
Sharing Classifiers among Ensembles from Related Problem Domains

Yi Zhang
yi-zhang-2@uiowa.edu

W. Nick Street
nick-street@uiowa.edu

Samuel Burer
samuel-burer@uiowa.edu

Department of Management Sciences, the University of Iowa
Iowa City, IA 52242-1000

Abstract

A classification ensemble is a group of classifiers that
all solve the same prediction problem in different ways. It
is well-known that combining the predictions of classifiers
within the same problem domain using techniques like bag-
ging or boosting often improves the performance. This re-
search shows that sharing classifiers among different but
closely related problem domains can also be helpful. In ad-
dition, a semi-definite programming based ensemble prun-
ing method is implemented in order to optimize the selection
of a subset of classifiers for each problem domain. Compu-
tational results on a catalog dataset indicate that the ensem-
bles resulting from sharing classifiers among different prod-
uct categories generally have larger AUCs than those en-
sembles trained only on their own categories. The pruning
algorithm not only prevents the occasional decrease of ef-
fectiveness caused by conflicting concepts among the prob-
lem domains, but also provides a better understanding of
the problem domains and their relationships.

1. Introduction

A classification ensemble is a multi-classifier system in
which each member classifier tries to solve the same classi-
fication problem. Those classifiers can be trained on the
same data set using different base algorithms [8, 7], or
trained on different subsets of data using the same base al-
gorithm, e.g. bagging [2], boosting [11], arcing [3], or even
trained on the same data set using the same base algorithm
but with different parameters [20, 4]. The classification of
the ensemble is obtained by combining the classifications of
its members. The simplest method of aggregation is voting,
in which the class label receiving most votes is assigned to
the data point. Both empirical and theoretical studies have
shown that an ensemble is likely to have smaller generaliza-
tion errors than a single classifier [14, 1].

Ensemble methods not only improve classification accu-

racy, but also provide a new way to share knowledge. If
data are distributed at different locations, classifiers can be
trained locally then combined together to create an ensem-
ble. This centralized ensemble gathers information from
each site and can potentially be more powerful for further
predictions. An empirical study of this method was con-
ducted for credit card fraud detection [8]. The banks partici-
pating in the research shared their individual fraud detection
models with each other. Computational results showed that
pooling knowledge in the form of an ensemble did increase
the chance of hitting the target. There has been other re-
search on sharing classifiers within an institution or among
different institutions [9, 16]. However, they all required
that the data be from the same problem domain, or in other
words, the inducted classifiers are all solving the same clas-
sification problem. Now the question is, if we are working
with several different but closely related problem domains,
is sharing classifiers among those domains still a good idea?

The essence of sharing classifiers is sharing common
knowledge among different but closely related problem do-
mains. A famous example of the research in this direction
is the multi-task neural network [6]. Each problem domain
is assigned one or more output nodes, while sharing some
of the input and mid-layer nodes with other problem do-
mains. Although this method is sometimes successful, it
has several limitations. First, it requires that the data be at
the central location for training. Second, the training speed
becomes a big issue if the size of the data is large. Our
proposed classifier-sharing strategy may avoid both of the
drawbacks. Since the classifiers can be trained locally, the
data need not be centralized. Moreover, one can use effi-
cient algorithms like decision trees to train classifiers, so
computation time becomes less of a problem.

The prerequisite for sharing classifiers among different
problem domains is that the data schema for each domain
should be identical, or at least very similar. This ensures
that classifiers trained on one problem can also be applied
to others, although the accuracy can possibly be low. Some-
times, it transformation of variables is required to satisfy
this condition. It is hard to tell a priori whether sharing



classifiers among different problem domains will improve
the overall performance. The success of this strategy de-
pends on the connections among the problem domains and
the self-completeness of information within each problem
domain. However, with a screening process that will be de-
scribed later, the chance that sharing classifiers will eventu-
ally downgrade the overall performance is minimal.

We tested this classifier-sharing strategy on a publicly
available marketing data set. To address the concern that
sharing classifiers blindly may sometimes do harm to some
of problem domains if they have conflicting concepts, we
use a mathematical programming model to select a good
subset of classifiers from the entire ensemble for each do-
main. The pruned ensembles work almost as well as the
sharing-all ensemble. In addition, the classifier-sharing
structure derived by the pruned ensembles reveals some of
the special properties of the problem domains.

The rest of the paper is organized as follows. Section 2
describes the marketing data set used for the research and
the data mining task. Section 3 presents the classical bag-
ging approach and explains its partial failure on this partic-
ular marketing problem. Section 4 introduces the idea of
sharing classifiers and compares its performance with that
of the non-sharing strategy. Section 5 briefly describes the
subset selection algorithm and demonstrates its effective-
ness by computational results. Section 6 discusses some of
the properties of the problem domains revealed by the se-
lection process. Section 7 concludes the paper.

2. Data Set and Data Mining Task

The data set used to evaluate the idea of sharing classi-
fiers among different problem domains is a public market-
ing data set from the Direct Marketing Association (DMEF
Academic Data Set Three, Specialty Catalog Company,
Code 03DMEF). It was contributed by a specialty cata-
log company that sells household goods such as clothes
and kitchenwares to the customers receiving its catalogs
by mail. The company has collected twelve years of pur-
chase and promotion data (such as availability of coupon
or discount) from its customer base which is composed of
103, 715 individuals. It is also possible to derive some de-
mographic features (such as income level, home ownership,
etc.) from the zip code that the original data set provides.
The dependent variables are the customers’ responses to a
particular promotion held by the company. There are 19
different categories of products involved in the promotion,
which correspond to 19 response variables. Unfortunately,
the identification of the product categories are not available.
The data mining problem we try to solve is to predict which
categories of products a customer is going to buy based on
the available historical and demographic data. We decom-
posed this task into 19 separate binary classification prob-

Table 1. Response rate of 19 categories.

Category %Pos Category %Pos
1 0.14 11 0.13
2 0.27 12 0.05
3 0.04 13 0.44
4 0.92 14 2.65
5 0.12 15 1.70
6 0.83 16 2.09
7 0.44 17 0.65
8 0.37 18 0.31
9 0.64 19 1.17
10 0.02

lems, building one model for each category and predicting
whether the customer is going to buy from that category.
Note that this whole task cannot be treated as a typical clas-
sification problem with 19 classes because one customer
can buy products from any number of categories, includ-
ing zero, so the class assignment for each individual is not
exclusive. This kind of problem is sometimes referred to as
“multi-label” classification problem and is more often seen
in the text-mining domain [18].

Table 1 shows the percentage of positive points, or re-
sponse rate, of each category. A positive point for a category
represents a customer that buys one or more products from
that category. For most categories, the response rate is lower
than one percent, which makes the data set highly skewed
toward non-buyers. For a data set with highly biased pri-
ors, it is often not appropriate to build classifiers directly
on the original data, since one will very likely end up with
a classifier that always predicts the majority class. For our
marketing problem, most classifiers will always predict that
the customer is not going to buy. Although such a classifier
will be 99% accurate, it is of no value since the ultimate goal
of this data mining effort is to identify potential customers.
Previous research also indicate that such a classifier is not a
good ranker, either [10]. A common way to deal with this
problem is to create training data sets with balanced class
distribution through sampling, which has a similar effect to
introducing a cost structure that places higher misclassifi-
cation cost on false negatives. As the cost structure of this
problem is unknown, we modify the sampling priors as de-
tailed in the next section.

3. Baseline: Bagging Individual Categories

Since the priors of the data set are highly biased, it is
necessary to construct training sets with balanced class dis-
tributions, which we achieve by bootstrap sampling. Con-
sidering the size of the data and the processing speed of
the learning algorithm, we fix the size of the bootstrapped



training set at 800. Empirical evidence has shown that a bal-
anced prior is optimal for the kind of marketing problems
under consideration [22]. Therefore, 400 positive points
and 400 negative points are sampled with replacement from
the original data. Since the number of positive points is
far less than 400 for most categories, the training sets con-
tain many repeated points. On the other hand, the num-
ber of negative points is much greater than 400. To get
enough information from the original data, especially the
negative class, the bootstrapping process is repeated twenty-
five times, resulting in twenty-five different training sets
for each category. A C4.5 decision tree [19] is then built
for each training set. In total, twenty-five decision trees
are obtained for each category. These twenty-five trees are
grouped together to create an ensemble for future predic-
tions. This whole approach is very close to bagging [2] so
we refer to it as the original bagging approach.

The bagging approach is a standard way to solve such
marketing problems and often very powerful. However, it
does not work well on the marketing data set used in this
study. For instance, the AUC (Area Under the ROC Curve)
for Category 10 is only 0.51 (see Table 2), which implies
that the ensemble learned hardly anything useful from the
training sets. (AUC is a commonly used measurement to
evaluate how good a classifier ranks the data points. It can
be interpreted as the probablity that a positive point will be
ranked higher than a negative point.) Our explanation is
that the number of distinctive positive points in the training
sets for Category 10 is too small. As shown in Table 1,
the original response rate for Category 10 is only0.02%,
so there is simply not enough information to build a decent
classifier.

4. Sharing Classifiers among Categories

To improve the performance of the ensembles built by
the original bagging approach, extra useful information is
necessary. Sharing classifiers among different categories
is our proposed solution. There are two reasons that can
support our proposition. First, we are dealing with cus-
tomers from the same catalog company. It is reasonable
to expect that those customers who placed orders should
share some common properties and those properties should
be reflected in the classifiers belonging to those categories
with relatively higher response rate. If these classifiers can
be included into the ensembles of those categories without
enough positive points, they may help improve the overall
performance. Second, the purchase patterns of some dif-
ferent categories may be similar. For example, if people are
more likely to buy clothes when there are discount coupons,
the same may also be true for shoes. Therefore, a predictive
model for clothes that stresses the importance of discount
coupons may also work for shoes although they belong to

different product categories.

The original data schema for each category is identi-
cal: same independent variables (purchase history, promo-
tions and demographic information) and a binary depen-
dent variable indicating whether the customer buys prod-
ucts from this category. However, some of the independent
variables are category-specific. For example, there are 19
variables each representing presence of a discount for each
category. Intuitively, the discount variable for Categoryi
is more informative to the prediction problem for Category
i than for other categories, and is likely used in the deci-
sion trees built for Categoryi. Since this discount vari-
able is probably (not absolutely) not relevant to other cat-
egories, the decisions trees induced on Categoryi are less
likely to be useful for other categories. To make the decision
trees more interchangeable, we did some transformations on
those category-specific variables. In the data set for Cate-
gory i, a copy of each category-specific variable related to
Categoryi is appended to the end of the data schema and
labeled as “xxxx-for-this-category”. The values of the orig-
inal category-specific variables for this Categoryi (which
already have copies) are then set to be uniform for each
record so that there will be no splits on these variables in
the decision trees. The splits, if necessary, will be made
on those newly appended variables. After transformation,
each category has the same number of appended category-
specific variables related only to itself so the data schema
of each category is still identical and the tree splits on the
category-specific variables are more meaningful across cat-
egories. For instance, if there is a rule induced on a category
like “if there is a discount on this category, the customer is
going to buy products from this category”, it is reasonably
applicable to other categories. Therefore, the interchange-
ability of trees among categories is increased.

A naive way of sharing classifiers is to pool all the clas-
sifiers from the 19 categories into one big ensemble and use
it for every category. The performance of the including-all
ensemble generated by the sharing-all strategy and the in-
dividual ensembles from the non-sharing bagging approach
in terms of AUC can be looked up in Table 2. The figures
shown in the table are the average and the standard deviation
(in parentheses) over five runs with different training-testing
splits. Win-loss-tie comparison statistic of the sharing-all
strategy against non-sharing is 12-7-0 by mean value and
6-4-9 by pairedt test (95% significance level). It is evident
that for most of the categories, the including-all ensemble
performs better than the ensemble composed of classifiers
trained only on its own data. Especially for those categories
with very low response rates, such as Category10, the rise
in AUC is substantial. Figure 1 plots AUC percentage dif-
ference of the two strategies on all the 19 categories.



Figure 1. % AUC difference of including-all
ensemble and original bagging ensembles

5. Selecting a Good Subset of Classifiers

We have shown that sharing classifiers among related
problem domains can improve predicative performance.
However, there are risks behind the sharing-all strategy.
Specifically, when there are strikingly conflicting concepts
among those problem domains, mixing classifiers blindly
will degrade the effectiveness of the ensemble method. In
fact, there is already some evidence in the results obtained
so far. Table 2 shows that the including-all ensemble per-
forms significantly worse on Categories15 and16 than the
original ensembles. This is because the original ensembles
on these categories are already good enough. Adding more
classifiers that are either non-informative or even counter-
conceptual eventually downgrades the ensemble. There-
fore, it is safer to bring in a screening process that is able to
select a subset of classifiers for each problem domain.

There has been some research work on subset selec-
tion for ensemble optimization, sometimes called ensemble
pruning [17, 8, 21, 7]. However, most of the algorithms
invented so far are some kind of greedy search, which
picks classifiers sequentially based on some quality mea-
surements. Here, we use a newly invented method to select
a fixed number of classifiers by semi-definite programming
(SDP), which is able to produce good solutions based on
theoretical and empirical studies.

As literature has shown, a good ensemble should be
composed of classifiers that are not only accurate by them-
selves, should also make different errors [15, 17, 4]. These
two properties are often referred to as strength and diver-
gence. Essentially, the semi-definite programming process
is looking for a fixed-size subset of classifiers with the best
strength and divergence trade-off.

A set-aside tuning set reflecting the original class distri-
bution is used for subset selection. Since there are 19 cat-

egories in the marketing data, there will be 19 tuning sets
and the subset selection process will be repeated 19 times,
once for each category.

Now we explain how the subset selection is done by
semi-definite programming. First, record the predictions of
each classifier on the tuning set in matrixP as follows:

Pij =0, if jth classifier is correct on data pointi,

Pij =1, otherwise.

Let G = PT P . Thus, the diagonal termGii is the total
number of errors made by classifieri and the off-diagonal
termGij is the number of common errors of classifier pair
i andj. To put all the elements of theG matrix on the same
scale, we normalize them by

G̃ii =
Gii

n
,

G̃ij =
Gij

min (Gii, Gjj)
,

wheren is the number of tuning points. After normaliza-
tion, all elements of thẽG matrix are between 0 and 1.

The constructed̃G matrix captures both the strength and
the divergence of an ensemble with its diagonal and off-
diagonal elements, respectively. Clearly, for a good ensem-
ble, all elements of thẽG matrix should be small.

The G̃ matrix requires one further modification. Since
the tuning data have the original class distribution, which
is highly biased towards non-buyers, the resultingG̃ matrix
will reflect the performance of the ensemble on the negative
points while almost ignoring the positive points. It is nec-
essary to balance the weights of the two classes inG̃. To
achieve this goal, we define a third̂G matrix as a convex
combination of theG̃ matrix on the positive points and the
G̃ matrix on the negative points in the tuning set,

Ĝ = λG̃pos + (1− λ)G̃neg.

In the following computational experiments,λ is set as0.5.
Now we can formulate the subset selection problem as

a quadratic integer programming problem. Essentially, we
are looking for a fixed size subset of classifiers, the sum
of whose corresponding elements in theĜ matrix is mini-
mized. The mathematical programming formulation is

min xT Ĝx

s.t.
∑

i

xi = k,

xi ∈ {0, 1}.

The binary variablexi represents whether theith classifier
will be picked. If xi = 1, the ith classifier is included
in the selected set, and its corresponding diagonal and off-
diagonal elements will be counted in the objective function.



The cardinality constraint
∑

i xi = k is mathematically im-
portant because without it, there is only one trivial solution
to the problem with none of the classifiers picked. In addi-
tion, it gives us control over the size of the selected subset.

This quadratic integer programming problem is a stan-
dard 0-1 optimization problem, which is NP-hard in gen-
eral. However, after some transformation, it can be relaxed
into a semi-definite programming (SDP) problem. The key
point of the relaxation is to relax the binary variablexi into
a unit vector. This relaxation requires thatxi ∈ {−1, 1}.
So we need to make a transformation of variables

yi =
xi + 1

2
,

andyi ∈ {−1, 1}. Now the objective function becomes

1
4
(y + ~e)T Ĝ(y + ~e),

where~e is a column vector of all 1s. The cardinality con-
straint

∑
i xi = k can be rewritten into quadratic form

xT Ix = k,

whereI is the identity matrix. After variable transforma-
tion, this constraint becomes

(y + ~e)T I(y + ~e) = 4k.

A variable expansion trick can be applied to put both the
transformed objective function and the cardinality con-
straint back to a nice quadratic form. We expand the vari-
able vectory = (y1, y2, ..., yn) into y = (y0, y1, y2, ..., yn),
and lety0 = 1. We then construct a new matrix

H(n+1)×(n+1) =
(

~eT Ĝ~e ~eT Ĝ

Ĝ~e Ĝ

)
.

Thus the objective function is equivalent toyT Hy. We then
use the same trick to construct a matrix D

D(n+1)×(n+1) =
(

n ~eT

~e I

)
,

so that the cardinality constraint becomesyT Dy = 4k.
After this transformation, the problem formulation be-

comes

min yT Hy

s.t. yT Dy = 4k,

y0 = 1,

yi ∈ {−1, 1}, ∀i 6= 0,

which is equivalent to

min H • yyT

s.t. D • yyT = 4k,

y0 = 1,

yi ∈ {−1, 1}, ∀i 6= 0,

whereA •B =
∑

i,j AijBij .
Now we can invoke the SDP relaxation and the relaxed

problem is

min H • Y

s.t. D • Y = 4k,

Yii = 1, ∀i
Y � 0,

whereY � 0 implies thatY is positive semi-definite.
There are efficient algorithms to solve such an SDP prob-

lem [5] and through a randomization process, the solution
can be transformed back to a binary vector [12, 13]. In our
computational experiment, selecting 25 out of 475 classi-
fiers usually took 2-4 minutes. More details of the SDP-
based ensemble pruning algorithm and how it compares to
other well-established pruning algorithms can be found in
[25].

Since the original bagging approach builds ensembles of
25 classifiers, we set the size of the selected ensemble to
be25 as well for a fair comparison. Another reason for this
choice is that for each category, there are at least25 relevant
classifiers that are trained on its own data.

Table 2 lists the AUCs of the three methods on each cat-
egory. The approach involving subset selection is referred
to as selective-sharing. Win-loss-tie summarization based
on mean value and pairedt test (95% significance level)
is attached at the bottom of the table. Although the over-
all performance of the ensembles produced by selective-
sharing is a little worse than that of the including-all en-
semble, most parts of the improvement gained by sharing
classifiers are still kept (Figure 2). Note that the selected
ensembles use only25 classifiers each as compared to475
of the including-all ensemble. There are two implications
of this result. First, the ensemble pruning process is quite
effective. Second, the reason that the including-all ensem-
ble is better than those individual bagging ensembles is not
simply because it’s larger. There is truly useful additional
information in the including-all ensemble that can be sin-
gled out by the pruning process.

Moreover, the selective-sharing is a conservative ver-
sion of sharing classifiers, hence it should be more robust.
If there were wildly conflicting concepts among the cate-
gories, the selective-sharing would have performed better.
In fact, the selective-sharing ensembles of Categories15
and16 do outperform the including-all ensemble by throw-
ing away bad classifiers, as expected.

6. Knowledge Discovery from the Classifier
Sharing Structure

It is also interesting to look at the classifier sharing struc-
ture among different categories. Table 3 provides a list of



Table 2. AUCs of non-sharing, sharing-all and
selective-sharing ensembles

Cat. Non-sharing Sharing-all Selective-sharing
1 77.19(3.06) 82.00(1.49) 80.77(1.11)
2 76.40(3.42) 81.12(1.08) 76.38(2.91)
3 65.55(5.59) 84.33(1.86) 82.47(3.05)
4 82.08(0.38) 80.98(0.86) 78.56(3.69)
5 72.29(1.71) 82.97(0.58) 78.73(4.50)
6 80.91(0.48) 80.37(0.79) 77.60(3.01)
7 79.78(1.57) 81.17(0.55) 77.63(3.13)
8 76.62(1.28) 78.26(0.40) 76.01(2.18)
9 81.50(0.78) 81.54(0.36) 78.17(2.51)
10 51.38(8.90) 75.41(4.42) 73.80(5.84)
11 69.77(4.24) 80.16(1.18) 78.84(3.09)
12 58.52(7.35) 77.72(1.66) 75.04(3.43)
13 79.21(1.29) 78.52(0.87) 77.32(1.68)
14 83.13(0.41) 81.32(0.68) 80.56(1.55)
15 97.42(0.20) 93.05(1.00) 96.89(0.28)
16 97.56(0.20) 93.52(1.00) 97.75(0.19)
17 82.94(0.78) 84.66(0.28) 82.70(0.89)
18 85.65(1.59) 87.27(0.32) 87.37(1.43)
19 91.22(0.33) 89.66(0.73) 91.27(0.28)

Comparison Selective
vs the rest

9-10-0 4-15-0 ABS.W-L-T
3-1-15 3-1-15 SIG.W-L-T

statistics that summarizes the sharing structure, averaged
over the same five runs in Section 4. The “Prior” column
shows the response rate for each category. The “Used” col-
umn is the total number of classifiers trained on this cat-
egory used for all categories. The “Used Own” column
is the total number of classifiers trained on this category
used for this category. The “Most Used” column shows the
most common training category for the classifiers for each
ensemble. Finally, HI index is the Herfindahl index [23],
which is computed byHIi =

∑C
j=1 (nij

Ne
)2, wherenij is

the number classifiers trained onjth category used forith
category, andNe is the size of the pruned ensemble which is
25 in this case. The smaller the HI index, the more diverse
the ensemble, in terms of original training categories.

The most surprising fact shown by the table is that for
most categories, the classifiers trained on the category are
seldom chosen for its own ensemble. Only Categories 14,
17 and 19 used a reasonable number of their own classi-
fiers. However, the performance of the pruned ensembles
are close to that of the original bagging ensembles as shown
in Table 2. This may imply that some of the categories
are closely related therefore their classifiers are highly in-
terchangeable through combination.

The higher the original response rate for each category,

Figure 2. % AUC difference of selective-
sharing ensembles and original bagging en-
sembles

the more times its classifiers are used by other categories.
Figure 3 plots the number of times its classifiers are used
versus the original response rate for each category. The
slope of the linear regression is 24.00 withp value 0.053,
which verifies the conjecture that the classifiers trained on
categories with more positive information may well cap-
ture the general properties of the potential customers and
are thus widely used by other categories. The fact that the
p value is slightly below the 95% significance level implies
that the response rate is not the sole factor that decides the
popularity of the classifiers.

Categories 15, 16 and 17 are the major outliers from
the above rule. Categories 15 and 16 have relatively high
response rate, but their classifiers are seldom used, even
in their own ensembles. The including-all ensemble per-
forms badly on these two categories. On the other hand,
the pruned ensembles perform almost as well as the origi-
nal bagging ensembles. Our explanation is that these two
categories are a little different from the main trend. How-
ever, these two categories are somehow closely related to
a subset of categories so that a combination of classifiers
from those categories may still predict them well. It is un-
clear why their own classifiers are so rarely used for these
categories. One guess is that the original bagging ensemble
members for these two categories are not good individually
(though they perform well as a group) so the pruning algo-
rithm throws them away. Category 17 is an outlier from the
other side. It has relatively low response rate, but its clas-
sifiers are the second most used. This indicates that despite
the low response rate, the classifiers trained on Category 17
are still good or often provide information that is comple-
mentary to that provided from other categories. In addition,
there is a subset of categories in which category 17 may be a
good representative, including Categories 4 and 5, as shown



Table 3. Classifier Sharing Statistics

Category Prior Used Used Most HI
(%) Own Used index

1 0.14 2 1 13 0.16
2 0.27 0 0 14 0.27
3 0.04 0 0 6 0.16
4 0.92 12 1 17 0.25
5 0.12 1 0 17 0.27
6 0.83 17 0 14 0.35
7 0.44 9 0 14 0.35
8 0.37 14 1 14 0.67
9 0.64 22 3 14 0.29
10 0.02 1 0 19 0.33
11 0.13 3 0 19 0.57
12 0.05 2 0 19 0.47
13 0.44 18 0 19 0.67
14 2.65 80 7 14 0.30
15 1.70 11 0 19 0.33
16 2.09 14 1 19 0.35
17 0.65 94 9 19 0.34
18 0.31 24 2 19 0.49
19 1.17 150 18 19 0.63

in the “Most Used” column of Table 3.
Classifiers from categories with response rate less than

0.3% are rarely used. Usually, the including-all ensemble
performs pretty well on those categories. It shows that for
those problem domains without enough information, using
aggregated information from all related problem domains
may be a good solution.

Classifiers from Categories 14 and 19 occupies almost
half of the classifiers that are selected. Classifiers from
Category 14 dominate pruned ensembles in six categories
while classifiers from Category 19 dominate in nine cate-
gories. This might be because the customers of these two
categories well-represent the potential buyers of the whole
catalog. There exists a subtle difference between these two
categories. For Category 14, although its classifiers are
widely used, there are only 7 selected for its own problem,
while for Category 19, almost all of its own classifiers are
selected. There are two explanations of this phenomenon.
First, classifiers of Category 14 capture only some of the
characteristics of its customers, therefore, it still needs extra
information for its own problem. Second, those classifiers
are good but very close to each other. So the divergence cri-
teria of the subset selection process prevents including too
many of its own classifiers.

The Herfindahl index shows the homogeneity of the
sources of the classifiers in the pruned ensembles. If a cat-
egory prefers universal knowledge for its prediction, the HI
index will be low, which means that the pruned ensemble
picks classifiers from many categories. On the other hand,

Figure 3. Response rate of each category vs.
total number of times its classifiers are used
in the selected ensembles

if a category needs specialized knowledge for its prediction,
the HI index will be higher, which implies that the pruned
ensemble picks classifiers only from a small number of cat-
egories that share some particular properties with the cat-
egory in question. Usually for those categories with small
response rate, the HI index is low, for example Category 1
and Category 3. Categories 7 and 13 have the highest HI
index. From the “Most Used” column, we know that Cate-
gory 3 used classifiers mostly from Category 14. So it can
be inferred that Category 3 and category 14 are closely re-
lated. For the same reason, the customers of Category 13
may share some special properties with that of Category 19.

These pieces of information might make more sense if
we knew what these categories were. Unfortunately, it is
currently unavailable. The information gained by studying
the classifier sharing structure may help improve the mail-
ing and promotion strategy of the catalog company. For in-
stance, customers that buy products from Categories 14, 17
and 19 seem to capture the main trend of the customer base,
so they are likely the core customers of the company and
may need extra attention. Customers of Category 14 and 3
seem to be similar from some perspective. Therefore, a pro-
motion strategy that proves to be successful for Category 14
may also work well for Category 3.

7. Conclusion and Future Work

The computational results in the previous sections have
proved that sharing classifiers among related problem do-
mains is a promising strategy, particularly when there is
lack of information in some of the problem domains. A
selective-sharing algorithm that prunes the collected ensem-
ble results in more category-specific predictions and may
be more robust than the naive sharing-all strategy. Poten-



tially valuable knowledge about the relationships among the
problem domains may be obtained by carefully studying the
sharing structure of the pruned ensembles.

This new methodology can be applied to quite a few
practical problems. For instance, when a company is trying
to promote a new product, usually there will be only lim-
ited information about its potential customers. However, if
the company has good marketing models existing, closey-
related products, the old models can be combined (selec-
tively) and applied on the new product. Another potential
application is peer-to-peer email filtering. The definitions of
a spam email are often different among email users. How-
ever, there will be a lot of overlap, particularly for those
users with similar interests. By applying the selective shar-
ing algorithm, one can gather useful email filters from other
people (without sharing the content of the emails!). A good
thing about this combined email filter is that it is possibly
able to screen out a spam that has been sent to your peers
but never been sent to you before.

This work is the first step towards the research on shar-
ing useful knowledge among related, but different problem
domains. The strategy of directly sharing classifiers among
domains might be too simple. There are other more flexible
ways of sharing knowledge by way of ensemble methods.
For example, the output of the models from other problem
domains may be treated as input variables for each problem
domain instead of bluntly counted as votes. This strategy
adopts the idea from the ensemble algorithm called “stack-
ing” [24]. In the future, we will compare these different
strategies for knowledge sharing.

Acknowledgement

Samuel Burer would like to acknowledge support from
NSF Grant CCR-0203426.

References

[1] E. Bauer and R. Kohavi. An empirical comparison of voting
classification algorithms: Bagging, boosting, and variants.
Machine Learning, 36(1-2):105–139, 1999.

[2] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[3] L. Breiman. Arcing classifiers.Annals of Statistics, 26:801–
849, 1998.

[4] L. Breiman. Random forests.Machine Learning, 45(1):5–
32, 2001.

[5] S. Burer and R. Monteiro. A nonlinear programming algo-
rithm for solving semidefinite programs via low-rank fac-
torization. Mathematical Programming (Series B), 95:329–
357, 2003.

[6] R. Caruana. Multitask learning. Machine Learning,
28(1):41–75, 1997.

[7] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes.
Ensemble selection from libraries of models. InProc. of the
21st International Conference on Machine Learning, 2004.

[8] P. K. Chan, W. Fan, A. Prodromidis, and S. J. Stolfo. Dis-
tributed data mining in credit card fraud detection.IEEE
Intelligent Systems, November/December:67–74, 1999.

[9] W. Fan, S. J. Stolfo, and J. Zhang. The application of ad-
aboost for distributed, scalable and on-line learning. In
Proc. of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 362–366.
ACM Press, 1999.

[10] W. Fan, H. Wang, and P. Yu. Mining extremely skewed trad-
ing anomalies. InProc. of the 9th International Conference
on Extending Database Technology, pages 801–810, 2004.

[11] Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. InInternational Conference on Machine
Learning, pages 148–156, 1996.

[12] M. Geomans and D. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems us-
ing semidefinite programming.Journal of ACM, 42:1115–
1145, 1995.

[13] Q. Han, Y. Ye, and J. Zhang. An improved rounding method
and semidefinite programming relaxation for graph parti-
tion. Mathematical Programming, pages 509–535, 2002.

[14] L. K. Hansen and P. Salamon. Neural network ensembles.
IEEE Trans. Pattern Anal. Mach. Intell., 12(10):993–1001,
1990.

[15] A. Krogh and J. Vedelsby. Neural network ensembles, cross
validation, and active learning. In G. Tesauro, D. Touret-
zky, and T. Leen, editors,Advances in Neural Information
Processing Systems, volume 7, pages 231–238. MIT Press,
1995.

[16] A. Lazarevic and Z. Obradovic. The distributed boost-
ing algorithm. InKDD ’01: Proc. of the Seventh ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 311–316. ACM Press, 2001.

[17] D. Margineantu and T. Dietterich. Pruning adaptive boost-
ing. In14th International Conference on Machine Learning,
pages 211–218, 1997.

[18] A. McCallum. Multi-label text classification with a mix-
ture model trained by EM, 1999. AAAI Workshop on Text
Learning.

[19] R. J. Quinlan.C4.5: Programs for Machine Learning. Mor-
gan Kaufman, San Manteo, CA, 1993.

[20] A. Sharkey. On combining artificial neural nets.Connection
Science, 8:299–313, 1996.

[21] W. N. Street and Y. Kim. A streaming ensemble algo-
rithm (SEA) for large-scale classification. InSeventh ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD-01), pages 377–382, 2001.

[22] G. Weiss and F. Provost. Learning when training data
are costly: The effect of class distribution on tree induc-
tion. Journal of Artificial Intelligence Research, 19:315–
354, 2003.

[23] Wikipedia. Herfindahl index, 2004.
[24] D. H. Wolpert. Stacked generalization.Neural Networks,

5:241–259, 1992.
[25] Y. Zhang, W. N. Street, and S. Burer. Ensemble pruning via

semi-definite programming, 2005. Under review.


