
X-mHMM: An Efficient Algorithm for Training Mixtures of HMMs when the
Number of Mixtures is Unknown

Zoltán Szamonek1,2 and Csaba Szepesvári1
1Computer and Automation Research Institute of the Hungarian Academy of Sciences

Kende u. 13-17, Budapest 1111, Hungary
2Eötvös University Budapest, Pázmány P. sétány 1/c, Budapest 1117, Hungary

zszami@elte.hu, szcsaba@sztaki.hu

Abstract

In this paper we consider sequence clustering problems
and propose an algorithm for the estimation of the number
of clusters based on the X-means algorithm. The sequences
are modeled using mixtures of Hidden Markov Models. By
means of experiments with synthetic data we analyze the
proposed algorithm. This algorithm proved to be both com-
putationally efficient and capable of providing accurate es-
timates of the number of clusters. Some results of experi-
ments with real-world web-log data are also given.

1 Introduction

Clustering is the process of discovering natural groups in
data. Applications of clustering include biology, chemistry,
physics, computer science, image processing, sociology and
finance. The data to be clustered can be either fixed length,
finite-dimensional vectors or of varying length sequences.
Clustering vectorial data has a vast literature (e.g. [2, 4]).

Sequential data clustering (SDC) is a relatively recent
topic. Following Bicego and Murino [6], methods of SDC
can be classified as belonging to one of the following three
categories: proximity-based methods, feature-based meth-
ods and model-based methods. In proximity-based methods
the algorithms’ aim is to find appropriate distance or simi-
larity measures and transform the problem into one that can
be solved by any standard distance-based method (e.g. by
agglomerative clustering). Feature-based algorithms first
transform the variable-length sequences into feature vectors
with fixed length, for which any standard clustering method
that accepts vector-space data can be used. Model-based
methods assume that for each cluster there exists a separate
model responsible for generating the observations belong-
ing to the given cluster. Within a probabilistic framework,
assuming that sequence indexes are generated according

to some prior distribution independently of each other, the
compound model is called a mixture-model. The problem
of finding the ‘hidden’ indexes of sequences is called latent
variable modeling and is often solved using variants of the
Expectation Maximization (EM) algorithm. One common
property of these models is that if the indexes were given,
the models could be trained by standard methods.

The sequence generating models can take many form,
such as time-series models (e.g. AR, ARMA, GARCH,
etc.), spectral models, observable operator models, or Hid-
den Markov Models (HMMs). In this paper we restrict
ourselves to the case when the sequences are generated by
HMMs where the observations take on values in a finite
space, though we note in passing that our algorithm can be
extended naturally to other mixture models, as well.

Recently, the literature on probabilistic mixture models
has grown very quickly. Due to space limits we review here
only a few of the most relevant works on mixture of HMMs
(mHMMs). The earliest approaches of using HMMs for
SDC are mostly related to speech recognition (e.g. [8]).
These methods are mostly proximity-based. The first ap-
plication of mHMMs in SDC is [9] where the author pro-
posed the use of Baum-Welch training preceded by a clever
initialization procedure; the number of clusters was found
by an exhaustive search by selecting the number that yields
the best Monte-Carlo cross-validated log-likelihood for the
data. Li and Biswas [5] proposed to use the Bayesian Infor-
mation Criterion (BIC) and the so-called Cheeseman-Stutz
approximation to the posterior of models for the simultane-
ous estimation of the number of clusters and the number of
states of the underlying HMMs [5]. In their algorithm, in
each iteration a new HMM is constructed and is added to
the set of mixtures. The algorithm stops when the partition
posterior probability (which is estimated by a penalized log-
likelihood of the data) starts decreasing. The above papers
try to estimate the number of clusters by adding one model
at a time followed by training on the whole data set and then

by testing the new mixture model by evaluating some score
function. More recently, hierarchical agglomerative clus-
tering techniques were proposed in [11]. In this approach,
clustering starts with finer granularity than ultimately re-
quired, followed by merging ‘neighboring’ clusters in an
iterative fashion. In this paper, however, no attempt was
made to determine the number of clusters in an automatic
way. The paper by Ypma and Heskes is particularly rele-
vant for us as they considered the problem of mining web-
logs, which is also one of our test domains [10]. Again, the
problem of automatic estimation of the number of clusters
was not considered in this paper.

All the papers that we are aware of follow either a naive
strategy whereby in each iteration a different cluster num-
ber is tested for which a mixture model is trained typically
‘from scratch’, or they follow an incremental strategy where
a small (monotonous) change is made to the number of clus-
ters (the structure) and then the mixture model is retrained
on the whole data set. The problem with the former linear
search approach is that it throws away potentially useful in-
formation when training the new model with a higher num-
ber of mixtures, whilst the problem with the latter approach
is that the selection of which model to merge/split can be
very expensive relative to that after the search for this model
only a single change is made to the final structure. Inspired
by the X-means algorithm [7], where k-means clustering
was extended so that the number of clusters is automati-
cally estimated during the course of the clustering process,
here we propose an algorithm that considers splitting every
model in each iteration and decides about which models to
split based on subsets of data associated with the individual
models. This way the decision about which models to split
becomes efficient since only a subset of the whole data is
used in each of these tests. Further, since in each iteration
many of the models can be split simultaneously, the algo-
rithm potentially makes the search time for the number of
clusters logarithmic in K∗, the optimal number of clusters.
Our results with synthetic data show that the proposed algo-
rithm is not only efficient but also yields accurate estimates
of the number of clusters.

The paper is organized as follows: background on
HMMs and mixture of HMMs are given in Section 2, X-
mHMM, the proposed algorithm is given in Section 3,
whilst experiments with synthetic and real-world data are
given in Section 4. Conclusions are drawn in Section 5.

2 Background

2.1 Hidden Markov Models

Let m denote the number of symbols in a finite alphabet.
For simplicity the members of this alphabet will be identi-
fied with the numbers 1, . . . ,m. A standard discrete state,

discrete observation HMM defines a probability distribution
over the space of all observation sequences. Denoting by
n the number of states, such a HMM can be defined by a
triplet λ = (π,A,B), where π ∈ [0, 1]n is the initial dis-
tribution of states, A = (aij) ∈ [0, 1]n×n is the transition
probability matrix and B = (bik) are the observation prob-
abilities. Here aij is the probability that the next state is j
assuming the current state is i (1 ≤ i, j ≤ n), whilst bik

is the probability of observing symbol k when the state is i
(1 ≤ i ≤ n, 1 ≤ k ≤ m).

The most well-known algorithm for training HMMs
based on a number of observation sequences is the Baum-
Welch algorithm [1]. For a sequence of observations Y =
(Y1, Y2, . . . , YT) define ξt(i, j|Y, λ) = P (Xt = i,Xt+1 =
j|Y, λ) and γt(i|Y, λ) =

∑n
j=1 ξt(i, j|Y, λ). Then, given a

sequence of observations Y (1), . . . , Y (N), the Baum-Welch
formulas for reestimating the transition and observation
probabilities given a current set of parameters λ are

a′
ij =

∑N
l=1

∑T (l)

t=1 ξt(i, j|Y (l), λ)
∑N

l=1

∑T (l)

t=1 γt(i|Y (l), λ)
,

b′ik =
∑N

l=1

∑T (l)

t=1 γt(i|Y (l), λ)I(Y (l)
t = k)

∑N
l=1

∑T (l)

t=1 γt(i|Y (l), λ)
.

Here I(L) = 1 iff L = true, and I(L) = 0, otherwise.
The Baum-Welch algorithm is an instance of the Expecta-
tion Maximization (EM) algorithm and as such in each iter-
ation it increases the likelihood of the observed data.

In practice, the Baum-Welch algorithm is computation-
ally expensive and is commonly replaced by Viterbi training
(VT). VT replaces the computationally costly expectation
step of EM by a step that is computationally less intensive.
The price to be paid for the gain in computational efficiency
is often the loss of accuracy: VT does not necessarily in-
crease the likelihood of data in every step. VT works by
finding the best alignment of the training sequences to the
internal states of the model. For a given observation Y and
model parameter λ, let X̂t(Y ;λ) be the state assigned to
the tth observation of the sequence Y . Then, VT train-
ing is obtained if in the above formulas ξt is replaced by
ξt(i, j|Y, λ) = I(X̂t(Y ;λ) = i, X̂t+1(Y ;λ) = j). In the
context of speech recognition this algorithm has been de-
scribed by Juang and Rabiner [3].

2.2 Mixtures of HMMs

We consider the following problem: assume that we
are given a data set D of N observations Y (1), . . . , Y (N).
Each observation Y (i) consists of a sequence of symbols
Y

(i)
1 , . . . , Y

(i)
Li

of varying length. The problem of clustering
sequences is to discover a natural grouping of the sequences
into some clusters based on the observed data D.

Assuming that the number of clusters is given and is de-
noted by K, one natural probabilistic model for this prob-
lem takes the form of a finite mixture:

fK(Y) =
K∑

j=1

pjfj(Y |λj).

Here Y denotes a sequence, pj is the prior probability of the
jth model and fj(Y |λj) is the probability of observing Y
given that the parameters of the jth model are determined by
λj . In this paper we shall assume that the models are given
by HMMs, hence λj = (πj , Aj , Bj) are the parameters of
the jth HMM.

Note that a mixture of HMMs given by p = (p1, . . . , pK)
and Λ = (λ1, . . . , λK) can be viewed as a single HMM
with a state space of size n = n1 + . . . + nK , where nj

is the size of the state space of the jth model [9]. The
transition probability matrix of this composite HMM is
A = diag(A1, . . . , AK), the observation matrix is B =
diag(B1, . . . , BK), whilst the initial state distribution π is
given by (p1π

T
1 , . . . , pKπT

K)T . Hence, in theory, the Baum-
Welch algorithm can be used to find the parameters of the
mixture models if the model parameters are initialized to re-
spect the special structure of this composite HMM model,
i.e., by fixing aij to zero whenever i and j do not belong
to the same submodel. This follows because then for such
pairs ξt(i, j|Y, λ) will always be zero and hence these pa-
rameters remain zero forever. The same holds for the obser-
vation parameters.

Viterbi training (VT) can be generalized to this case in
the obvious way. However, as discussed before, although
VT speeds up training, it can also result in a loss of accu-
racy. In order to mitigate this effect, we adopted an inter-
mediate option in which each sequence is assigned to the
model that is the most likely to generate it. The connection
to VT should be clear: if one introduces the hidden vari-
able I denoting the index of the model that generated the
sequence Y as a non-emitting state then the procedure can
be thought of as the partial Viterbi alignment of Y to the
states where only the alignment w.r.t. I is considered. This
procedure can be thought of as the natural extension of K-
means clustering to sequence data and has been proposed in
many of the papers dealing with training mixture of HMMs.
This method, that we call semi-VT, is used in the algorithm
proposed below.

3 The X-mHMM Algorithm

X-mHMM applies the idea underlying X-means to find
the number of mixtures in a mixture of HMM model. The
input to the algorithm is the data set D containing the ob-
served sequences, an upper bound on the number of mix-
tures (Kmax), and a natural number s that is used in the

stopping condition and whose role will become clear later.
The main structure of the algorithm is the same as that of
X-means: in each iteration of the main loop all models are
considered as split candidates. Once splits are done, the full
model is retrained on the whole data set. The pseudocode
of the algorithm is listed in Figure 1, whilst the pseudocode
of split-attempts is listed in Figure 2.

1: function XmHMM (D,Kmax, s)
2: m:=[λ1]; p := [p1]; K:=1;
3: t := 0; l := 1;
4: train([p,m], D);
5: while ((K ≤ Kmax)&&(t ≤ l + s)) do
6: t := t + 1;
7: m′ := []; p′ := []; // lists of new models
8: for i ∈ {1, ..,K} do
9: D(i) := {Y ∈ D|f(Y |λi) > maxk �=i f(Y |λk)};

10: (l,m′, p′):=splitAttempt(m′, p′, l,D(i), pi, λi);
11: end for
12: m := m′; p := p′; K := size(m);
13: if (l = t) then
14: train([p,m], D);
15: end if
16: end while
17: return (p,m).

Figure 1. Algorithm X-mHMM

Let us explain now some details of the algorithm. The
algorithm maintains a list of models m = [λ1, . . . , λK]
and a list of respective prior probabilities p = [p1, . . . , pK].
These lists are initialized by training a single HMM on the
whole data set (the method ‘train’ takes its first argument
by reference, i.e., it changes them when it returns). In each
step of the main loop, the data is partitioned into disjoint
parts (see line 9) and each model in list m is considered as
a candidate of splitting. The splitting decision is made in
function ‘splitAttempt’.

3.1 Split attempts

Function ‘splitAttempt’ takes a subset of the full data
set, a model λ and its prior p. It then creates two per-
turbed models (we will shortly discuss this step below) that
will serve as the initialization for the ‘split’ models. It is
then decided (Figure 2, line 3) if the data is better mod-
elled by a mixture of 2 HMMs than with a single HMM.
In theory, given a prior over the models and model param-
eters, the probabilities of the two alternatives (i.e., K = 1,
K = 2) should be used to decide which of the alternatives
to choose. Assuming flat priors over the parameters, the re-
spective probabilities reduce to the expected log-likelihood
of the data given K (the models are integrated out). The ex-
pected log-likelihood can be estimated in a number of dif-

1: function splitAttempt(m′, p′, l,D, p, λ)
2: [λ̂1, λ̂2] := perturb(λ);
3: if (cvScore(λ̂1, λ̂2, D) > score([p, λ], D)) then
4: score0 := train([(q1, q2),(λ̂1, λ̂2)], D);
5: q′1 := 1; q′2 := 1; λ̂′

1 := λ̂1; λ̂′
2 := λ̂2;

6: score1 := train([q′1,λ̂′
1], D);

7: score2 := train([q′2,λ̂′
2], D);

8: l := t;
9: if (score1>score2 && score1>score0) then

10: append(m′, λ̂′
1); append(p′, p);

11: else if (score2>score1 && score2>score0) then
12: append(m′, λ̂′

2); append(p′, p);
13: else
14: append(m′, [λ̂1, λ̂2]);append(p′, [p ∗ q1,p ∗ q2]);
15: end if
16: else
17: append(m′, λ); append(p′, p);
18: end if
19: return (l,m’,p’).

Figure 2. Function ‘splitAttempt’

ferent ways. Following [7, 5], we first attempted to use BIC
that uses a Laplacian approximation to the model-posterior,
as it worked well in the cited works and is much cheaper
than its alternatives such as e.g. cross-validation. How-
ever, our initial experiments showed that (at least for our
data) the decisions based on BIC can be very sensitive to
the number of training samples. In particular, we found
that when the number of samples is small then splitting of-
ten stops prematurely. Since, during the course of iterative
splittings, the number of samples per model becomes small
as more models are added, we opted for cross-validation,
which is more expensive but according to our experience
yields more reliable estimates. We employed simple n-fold
cross-validation where the data is partitioned into n disjoint
parts.1 The ‘cvScore’ function returns the corresponding
estimated log-likelihood of the data. The returned score is
compared with the score of the original model (λ) evaluated
on the input data of ‘splitAttempt’. This comparison favors
the single-model alternative since the data used for calcu-
lating the score of model λ is used in its training. However,
empirically we have found that the bias is weak and can
be sufficiently counterbalanced by choosing the number of
cross-validation partitions to be small (in our experiments
we used n = 3). Using a small number of partitions in-
troduces unwanted randomness in the decision process, but
this effect can be mitigated by an appropriate stopping con-
dition in the main loop of the algorithm. If the compar-

1In [9], Monte-Carlo cross-validation was found to yield more reliable
estimates. Our experience suggests that the simple n-fold cross-validation
works equally well, at least on the data sets that we used.

ison favors the mixture model, then a 2-mixture HMM is
trained to obtain the mixture model (q1, q2), (λ̂1, λ̂2). It
is well known that HMM training can become stuck in lo-
cal minima. Actually, it can happen that the comparison
favors the 2-mixture HMM only because the single model
λ is suboptimal and starting the (mixture) training process
from the perturbed models yields one model that models the
whole data better than the original model, whilst the other
model becomes ‘dead’ (only a small fraction of the sam-
ples is assigned to it). Therefore, we have added tests to
check if this were the case. In particular, we have decided
to compare the scores of fully trained versions of the mod-
els λ̂1, λ̂2 (lines 6–7) on the data and to test if any of these
models yields a better score than the score of the 2-mixture
HMM. Here, scores are calculated on the training data in all
cases. This creates some bias towards the mixture model.
However, we can argue that this bias is not harmful as it
agrees well with the previous decision that mixture model
should be preferred. Further, this decision was biased to-
wards the single HMM variant. The comparison here gives
a ‘last chance’ for rejecting the mixture hypothesis. The
function returns the adjusted lists, as well as the variable l
that indicates the last time that some models were changed
when attempting the splits.

3.2 Main loop of X-mHMM and stopping
criterion

The loop through the list of models in X-mHMM con-
tinues until all models are subject to the split-tests and the
optional changes. At the end, the list of models, m, and the
list of priors, p, are updated with the respective new lists,
m′, p′ and the number of mixtures K is adjusted. When
any of the models is changed then the new mixture model
is retrained on the whole data set. Note that this process
usually stops after a very small number of iterations if only
a few changes were made to the models. The main loop of
X-mHMM exits when the number of clusters found exceeds
Kmax, the a priori upper bound on the number of clusters,
or when for s consecutive steps no changes were made to
the models. By increasing s one can mitigate the influence
of the randomness introduced in the split-tests. The method
returns the mixture of HMM models found.

3.3 Model perturbation

One detail not given earlier is how a model is perturbed
to obtain two new models in function ‘perturb’. The goal
here is to obtain sufficiently distinct models. This is cur-
rently implemented by the following straightforward pro-
cedure: consider first the perturbation of the state transi-
tion matrix. For each pair of state indexes, i, j, an unbi-
ased Bernoulli random variable Vij taking on the values

0, 1 is sampled. If Vij = 0 then we let ã
(1)
ij = 2aij and

ã
(2)
ij = aij/2, whilst if Vij = 1 then we let ã

(1)
ij = aij/2 and

ã
(2)
ij = 2aij . The transition matrix for the model λ̂1 (resp.

λ̂2) is obtained by normalizing ã
(1)
ij (respectively, ã

(2)
ij) ap-

propriately so as to ensure that the normalized matrix is a
stochastic matrix. The same procedure is applied to both
the initial state distribution and the observation probability
matrix.

This method, albeit quite simple, achieves sufficient dis-
tinctness of the perturbed models, while maintaining their
structure (for example zero transitions are kept). Note that
semi-VT also helps to make the models less similar to each
other. Making the models less similar to each other is cru-
cial in the splitting process: if the HMMs of the 2-mixture
HMM were similar to each other then it is likely that one
of them is sufficient for modelling the partition. VT is not
that crucial in the main part of X-mHMM (line 14) where
one could also use the Baum-Welch procedure. We note in
passing that it would be advantageous to use semi-VT when
the mixtures are “overlapping”.

4 Experiments

We have experimented with both synthetic and a real-
world data. The latter data was gathered from a popular
web-server’s log, the task being to cluster users by their
browsing behaviour.

The purpose of the experiments with the synthetic data
was to study the behaviour of the algorithm in a controlled
environment. In particular, we were interested in the al-
gorithm’s scaling and robustness properties, as well as its
accuracy, in comparison to the performance of a naive al-
gorithm. We call this algorithm the linear-search algorithm
and abbreviate it to lis-mHMM. This algorithm searches for
the number of clusters by training increasingly larger mix-
ture models, the number of mixtures being increased by
one in consecutive iterations. This process is stopped when
the negative log-likelihood estimated with 3-fold cross-
validation starts to increase.2 This is detected by fitting a
line through the last m observed costs and stopping when
the slope of this line becomes positive for the first time. The
number of clusters is found by finding the mixture number
for which the cost is the smallest.3

2We used 3-fold cross-validation as a compromise between speed and
accuracy.

3We have experimented with a number of schemes here. Initially, we
used an exhaustive search (up to an upper bound on the number of clusters),
but this was computationally very demanding and analysing the sequence
of costs in a number of experiments we observed that costs starts to level
off at approximately the correct number of clusters and hence arrived at
the above method. The detection of this point is made difficult by both the
randomness of the training procedure, the sequences and the limitations of
the training procedure. We set m, the smoothing parameter, to 4 experi-

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500

nu
m

be
r

of
 c

lu
st

er
s

fo
un

d

users per cluster in the training data

lis-mHMM
X-mHMM

Figure 3. Number of clusters found as a func-
tion of the number of training samples.

4.1 Data Generation

The following procedure was adopted as the data gen-
eration model: given K, the number of mixtures, the prior
p was chosen to be uniform. The HMMs were generated
randomly in a way that ensured that they were sufficiently
different. This was implemented as follows: let the num-
ber of states be fixed at n, plus an exit state. For each state i
we decided randomly the number of ‘significant’ transitions
from i (self-transitions are allowed). This number could be
1 or 2. Once this number was decided, transition probabil-
ities were sampled in a manner to ensure that the number
of significant transitions from i (having much larger values
than the rest of transitions) matches the sampled number.
The initial state distribution was generated in a similar way.
After this, one distinctive state, called the ‘exit’ state was
added to each model. Next, exit transitions were added to
each state in a random manner. The exit probabilities pe

were sampled from the uniform distribution on [0.05, 0.3]
and the non-exit transitions were normalized by multiply-
ing them with 1 − pe. The same observation matrix was
used for each model component of the mixture. The prob-
ability observing symbol i in state i was fixed at 0.85 and
the observation matrix was chosen to be a circular matrix
where off-diagonal elements with |i − j| > 3 were set to 0.

In order to closely simulate web-log data where user
identity can be used in the clustering process, for each
HMM a number of ‘users’ were generated. Then, the se-
quences of a given user were generated using the HMM
corresponding to the user. The average sequence length

mentally as it seemed to perform the best. We also considered smoothing
the costs before searching for their minimum, but that did not change the
results significantly. Hence we kept the simpler method.

is 7.4. Since in our web-log, users typically have 2-3
sequences, we used a random number of observation se-
quences where the number of observation sequences was
generated by adding one to a Γ distributed random number,
where the parameter of the Γ distribution was set to 3. The
average number of sequences per user was approximately 5.
The identity of users was made available to both algorithms.
These used them in semi-VT to assign the sequences of any
user to the very same model.

4.1.1 Results on Synthetic Data

Results of the experiments are shown in Figures 3–9. Ini-
tially, we were interested in the dependency on the number
of training samples for a fixed number of clusters, which
in this case was set to 10. Since the generation model is
two-level, we give the number of training samples as the
number of ‘users’. In Figure 3 the number of clusters found
is shown as a function of the number of users for both al-
gorithms. The number of states in the HMMs is fixed at 11
(corresponding to the true number of states in the generating
models).

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

G
F

lo
ps

users per cluster in the training data

lis-mHMM
X-mHMM

Figure 4. Training cost as a function of the
number of training samples.

From this figure we find that after a short transient pe-
riod, X-mHMM successfully identifies that the number of
clusters is 10 (though a closer inspection reveals a slight
positive bias). On the other hand, in most of the cases lis-
mHMM fails to find the proper number of clusters. Our ex-
planation is that due to the incremental nature of X-mHMM,
it is less sensitive to its initialization than lis-mHMM and
will tend to have a better chance to identify the ‘true’ den-
sity. In other words, lis-mHMM, due to its “monolithic
approach” will often get stuck in local minima making it
hard to find the appropriate number of clusters and to iden-

tify the true density.4 We have also checked the clustering
of the users in a number of selected cases. It was found
that the clustering results of the mixture models returned by
X-mHMM largely agreed with the original classification of
the users (e.g. when the number of clusters was higher than
10, then typically additional weakly populated clusters were
added), and the clustering agreed very well (above 90% cor-
rect classification) with the original one. Figure 4 shows
the training cost in giga-flops as a function of the number
of users sampled per cluster. It can be readily observed that
X-mHMM is not only more accurate than lis-mHMM, but
it also runs at least 3 times faster than lis-mHMM. Error
bars on these figures represent standard deviations over 10
independent runs.

In the next experiment we tested X-mHMM’s robustness
to the number of states in the HMMs. Since our algorithm
does not attempt to find the proper HMM structure, it is
important to test its robustness to this parameter. From Fig-
ure 5, that shows the number of clusters found as a func-
tion of the number of states of the HMMs, we see that X-
mHMM is generally robust to this parameter. In particular,
increasing the number of states above 11 (the true number
of states) yields most of time the correct number (here, just
as in the subsequent experiments the number of users per
cluster is fixed at 500). On the other hand, lis-mHMM has

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35

nu
m

be
r

of
 c

lu
st

er
s

fo
un

d

number of states in the trained HMM models

lis-mHMM
X-mHMM

Figure 5. Number of clusters found as a func-
tion of the number of states in the HMMs.

difficulties in estimating the proper number of clusters. Re-
sults for lis-mHMM are only shown up to the state num-
ber 23 due to its large running times. The corresponding
graph showing the training-cost of the algorithms is given
in Figure 6.5 Again, X-mHMM is found to have a con-
siderable gain over lis-mHMM. The next figure shows the

4Figure 7, to be described soon, confirms this hypothesis.
5Theoretically, the training cost of both models should scale quadrati-

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

G
F

lo
ps

initial guess on internal state number

lis-mHMM
X-mHMM

Figure 6. Training cost as a function of the
number of states in the HMMs.

cost of models found (the cost is calculated as the average
number of bits per observations corresponding to the opti-
mal compression scheme given the models, i.e., the normed
negative log-likelihood of the data where the base of the
logarithm is 2).6 As suggested previously, the models found

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 5 10 15 20 25 30 35

av
er

ag
e

co
st

 (
bi

ts
/o

bs
er

va
tio

n)

number of states in the trained HMM models

lis-mHMM
X-mHMM

Figure 7. Model cost as a function of the num-
ber of states in the HMMs.

by X-mHMM can indeed model the data better than those
returned by lis-mHMM. In particular, the costs of the mod-
els returned by X-mHMM approach the optimal cost. From
these figures we may conclude that X-mHMM is not par-
ticularly sensitive to overestimating the number of states
needed.

cally with the number of states.
6The cost was measured on an independent test set of size equal to that

of the training data.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 c

lu
st

er
s

fo
un

d

number of clusters in the training data

lis-mHMM
X-mHMM

Figure 8. Number of mixtures found as a
function of the true number of clusters.

Finally, Figure 8 shows the number of clusters found as
a function of the number of clusters used in the generation
model, whilst Figure 9 shows the corresponding training
costs. The previous conclusions still hold: X-mHMM is
not only more accurate than lis-mHMM, but also runs much
faster.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50

G
F

lo
ps

number of clusters in the training data

lis-mHMM
X-mHMM

Figure 9. Training cost as a function of the
true number of clusters.

4.2 Experiments on Web-log Data

For our experiments we used web-log data of a popu-
lar portal. The observations consisted of sequences of ad-
dresses of downloaded pages and the identity of users (ex-
tracted from cookies) initiating the download. To reduce
the observation space, the pages were grouped according to

their ‘topic’ extracted automatically from their URL. This
resulted in an observation space of 150 values. There are
280,000 users in the database and over 800,000 sequences.
The total number of observed sequences is ca. 6 million,
which amounts to a data set of one month.

Fitting X-mHMM with 10, 20 and 30 internal states (and
an additional exit state) showed us, that starting at 20 states
the number of clusters stabilized at 5 − 7 clusters.

Next, we experimented with the stability of the clusters
found. It turned out that cluster boundaries are not as strict
as was found in the case of synthetic data. In all inves-
tigated cases a mapping between the clusters of mixtures
could be identified by looking at simple statistics such as
the page visitation frequencies induced by the models. The
general finding is that there exist 4 core user clusters, whilst
the other clusters are typically smeared over all the other
clusters.

The following general labels could be assigned to the
most prominent clusters: scientific and political; education
and sophisticated news; family; arts and fun.

Given a good estimate of the number of clusters and
the number of hidden states, we compared the quality of
the model found by X-mHMM with that of a mixture
of HMM model with identical number of mixtures and
states and trained with semi-VT. We measured the costs (in
bits/observation) of the models on a test set comprising of
10% of the whole data, not included in the training set. A
cost of 2.45 bits/observation (stddev=0.02 based on 16 runs)
was measured for the mixture of HMM model, whilst a cost
of 2.33 bits/observation (stddev=0.007 based on 13 runs)
was measured for X-mHMM. 7 In this example the run-time
of X-mHMM is ca. 9 times longer than that of training the
single mixture of HMM for which the “correct” number of
states and mixtures is given, whilst X-mHMM is capable of
estimating the number of mixtures, and yields better mod-
els.

5 Conclusion

In this paper we have proposed X-mHMM, an algorithm
for the simultaneous estimation of the number of mixtures
and the training of mixture of HMMs. The algorithm is in-
spired by [7], where a similar algorithm was proposed for
clustering vector-space data. For our problems many mod-
ifications were necessary to the original algorithm to make
it competitive with alternative approaches. In a series of ex-
periments with synthetic and real datasets X-mHMM was
found to give excellent performance and run faster than sim-
pler alternatives. In particular, in a large number of cases, it
was found that X-mHMM is not only capable of estimating
the correct number of clusters with small errors, but it also

7Using zero-order compression (like Shannon or Huffman codes), the
cost is 3.6 bits/observation.

seems to be successful at avoiding initialization problems
of HMMs.

Future work should include the extension of X-mHMM
to other probabilistic mixture models, a more thorough
study of the performance characteristics of the algorithm
(e.g. identifying critical points of the algorithm). Accord-
ing to some authors (e.g. [5]) it is not possible to get reliable
estimates of the number of clusters without estimating the
correct number of states of the underlying HMMs. In our
experiments we have found that at least for our particular
data sets, X-mHMM is capable of tolerating an overestima-
tion of the number of states. However, we still think that it
would be important to incorporate an algorithm to estimate
the number of states as it could lead to even better models.

References

[1] L. Baum. An inequality and associated maximization tech-
nique in statistical estimation for probabilistic functions of
Markov processes. Inequalities, 3:1–8, 1969.

[2] A. Jain and R. Dubes. Algorithms for Clustering Data. Pren-
tice Hall Advanced Reference Series. Prentice Hall, 1988.

[3] B. Juang and L. Rabiner. The segmential k-means train-
ing procedure for estimating parameters of hidden Markov
models. IEEE Trans. Acoustics, Speech, Signal Processing,
38:1639–1641, 1990.

[4] L. Kaufman and P. Rousseeuw. Finding Groups in Data.
John Wiley and Sons, Inc., 1990.

[5] C. Li and G. Biswas. A Bayesian approach to temporal
data clustering using hidden Markov models. In Proceed-
ings of the Seventeenth International Conference on Ma-
chine Learning, pages 543–550, 2000.

[6] M. F. M. Bicego, V. Murino. Similarity-based classification
of sequences using Hidden Markov Models. Pattern Recog-
nition, 2004. to appear.

[7] D. Pelleg and A. Moore. X-means: Extending K-means with
efficient estimation of the number of clusters. In Proceed-
ings of the Seventeenth International Conference on Ma-
chine Learning, pages 727–734, San Francisco, 2000. Mor-
gan Kaufmann.

[8] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. In Proceedings
of the IEEE, volume 77, pages 257–286, 1989.

[9] P. Smyth. Clustering sequences with hidden Markov mod-
els. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems, vol-
ume 9, page 648. The MIT Press, 1997.

[10] A. Ypma and T. Heskes. Categorization of web pages and
user clustering with mixtures of Hidden Markov Models. In
Proceedings of the International Workshop on Web Knowl-
edge Discovery and Data Mining, 2002.

[11] S. Zhong and J. Ghosh. A unified framework for model-
based clustering. Journal of Machine Learning Research,
4:1001–1037, 2003.

