of the cheapest path on DAG, we obtain an
optimal solution to (5).

5 Conclusions and Future Work

The proposed new method for time series matching,
called MVM, performs the following tasks simultaneously
(1) automatically determines whether the query sequence
best matches the whole target sequence or only part of the
target sequence, (2) automatically skips outliers that are
present in the target sequence, (3) computes the translation
or scale of corresponding values that minimizes the statis-
tical variance of dissimilarities of corresponding elements.

By mapping the problem of elastic matching of sequences
to the problem of finding a cheapest path in a DAG, we pro-
vide an efficient algorithm to compute MVM. Experimental
results demonstrating that this method outperforms DTW
and LCSS are presented in [9].
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