
Shortest-path kernels on graphs

Karsten M. Borgwardt and Hans-Peter Kriegel
Institute for Computer Science

Ludwig-Maximilians-University Munich
Oettingenstr. 67, 80538 Munich, Germany
{kb}|{kriegel}@dbs.ifi.lmu.de

Abstract

Data mining algorithms are facing the challenge to deal
with an increasing number of complex objects. For graph
data, a whole toolbox of data mining algorithms becomes
available by defining a kernel function on instances of
graphs. Graph kernels based on walks, subtrees and cycles
in graphs have been proposed so far. As a general problem,
these kernels are either computationally expensive or lim-
ited in their expressiveness. We try to overcome this prob-
lem by defining expressive graph kernels which are based
on paths. As the computation of all paths and longest paths
in a graph is NP-hard, we propose graph kernels based on
shortest paths. These kernels are computable in polynomial
time, retain expressivity and are still positive definite. In
experiments on classification of graph models of proteins,
our shortest-path kernels show significantly higher classifi-
cation accuracy than walk-based kernels.

1 Introduction

Kernel methods are a popular method from statistical
learning theory [18] with numerous applications in data
mining. Kernels allow to perform tasks such as classifica-
tion via Support Vector Machines [21], regression [5], clus-
tering [1] and principal component analysis [19] using non-
linear hypotheses and on a wide variety of different data
types.

Early studies on kernel methods dealt almost exclusively
with vector-based descriptions of input data. Haussler [10]
was the first to define a principled way of designing kernels
on structured objects, the so-called R-convolution kernel.

Over recent years, kernels on structured objects such as
strings and trees, transducers, dynamical systems, on nodes
in graphs [14] and on graphs [8, 13] have been defined.
Generally spoken, graph kernels are based on the compari-
son of graph-substructures via kernels. Walks [8, 13], sub-
trees [17] and cyclic patterns [11] have been considered for

this purpose. However, kernels on these substructures are
either computationally expensive, sometimes even NP-hard
to determine, or limited in their expressiveness.

These disadvantages of existing kernel methods are due
to competing requirements in graph kernel design: first, the
kernel should be a good measure of similarity for graphs;
second, its computation should be possible in polynomial
time; third, the kernel must still be positive definite; fourth,
ideally, it should be applicable to all graphs, not just a small
subset of graphs. Existing graph kernels have difficulties
with reaching at least one of these four goals. In this article,
we present a class of graph kernels that measure similar-
ity based on shortest paths in graphs, that are computable
in polynomial time, that are positive definite and that are
applicable to a wide range of graphs.

Outline of this paper In section 2, we will review ex-
isting kernels on graphs with respect to their expressivity
and efficiency. In section 3, we define a graph kernel based
on all paths which is positive definite, yet its computation
is NP-hard. In section 4, we define an algorithm for cal-
culating shortest-path kernels on graphs which are positive
definite, computationally feasible and still expressive. We
then test our shortest-path kernel on a classification task on
graph models of proteins in section 5. We conclude with a
discussion and conclusions in section 6.

2 Existing graph kernels

Before we will review existing graph kernels, we will
state the essential definitions from graph theory necessary
to follow our argumentation.

2.1 Primer on graph theory

A graph G consists of a set of nodes (or vertices) V and
edges E. In this article, n denotes the number of nodes in a
graph and m the number of edges in a graph.

An attributed graph is a graph with labels on nodes
and/or edges; we refer to labels as attributes. In our case,
attributes will consist of pairs of the form (attribute-name,
value). The adjacency matrix A of G is defined as

[A]ij =
{

1 if (vi, vj) ∈ E,
0 otherwise

where vi and vj are nodes in G. A walk w of length
k − 1 in a graph is a sequence of nodes v1, v2, · · · , vk

where (vi−1, vi) ∈ E for 1 < i ≤ k.
w is a path if vi 6= vj iff i 6= j ∀i, j ∈ {1, . . . , k} . Alter-

natively, walks are often referred to as paths; paths are then
named simple, unique or loopless paths, which may lead to
some confusion. To clarify the difference for the remainder
of this article, we define a path to be a walk without repe-
titions of nodes. A cycle is a walk with v1 = vk, a simple
cycle does not have any repeated nodes except for v1.

A Hamilton path is a path that visits every node in a
graph exactly once. An Euler path is a path that visits every
edge in a graph exactly once.

2.2 Random walk kernel

Random walk kernels are based on the idea to count the
number of matching walks in two input graphs. Gärtner et
al. [9] define an elegant approach to determine all pairs of
matching walks in two input graphs G1 = (V1, E1) and
G2 = (V2, E2) via a direct product graph G×:

k×(G1, G2) =
|V×|∑
i,j=1

[
∞∑

n=0

λnAn
×]ij ,

where A× is the adjacency matrix of G× = (V×, E×), de-
fined via

V×(G1 ×G2) = {(v1, w1) ∈ V1 ×V2 :
label(v1) = label(w1)}

E×(G1 ×G2) = {((v1, w1), (v2, w2)) ∈ V 2(G1 ×G2) :
(v1, v2) ∈ E1 ∧ (w1, w2) ∈ E2

∧(label(v1, v2) = label(w1, w2))}

λn must be chosen appropriately for k× to converge.
Based on ideas in [13], this kernel is redefined in [3]

to measure similarities between walks that are not identi-
cally labeled. For this purpose, pairs of walks up to a fixed
length k are observed in product graphs consisting of all
pairs of nodes and edges -independently from their labels-
from both input graphs. Node and edge labels along the
walks are compared via kernel functions.

Despite its clear definition, these random walk kernels
bear difficulties. The direct product graph may contain
|V1| × |V2| nodes. Even if its adjacency matrix is sparse,

it might become full by taking powers of this matrix. Han-
dling such a huge full matrix leads to enormous runtime and
memory requirements.

Besides computational issues, one observes the problem
that small identical substructures in input graphs can lead
to high similarity scores. As walks allow for repetitions of
nodes, these graph kernels lead to the problem of ”totter-
ing”, i.e. by iteratively visiting the same cycle of nodes, a
walk can generate artifically high similarity values. Thus
tottering limits the expressiveness of random walk graph
kernels.

Analyzing current random walk kernels, it is obvious
that the approach in [3] measuring partial similarity leads to
huge product graphs. Keeping to the original random walk
kernel by Gärtner et al. [9], the ability to find partial simi-
larities is lost, reducing the expressivity of the graph kernel.
Both approaches suffer from tottering.

2.3 Label enrichment and redefinition of kernel

In [16], steps are undertaken to improve the expressivity
and efficency of walk-based graph kernels. Additional la-
bels are added to each graph to reduce the number of match-
ing nodes in two graphs. This measurement reduces the ef-
fort to compute their kernel values, as the number of pairs
of walks that have to be considered is reduced.

As a strategy to avoid tottering, the walk-based graph
kernel from [13] is redefined such that walks cannot contain
sub-cycles consisting of two nodes. However, while the la-
bel enrichment has a positive impact on classification accu-
racy in the experimental evaluation, forbidding two-nodes-
cycles did not lead to a significant improvement.

2.4 Subtree kernel and cyclic pattern kernel

As an alternative to random walk kernels, kernels based
on subtrees and cyclic patterns have been defined.

The kernel in [17] compares subtree patterns in graphs.
Starting from a node v, a tree is created by adding all nodes
that can be reached from v in 1, . . . , h steps where h is the
height of this tree. Obviously, as there is often more than
one walk between two nodes, the same node must be in-
cluded several times into the subtree. These ”copies” of
the same node are treated as if they were distinct nodes;
otherwise the pattern would not be a tree any more. This
repeated visiting of the same nodes leads to tottering as in
walk-based kernels. Furthermore, the number of nodes to
consider grows exponentially with the height of the subtree
under study. While it seems attractive to deal with more ex-
pressive substructures such as subtrees, they increase com-
putational costs and do not reduce tottering.

Computing kernels based on cyclic and tree patterns [11]
is a further approach to define graph kernels. Instead of

counting the frequency of these cycles in two input graphs,
an intersection kernel is applied that counts the number of
cycles that appear in both graphs. However, the computa-
tion of general cycles is NP-hard. To overcome this prob-
lem, only graphs are considered that do not contain more
than k simple cycles. As a consequence, it is only applica-
ble to datasets that fulfill this constraint.

Our approach to define an expressive and efficient graph
kernel is to compare graphs based on paths instead of walks.
The challenge is to ensure positive definiteness of the graph
kernel and to keep its runtime complexity polynomial.

3 Graph kernel on all paths

In [17], for directed graphs, a proof is given that graph
kernels based on subpaths are not positive definite. In this
proof, a path is -as usually - defined as a sequence of nodes,
consisting of at least 1 node and without any repetitions of
nodes. We will show in the following that defining paths
as sequences of neighboring pairwise distinct edges allows
to define kernels based on subpaths that are still positive
definite.

We will first define paths as sequences of edges. Second,
we will prove that our edge-based path kernel on graphs is
a positive definite R-convolution kernel.

3.1 Edge walks and edge paths

Definition 1 (Edge walk and edge path) Given a graph
G=(V,E) with {e1, . . . , el} ⊂ E and {vi1 , vi2 , vj1 , vj2} ⊂
V . An edge walk w = (e1, e2, . . . , el) is defined as a se-
quence of edges e1 to el where ei with 1 ≤ i ≤ l is a neigh-
bor of ei+1 = ej , i.e. ei = (vi1 , vi2) and ej = (vj1 , vj2) are
neighbors if vi2 = vj1 . An edge path p is defined as an edge
walk without repetitions of the same edge.

Note that in the above definition, an edge path may con-
tain the same node multiple times, but every edge only once.
An edge path p is an Euler path in the graph exactly consist-
ing of the edges of p. In the remainder of the paper, we will
refer to edge paths and edge walks as paths and walks, re-
spectively, unless explicitly stated otherwise.

3.2 All-paths kernel

After redefining paths as edge paths, we are now able to
define a kernel on all paths in two graphs.

Definition 2 (All-paths kernel) Given two graphs G1 and
G2. Let P (Gi) be the set of all paths in graph Gi where i ∈
{1, 2}. Let kpath be a positive definite kernel on two paths,
defined as the product of kernels on edges and nodes along

the paths. We then define an all-paths kernel kall paths as

kall paths(G1, G2) =
∑

p1∈P (G1)

∑
p2∈P (G2)

kpath(p1, p2),

i.e. we define the all-paths kernel as the sum over all kernels
on pairs of paths from G1 and G2.

In the following lemma, we prove that the all-paths ker-
nel is a valid kernel.

Lemma 1 The all-paths kernel is positive definite.

Proof:
We define a relation R(x′, x′′, x), where x′ is a path

and x′′ and x are graphs. R(x′, x′′, x) = 1 iff x′′ is the
graph that is created when removing all edges in x′ from
x. R−1(x) is then the set of all possible decompositions of
graph x via R into x′ and x′′. R is finite, as there is only a
finite number of paths in a graph, since their length is upper
bounded by the number of edges. We define a kernel kpath

on paths as a product of kernels on nodes and edges in these
paths; this is a positive definite tensor product kernel [18].
We also define a trivial graph kernel kone = 1 for all pairs
of graphs.

We can then define an all-paths kernel as a positive defi-
nite R-convolution defined as in [10]

kall paths(G1, G2) =

=
∑

R−1(G1)

∑
R−1(G2)

kpath(x′1, x
′
2) ∗ kone(x′′1 , x′′2) =

=
∑

p1∈P (G1)

∑
p2∈P (G2)

kpath(p1, p2) (1)

with P (Gi) as the set of all paths in Gi, i ∈ {1, 2} . �

The computation of this kernel, however, is NP-hard, as
we will prove in the following.

Lemma 2 Computing the all-paths kernel is NP-hard.

Proof: We show this result by proving that finding all paths
in a graph is NP-hard. If determining the set of all paths
in a graph was not NP-hard, one could determine whether
a graph has a Hamilton path or not by checking whether a
path exists with length n − 1. This problem, however, is
known to be NP-complete [12]. Consequently, determining
the set of all paths is NP-hard and therefore the computation
of the all-paths kernel is NP-hard. �

In [9] it is shown that computing kernels based on sub-
graphs is NP-hard. Although we are restricting ourselves
to a small subset of all subgraphs, namely to paths, kernel
computation is still NP-hard in our case.

4 Graph kernels on shortest paths

While determining all paths is NP-hard, finding special
subsets of paths is not necessarily. Determining longest
paths in a graph is again NP-hard, as it would allow to
decide whether a graph contains a Hamilton path or not.
Computing shortest paths in a graph, however, is a problem
solvable in polynomial time. Prominent algorithms such as
Dijkstra (for shortest paths from one source node) [4] or
Floyd-Warshall [6, 22] (for all pairs of nodes) allow to de-
termine shortest distances in O(m+n∗log n) [7] and O(n3)
time, respectively.

4.1 Floyd-transformation

The essential first step in our shortest-path kernel is to
transform the original graphs into shortest-paths graphs. A
shortest-paths graph S contains the same set of nodes as the
input graph I . Unlike in the input graph, there exists an
edge between all nodes in S which are connected by a walk
in I . Every edge in S between nodes vi and vj is labeled by
the shortest distance between these two nodes.

Any algorithm which solves the all-pairs-shortest-paths
problem can be applied to determine all shortest distance
edge labels in S. We propose to use Floyd’s algorithm (see
Table 1). This algorithm has a runtime of O(n3), is appli-
cable to graphs with negative edge weights, but must not
contain negative-weighted cycles. Furthermore, it is easy to
implement. In the following, we will refer to the process
of transforming a graph I into S via Floyd’s algorithm as
Floyd-transformation.

4.2 Shortest-path graph kernel

After Floyd-transformation of our input graphs, we can
now define a shortest-path kernel.

Definition 3 (Shortest-path graph kernel) Let G1 and
G2 be two graphs that are Floyd-transformed into S1 and
S2. We can then define our shortest-path graph kernel on
S1 = (V1, E1) and S2 = (V2, E2) as

kshortest paths(S1, S2) =
∑

e1∈E1

∑
e2∈E2

k
(1)
walk(e1, e2),

where k
(1)
walk is a positive definite kernel on edge walks of

length 1.

In the following, we will prove the validity of our
shortest-path kernel.

Lemma 3 The shortest-path graph kernel is positive defi-
nite.

Floyd-Warshall(Graph G with n nodes
and adjacency matrix A)
for i := 1 to n

for j := 1 to n
if ((A(i,j) == 1) and i 6= j

cost[i,j] = distance(i,j);
else

if (i = j)
cost[i,j]=0;

else
cost[i,j]=∞;

end
end

end
end
for k := 1 to n

for i := 1 to n
for j := 1 to n

if (cost[i, k] + cost[k, j] < cost[i, j])
cost[i, j] := cost[i, k] + cost[k, j];

end
end

end
end

Table 1. Pseudocode for Floyd-Warshall’s al-
gorithm [6] for determining all-pairs shortest
paths.

Proof: The shortest-path kernel is simply a walk kernel run
on a Floyd-transformed graph considering walks of length
1 only. We follow the proofs in [13] and [3]. First, we
choose a positive definite kernel on nodes and a positive
definite kernel on edges. We then define a kernel on pairs
of walks of length 1, k

(1)
walk, as the product of kernels on

nodes and edges encountered along the walk. As a tensor
product of node and edge kernels [18], k(1)

walk is positive def-
inite. We then zero-extend k

(1)
walk to the whole set of pairs

of walks, setting kernel values for all walks with length 6=
1 to zero. This zero-extension preserves positive definite-
ness [10]. The positive definiteness of the shortest-path ker-
nel follows directly from its definition as a convolution ker-
nel, proven to be positive definite by [10]. �

Run time complexity The shortest-path kernel avoids tot-
tering, yet it remains an interesting question how it com-
pares to the known random walk kernel (measuring partial
similarity) in terms of runtime complexity.

W. l. o. g. let us assume that we are dealing with two
graphs with n nodes and m edges each. To compute the
walk kernel, we first have to determine the direct product

graph whose number of nodes is obviously upper bounded
by n2. We then have to invert the adjacency matrix of this
direct product graph; standard algorithms for inversion of an
x∗x matrix require O(x3) time. As x ≤ n2 in our case, the
random walk graph kernel has a total runtime complexity of
O(n6).

The shortest-path kernel requires a Floyd-transformation
which can be done in O(n3) when using the Floyd-Warshall
algorithm. The number of edges in the transformed graph is
n2, if the original graph is connected. Pairwise comparison
of all edges in both transformed graphs is then necessary to
determine the kernel value. We have to consider n2 * n2

pairs of edges, resulting in a total runtime of O(n4).
In favor of the walk kernel, one may argue that the num-

ber of nodes in the product graph is only n2 if all nodes
in both factor graphs are equally labeled. This is true for
the random walk based on total similarity, whereas the ran-
dom walk based on partial similarity always leads to a prod-
uct graph with n2 nodes. Thus, only a random walk kernel
which measures total similarity and which creates product
graphs with n

4
3 nodes is of the same runtime complexity as

our graph kernel. One method to reach this is label enrich-
ment as used in [16].

4.3 Equal length shortest-path kernel

Label enrichment can also be applied to our Floyd-
transformed graphs to speed up kernel computation. Both
edges and nodes can be enriched by additional attributes.
When performing the Floyd-Warshall algorithm, one is usu-
ally interested in the shortest distance between all nodes.
However, if we store information about the shortest paths,
i.e. the number of edges or the average length of an edge in
these shortest paths, then we can exploit this extra informa-
tion to reduce computational cost. This is done by setting
kernels to zero for all pairs of shortest paths where e.g. the
number of edges in the shortest paths is not identical, i.e.

ksteps(w,w′) =
{

1 if steps(w) = steps(w′),
0 otherwise

where w and w′ are walks and steps(x) is the number of
edges in walk x. If the steps kernel is zero for a pair of
walks, we do not have to evaluate the node and edge kernel.

4.4 K shortest-path kernel

Even more valuable information for our kernel could be
not only to know the shortest path between two nodes, but
the k shortest paths. For each of the k shortest paths, one
edge could then be created in the Floyd-transformed graph.

Finding k shortest walks and paths in a graph is a well-
studied topic in graph theory and applied sciences [23, 15].

Many of the algorithms proposed for solving this problem,
however, determine k shortest walks, not k shortest paths.
Applying these algorithms would reintroduce the problem
of tottering into our path-based kernel. It is therefore es-
sential to chose an algorithm for finding ”k loopless short-
est paths” in a network. Such algorithms have been pro-
posed over 30 years ago [23, 15] and any of those can be
run on our input graphs, as long as there are no cycles
in our graphs with negative weights. The setback of this
method is the increased runtime complexity for determin-
ing k shortest loopless paths. Yen’s algorithm in [23] re-
quires O(kn(m + n ∗ log n)) time complexity for finding
k shortest loopless paths between a pair of nodes. Conse-
quently, theoretical complexity would be O(kn5) for de-
termining k shortest loopless paths for all pairs of nodes
in a fully connected graph and pairwise comparison of all
k shortest paths in two graphs would be of complexity
O((k ∗ n2) ∗ (k ∗ n2)) = O(k2 ∗ n4). As a result, the pre-
processing step has a higher runtime complexity than the
kernel computation in this case.

A simple way to determine k shortest disjunct paths be-
tween two nodes, where no pair of paths shares any identical
edge, is to iteratively apply Dijkstra’s algorithm to the same
graph and to remove all edges that belong to the currently
shortest path. Still, this procedure would be of runtime com-
plexity O(n2 ∗ k ∗ (m + n ∗ log n)), which could become
O(k ∗ n4) in a fully connected graph.

5 Experiments

5.1 Experimental setting

To evaluate the practical performance of our shortest-
path graph kernel, we chose a classification task from bioin-
formatics [3]. 540 proteins, 90 per class, should be clas-
sified into 6 distinct functional classes in 10-fold cross-
validation, solely based on protein structure information.

We obtained the protein structures from the Protein Data
Bank [2] and their corresponding enzyme class labels from
the BRENDA enzyme database [20]. We randomly choose
90 proteins from each of the 6 enzyme EC hierarchy top
level classes. We translated these protein structures into
graph models in which the secondary structure elements of
a protein represent the nodes.

Every node is connected to its three nearest neighbors
in space. As a simplification, distances between secondary
structure elements are calculated as distances between their
spatial centers. Edges are labeled by the distance they repre-
sent in angstroms. Node bear labels representing their type,
namely helix, sheet or loop, and their length in amino acids.

On these graph models of proteins, we ran walk kernels
and shortest-paths kernels. As calculating the walk kernel
for walks up to infinity results in memory problems, we

kernel type accuracy st. dev.
2 shortest paths 94.44 2.52
e.l. shortest paths 93.52 2.93
shortest paths 93.33 3.22
walks up to length 4 89.63 2.30
walks up to length 5 88.89 1.99
walks up to length 6 88.15 1.67
walks up to length 7 87.96 1.78

Table 2. Walk kernel vs. shortest-path kernel.
Prediction accuracy on 540 proteins from 6
EC classes in 10-fold cross-validation. (st.
dev. = standard deviation, e.l. = equal length)

approximate it by walks of up to length k, setting kernel
values for longer walks to zero. We performed tests for k
in the range from 4 to 7. We also employed our shortest-
path kernel and the equal length shortest-path kernel on the
same data. Furthermore, we ran a 2 shortest-path kernel de-
termining the 2 shortest disjunct paths between nodes via
Dijkstra’s algorithm.

All graph kernels use the same set of node and edge ker-
nels. Node types are compared via a delta kernel, i.e.

ktype(x, x′) =
{

1 if type(x) = type(x′),
0 otherwise

Node lengths are compared via a Brownian bridge kernel,
i.e.

klength(x, x′) = max(0, c− |length(x)− length(x′)|).

The same Brownian bridge kernel is applied to edges to
measure their difference in length. c is set to 3 for nodes
and to 2 for edges via cross-validation as in [3].

After calculating all graph kernel matrices mentioned
above, we predicted enzyme class membership in 10-fold
cross-validation for 540 proteins. We performed “one-class
vs. rest” Support Vector Machine classification and re-
peated this for all six EC top level classes. We report results
as averages across all EC classes in Table 2.1

5.2 Results

The shortest-path kernels outperform all walk kernels
with an accuracy of at least 93.33%. The accuracy level
of the worst shortest-path kernel on 540 proteins is signifi-
cantly higher than that of the best kernel using walks up to

1Our graph kernel was implemented in MATLAB, release 13. We used
a Linux Debian workstation with 3 GHz Intel CPUs for our experiments.
We employed the SVM package SVLAB.

length 4 (Yates-χ2 = 4.8, P = 0.028). As a result, consider-
ing shortest paths instead of walks increases classification
accuracy significantly.

Among the walk kernels, classification is decreasing
with the length of the walks under study. This is an indicator
that the longer the walks we examine, the more numerous
walks created by tottering get. With an increasing number
of tottering walks, classification accuracy decreases.

Among the shortest-path kernels, the 2 shortest-path ker-
nels perform slightly better than the equal length shortest-
path kernel and the standard shortest-path kernel. How-
ever, the accuracy differences between the different types
of shortest-path kernels are not significant on our test set.

6 Discussion and conclusions

We have defined graph kernels based on shortest paths,
which are polynomial to compute, positive definite and re-
tain expressivity while avoiding the phenomenon of ”tot-
tering”. In experiments on classifying graphs model of
proteins into functional classes, they outperformed kernels
based on random walks significantly.

The shortest-path kernels prevent tottering. It is not pos-
sible that the same edge appears twice in the same shortest
path, as this would violate the definition of a path. Subse-
quently, artifically high similarity scores caused by repeated
visiting of the same cycle of nodes are prohibited in our
graph kernel.

The shortest-path kernel as described in this article is
applicable to all graphs on which Floyd-Warshall can be
performed. Floyd-Warshall requires that cycles with nega-
tive weight do not exist. If edge labels represent distances,
which is the case in most molecular classification tasks, this
condition generally holds.

As all and longest paths are NP-hard to compute, our
graph kernel uses shortest paths. As shown in our experi-
ments, shortest distances between nodes are a characteristic
of graphs which is essential for graph classification in many
applications such as molecular graphs or telecommunica-
tion networks. However, there might be areas of applica-
tion where longest paths or average path or walk lengths
within a graph are more adequate and important for classi-
fying graphs than shortest paths. Designing graph kernels
for specific tasks therefore remains a necessity.

In our experiments, we reached the highest accuracy us-
ing a kernel looking at 2 disjunct shortest paths between all
nodes. Both are represented by an edge of their own in the
Floyd-transformed graphs we ran our graph kernel on. An
alternative approach would to model both as one joint edge
which bears one label for the length of the shortest path
and one for the length of the 2nd shortest path. Defining
a proper kernel for combining these two attributes, maybe
even giving different weights to the shortest path and the

2nd shortest path could lead to even higher classification
accuracy.

An open question concerning our shortest graphs kernels
is how to deal with graphs that bear more than one edge la-
bel, i.e. in which edges do not represent distances only.
As long as one edge attribute reflects some kind of distance
between nodes, our algorithm remains applicable. The dif-
ficulty is then to include the other edge attributes into the
kernel computation. One could think of many different al-
ternatives, either taking an average over numerical edge at-
tributes along the shortest path or to apply an intersection
kernel on sets of edge attributes along two paths. Analo-
gously, one might think of a Floyd-transformation which
preserves information about intermediate nodes in shortest
paths, as in the shortest-path kernels we defined, only at-
tributes of start and end node are considered. How to opti-
mally include this information into a graph kernel is a ques-
tion of kernel engineering. Domain knowledge from the
area of application will be most beneficial in this search for
a good kernel on a particular type of graphs.

Our shortest-path graph kernel is computable in polyno-
mial time. In theory, its runtime complexity for fully con-
nected graphs is two powers lower than that of a random
walk kernel. In practice, efficient computations for matrix
inversion and label enrichment which creates a sparse di-
rect product graph matrix will lead to comparable run-time
performances of shortest-path kernel and walk kernel.

In future studies, we will look at further connections be-
tween graph theory and kernel methods. Graphs in bioinfor-
matics promise to be an interesting area of application, as
these graphs have particular characteristics (e.g. scale-free
networks) that could be exploited in special kernel func-
tions.

Acknowledgements

This work was supported in part by the German Ministry
for Education, Science, Research and Technology (BMBF)
under grant no. 031U112F within the BFAM (Bioinformat-
ics for the Functional Analysis of Mammalian Genomes)
project which is part of the German Genome Analysis Net-
work (NGFN).

References

[1] A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik. A
support vector method for hierarchical clustering. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in
Neural Information Processing Systems 13, pages 367 – 373.
MIT Press, 2001.

[2] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat,
H. Weissig, I. Shindyalov, and P. Bourne. The protein data
bank. Nucleic Acids Research, 28:235–242, 2000.

[3] K. M. Borgwardt, C. S. Ong, S. Schoenauer, S. Vish-
wanathan, A. Smola, and H.-P. Kriegel. Protein function
prediction via graph kernel. Bioinformatics, 2005. in press.

[4] E. W. Dijkstra. A note on two problems in connection with
graphs. Numerische Mathematics, 1:269–271, 1959.

[5] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and
V. Vapnik. Support vector regression machines. In M. C.
Mozer, M. I. Jordan, and T. Petsche, editors, Advances in
Neural Information Processing Systems 9, pages 155 – 161,
Cambridge, MA, 1997. MIT Press.

[6] R. Floyd. Algorithm 97, shortest path. Comm. ACM, 5:345,
1962.

[7] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. JACM,
34(3):596–615, 1987.

[8] T. Gärtner. Exponential and geometric kernels for graphs.
In NIPS*02 workshop on unreal data, volume Principles of
modeling nonvectorial data, 2002.

[9] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hard-
ness results and efficient alternatives. In B. Schölkopf and
M. Warmuth, editors, Sixteenth Annual Conference on Com-
putational Learning Theory and Seventh Kernel Workshop,
COLT. Springer, 2003.

[10] D. Haussler. Convolutional kernels on discrete structures.
Technical Report UCSC-CRL-99 - 10, Computer Science
Department, UC Santa Cruz, 1999.

[11] T. Horvath, T. Gärtner, and S. Wrobel. Cyclic pattern ker-
nels for predictive graph mining. In Proceedings of the In-
ternational Conference on Knowledge Discovery and Data
Mining, 2004.

[12] D. Jungnickel. Graphen, Netzwerke und Algorithmen. BI-
Wiss.-Verlag, Mannheim, Germany, 1994.

[13] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized ker-
nels between labeled graphs. In Proceedings of the 20th

International Conference on Machine Learning (ICML),
Washington, DC, United States, 2003.

[14] R. S. Kondor and J. Lafferty. Diffusion kernels on graphs
and other discrete structures. In Proceedings of the ICML,
2002.

[15] E. Lawler. A procedure for computing the k best solutions
to discrete optimization problems and its application to the
shortest path problem. Management Science, 18:401–405,
1972.

[16] P. Maha, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert.
Extensions of marginalized graph kernels. In Proceedings
of the Twenty-First International Conference on Machine
Learning, 2004.

[17] J. Ramon and T. Gärtner. Expressivity versus efficiency of
graph kernels. Technical report, First International Work-
shop on Mining Graphs, Trees and Sequences (held with
ECML/PKDD’03), 2003.

[18] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT
Press, 2002.

[19] B. Schölkopf, A. J. Smola, and K.-R. Müller. Kernel prin-
cipal component analysis. In B. Schölkopf, C. J. C. Burges,
and A. J. Smola, editors, Advances in Kernel Methods - -
Support Vector Learning, pages 327 – 352. MIT Press, Cam-
bridge, MA, 1999.

[20] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt,
G. Huhn, and D. Schomburg. Brenda, the enzyme database:
updates and major new developments. Nucleic Acids Res,
32 Database issue:D431–D433, Jan 2004.

[21] V. Vapnik. Statistical Learning Theory. Wiley, New York,
1998.

[22] S. Warshall. A theorem on boolean matrices. J. ACM, 9:11–
12, 1962.

[23] J. Y. Yen. Finding the k shortest loopless paths in a network.
Management Sciences, 17:712–716, 1971.

