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Abstract

In text classification, feature selection is often applied to
high-dimensional data as a preprocessing step. When deal-
ing with highly skewed data in terms of class distribution,
we observe that typical feature selection metrics like infor-
mation gain or chi-squared are biased toward selecting fea-
tures for the minor class, and the metric of bi-normal sepa-
ration can select features for both minor and major classes.
In this work, we investigate how these feature selection met-
rics affect the performance of frequently used classifiers
such as Decision Trees, Naı̈ve Bayes, and Support Vector
Machines via bias analysis in the context of highly skewed
data. Three types of biases are metric bias, class bias, and
classifier bias. Extensive experiments are designed aiming
to understand how these biases can be employed in con-
cert and efficiently to achieve good classification perfor-
mance. We report our findings and present recommended
approaches to text classification based on bias analysis and
the empirical study.

1 Introduction

Text classification is the problem of classifying docu-
ments into predefined categories. Since the feature space
dimensionality for a document is very high, feature (term)
selection is often applied to text data [4]. It is shown in [30]
that one can obtain at least the same as or better perfor-
mance than using all the features after removing up to 90%
features. Commonly used feature selection metrics are in-
formation gain and chi-squared. Standard classifiers for text
classification are decision trees(DT), naı̈ve bayes classifier
(NBC), and support vector machines (SVMs) [29], among
others. Dealing with highly skewed data (we follow the def-
inition in [4] in this work: the ratio between the minor and
major classes exceeds1 : 67), we notice that typical feature
selection metrics may not perform as expected. We there-
fore conduct a systematic study of feature selection metrics,

representative classifiers, and their biases in dealing with
highly skewed data.

Learning from skewed data has been attracting increas-
ing attention in recent years [25]. Skewed class distributions
exist in many applications including direct marketing [14],
detection in images [11], fraud detection [2, 20], text cate-
gorization [13], and network intrusion detection [9]. Classi-
fication of highly skewed data is a difficult task in data min-
ing [7, 25]. To address the skewness problem, researchers
realize accuracy alone is not a suitable measure of evalu-
ating the performance of a classifier. Alternative measures
are Receiver Operating Characteristics (ROC) analysis, the
area under the curve (AUC) [21], precision, recall and F-
measure [29]. Total misclassification cost is another useful
measure [3] provided that we know misclassification cost
for each class or example. Further, the authors in [5] inte-
grate the performance evaluation metric into classifier de-
sign. By changing the classifier optimization objective to
Macro F-measure, their MFoM classifier with LSI-inducted
features is comparable to a linear SVM using all features.

The study of sampling methods before classification is
another line of research tackling skewed data [12, 14, 15]:
e.g., over-sample the minor class or under-sample the ma-
jor class. Some heuristics can be designed to remove re-
dundancy, noise, unsafe data points or data near the bor-
derline while sampling [12, 1]. In [19], it is proposed to
interpolate artificial data points between minor class exam-
ples. However such methods might over-expand the mi-
nor class cluster, additional data cleaning steps are needed
to correct overexpansion. In general, over-sampling is
more secure and stable compared with under-sampling as
it does not lose any information. Interestingly, random
over-sampling is competitive with complex sampling meth-
ods [1]. Besides sampling, cost-sensitive learning [10, 3],
one-class learning [23, 16] and many algorithm specific ap-
proaches [9, 27, 6] are also considered in dealing with the
data skewness.

On the other hand, the authors in [31] propose to divide
features into positive features and negatives features, and



then use a wrapper model to find the optimal ratio to com-
bine positive features and negative features together in clas-
sification. However, no pattern of the optimal ratio between
positive and negative features is found and recommended.
Since a filter model usually runs much faster, information
gain and chi-squared are shown to be effective for feature
selection [30]. Odds ratio is suggested to deal with the
skewness with Näıve Bayes Classifier [18]. Bi-normal sepa-
ration proposed in [4] improves the performance of support
vector machines especially for highly skewed data com-
pared with other metrics.

This work is to investigate how various biases associ-
ated with feature selection metrics and classification al-
gorithms can be effectively used in text classification for
highly skewed data. We first study three biases with specific
examples, next examine their combinations for effective
text classification, then design experiments to extensively
evaluate the effectiveness using various biases together for
text classification on benchmark data sets.

2 Biases Associated with Data Skewness

We study three types of biases: feature selection metric
bias, class bias and classifier bias.

2.1 Feature selection metric bias

Among many feature selection metrics, we focus on four
widely used metrics: information gain (IG), chi-squared
(CHI) [30], odds ratio (Odds) [18] and bi-normal separa-
tion (BNS) [4]. IG and CHI are reported as the best mea-
sure in [30]. However, when a data set is extremely skewed,
typical feature selection measures may not work well. We
adopt the notions of positive and negative features to study
why these metrics perform differently. We use1 to de-
note one word occurring in one document, and0 otherwise.
Throughout the paper,pos means the minor class, andneg
means the major class. A feature selection metric is used
to assign a score to each feature based on the contingency
table as in Table 1. “tp”, “fp”,“fn” and “tn” are frequencies
of different feature values in different classes, respectively.
As all features are binary (present or absent in a document),
we categorize the features into three groups: (a) positive
features, where tp

#pos > fn
#neg . These features have higher

probability appearing in documents of the positive class; (b)
negative features, wheretp#pos < fn

#neg ; and (c) neutral fea-

tures, where tp
#pos = fn

#neg . The features occur in the posi-
tive and negative classes with the same probability.

Feature Value pos neg

1 tp fn
0 fp tn

Table 1. Continency Table

We use the “cora36” data [4] to illustrate the problem
associated with skewed data. It consists of 36 classes and
there are 50 documents in each class. First, we select “Data
Mining” as the positive class and “Agents” as the negative
class to obtain a balanced data set. We then generate another
data set via the one-vs-all approach, that is, “Data Mining”
is the positive class while all the other 35 classes are nega-
tive, and its skewness ratio is 1:35. We show the proportion
of positive features selected by four feature selection met-
rics on the balanced data in Figure 1 and on the imbalanced
case in Figure 2. Thex-axis is the number of features being
selected and they-axis is the proportion of positive features.
The straight line parallel to thex-axis is the proportion of
positive features among all the features.
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Figure 1. Features selected on balanced data
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Figure 2. Features selected on skewed data

When the data is balanced, IG, CHI and BNS all select
both positive and negative features and their proportions are
similar to the natural distribution of positive and negative
features. However, when the data is skewed, as in Fig-
ure 2, IG and CHI choose more positive features, thus are
biased toward the positive features. BNS, however, still se-
lects both positive and negative features, and the proportion
of positive features of BNS is not far away from the true
distribution. Odds ratio, according to its definition, selects
only positive features initially in both cases as observed in
both figures. We further demonstrate this metric bias issue
in Figure 3 with the average result of 5 extremely skewed
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Figure 3. Metric bias of the top 500 features
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data sets derived from data set “wap” [4]. The skewness of
data sets varies from1 : 85 to 1 : 311. The bias of IG and
CHI is substantial for the 500 top-ranking features.

Hence, in the context of the highly skewed data, we di-
vide feature selection metrics into two categories:

• Biased metrics:IG, CHI, and Odds fall into this cat-
egory as they are all biased toward selecting positive
features especially when we select a relative small
number of features (say, less than 500).

• Unbiased metrics: BNS selects both positive and
negative features and is not biased toward either class.

BNS outperforms all the other metrics for highly skewed
data in [4]. Hence, one way to deal with data skewness is to
employ an unbiased feature selection metric such as BNS.

2.2 Class bias

For highly skewed data, the class distribution is biased
toward the majority in the sense that most classifiers would
favor to predict the major class in order to obtain overall
accuracy. However, in dealing with highly skewed data, it
is against our objective as we are more interested in pre-
dicting the minor class to achieve low false negative rate
while maintaining overall accuracy [25]. The straight for-
ward way to address the class bias is to change threshold
of the classifier. But it’s difficult to determine how much to
move the decision boundary. Comparatively, over-sampling
is a simple but very effective way to alleviate this bias [1].

2.3 Classifier bias

Three widely used classifiers (DT, NBC, and SVM) also
exhibit different biases. As we know, DT like C4.5 [22] has
an embedded feature selection mechanism, i.e., it prefers
features with high information gain. This bias leads to its
selection of positive features to branch. Because of this em-
bedded mechanism, we can anticipate that feature selection
sometimes may not help much if we use DT for text clas-
sification. DT is, however, sensitive to sampling as sam-
pling can change data local distributions. Over-sampling
can make data balanced and negative features would be
equally likely to be selected by IG. Thus, both positive and
negative features will be used in building a decision tree.

In Table 2, we show the effects of feature selection and
over-sampling for the 5 highly skewed data sets over classi-
fier DT. Column A is the numbers of positive and negative
features found in a decision tree built from the original data
and positive features are usually selected. Column B is sim-
ilar to Column A but the tree is built from the data after
over-sampling; it can be seen that both positive and nega-
tive features are used in the built trees. Column C shows

A B C
Skew Ratio pos neg pos neg pos neg

1:85 3 0 10 10 3 0
1:103 4 0 8 7 4 0
1:119 2 0 5 5 2 0
1:141 3 0 10 10 2 0
1:311 1 1 1 19 2 0

Table 2. Positive/Negative features in a tree

the positive and negative features found in a decision tree
built using only 50 features selected by BNS (an unbiased
metric) and DT selects only positive features. Clearly, over-
sampling increases the complexity of the tree and allows for
many negative features to be used in the built trees. This ob-
servation confirms our hypothesis above that DT is sensitive
to sampling but insensitive to feature selection.

NBC has different bias from that of DT. Feature selec-
tion can have a significant impact on NBC [18]. In addition,
over-sampling changes NBC’s prediction. NBC predicts the
class label of an instance proportional to the class distribu-
tion. As over-sampling changes the global class distribu-
tion, the prior class probability also changes. Therefore,
NBC is sensitive to both sampling and feature selection.

Feature selection also affects SVM’s performance [4].
But random over-sampling affects SVM moderately and
becomes ineffective when the number of features is large.
As shown in [28], SVM’s prediction is biased against the
minority. The authors attribute this to the relatively small
sample size of the minor class: Compared with their coun-
terparts, positive instances tend to reside far away from
the “actual boundary” when the training data is severely
skewed. So the constructed decision boundary of SVM in-
vades the actual space of the minor class. Random over-
sampling cannot change this phenomenon since no new data
is generated.

Another reason also contributes to SVM’s prediction
bias. When those positive instances near the ”actual bound-
ary” are surrounded by some negative instances or rather
noise, the decision boundary will be adapted to the noise
but ignore the errors in the minor class. In this case, over-
sampling, by increasing the error penalty for the minor
class, can protect these positive instances from being over-
whelmed. However, if no error occurs in the minor class
during training, sampling is ineffective. This comes true
when the feature dimensionality is large, as we can easily
find a perfect hyperplane to separate the majority (negative
class) and the minority (positive class). Therefore, only if
the number of features is small, over-sampling can moder-
ately influence SVM.
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3 Relationship Between Biases

3.1 Bias Analysis

We conducted a pilot study to evaluate the effect of over-
sampling on feature selection. Based on the definitions
of Odds and BNS, over-sampling should not have signifi-
cant impact on feature selection using Odds and BNS as it
does not change the probability of one word’s occurrence
in classes. We compared the effect of sampling on feature
distribution on 5 extremely skewed data sets from “wap”
data and showed the results in Figure 4. We just show the
legend corresponding to over-sampling (OS) before feature
selection. The remaining symbols are the same as in Fig-
ure 3. The results suggest that over-sampling causes IG and
CHI to select more negative features, but BNS can generate
a more balanced subset of positive and negative features.
Therefore, over-sampling before feature selection can alle-
viate the metric bias of IG and CHI, but not much.
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Figure 4. Features selected after sampling

In order to overcome data skewness, we can do over-
sampling before or after feature selection; For classifiers,
we consider DT, NBC and SVM; Concerning the class bias,
we can do over-sampling or not; With feature selection, we
can use a biased or unbiased metric or just select all the
features. There can be a total of2×3×2×3 = 36 different
approaches to deal with data skewness, corresponding to the
four steps: 1. over-sampling; 2. feature selection; 3. over-
sampling; and 4. classification.

Based on the above analysis and the pilot study, we un-
derstand that not all 36 approaches are effective in address-
ing data skewness. If one step makes little difference (e.g.,
feature selection for DT), we just set “No” as default to
save computation time. Table 3 lists the 12 promising ap-
proaches to tackle data skewness.

The approaches in Table 3 are derived from bias analysis.
We now further evaluate them through comparative experi-
ments to investigate whether they can improve performance
of classifiers for text classification, and which one is more
appropriate for highly skewed data. The more interesting
question is whether three types of biases can work in con-
cert to achieve better performance.

Sampling Sampling Feature
before FS Classifier after FS Selection(FS)

Yes biased
NBC No biased

Yes Yes biased
SVM No biased
DT Yes No

No
NBC Yes biased

No unbiased
No unbiased

biased
SVM Yes unbiased

No unbiased

Table 3. Promising approaches

3.2 Experiment Setting

Since we want to reduce false negatives for the minor
class without sacrificing the performance of the major class,
we use Marco F-measure [4] as the performance measure.

Benchmark data sets:They are chosen based on those
used in [4]. All the attributes are binary with1 representing
a word’s occurrence in a document and0 otherwise. We
change all the multi-class documents into binary-class data
sets via the one-vs-all approach. We concentrate on highly
skewed data sets with ratio exceeding 1:67. Excluding those
data sets with very few (less than 10) instances in the minor
class, we have 18 data sets.

Classifiers: C4.5, NBC and SVM are typical classifiers
for text categorization [8, 29, 4]. We use the default settings
in WEKA [26] for all the classifiers. As we just focus on
data sets with binary attributes here, the NBC we employed
is multi-bernoulli model [17].

Feature selection metrics:IG, CHI, Odds are all biased
metrics. CHI always yields the same trend as IG in our
previous analysis. CHI performs similarly as IG and the two
have correlated failures [4, 30]. Hence, we chose IG and
Odds to represent biased metrics. In our experiments, we
shall examine both biased metrics (IG, Odds) and unbiased
metrics (BNS). We select 2, 4, 6, 8, 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 1000, or all
features. Over-sampling can be applied before and/or after
feature selection. After feature selection, a classier can be
built with original or over-sampled data. We perform 5×5-
fold cross validation to obtain F-measure results.

3.3 Results and Discussions

The results for DT, NBC, and SVM with different num-
bers of selected features are shown in Figures 5, 6 and 7.
“OS+ · · ·” and “· · · + OS” represent over-sampling before
and after feature selection, respectively. The results are ob-

4



4   8   20  40  60  80  100 300 500 700 All
0.6

0.65

0.7

0.75

0.8

M
ac

ro
 F

−
m

ea
su

re IG
IG+OS
Odds
Odds+OS
BNS
BNS+OS
OS+IG
OS+IG+OS

Figure 5. Performance of C4.5. Over-sampling alone improves the performance significantly. Little
difference is observed for feature selection.

4   8   20  40  60  80  100 300 500 700 All
0.5

0.6

0.7

0.8

M
ac

ro
 F

−
m

ea
su

re IG
IG+OS
Odds
Odds+OS
BNS
BNS+OS
OS+IG
OS+IG+OSbaseline 

Figure 6. Performance of Na ı̈ve Bayes Classifier. Over-sampling helps a lot. Sampling plus biased
feature selection methods can even achieve better result. More interestingly, unbiased metric BNS
peaks when only 40 to 200 features are selected. But sampling counteract the optimality of unbiased
metric a lot making it not much difference from sampling alone.
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Figure 7. Performance of Support Vector Machine. When dimensionality is large (say, greater than
200), over-sampling makes no difference. But different feature selection methods lead to different
final result. BNS, again, is the best. ODDS, the most biased feature selection metric, even gets
worse performance than the baseline. When the feature number decreases, no obvious winner
exists. Generally, over-sampling can always heave the performance of biased metric. But it’s not the
case for unbiased metric.
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tained by averaging over the 18 sets. For each classifier,
we check whether and when over-sampling or feature selec-
tion can improve the performance. The classification result
based on original data without feature selection or sampling
(the straight line in the figures) is considered as the baseline.

Most of the results are consistent with our bias analy-
sis. 10 out of 12 methods work well in dealing with skewed
data, except for two approaches - combine over-sampling
with metric (BNS) for both NBC and SVM. Over-sampling
always improves the performance using biased metrics in-
cluding IG , Odds, or OS+IG, but not so when using an
unbiased metric. In order to understand why, we investi-
gate false negative rate and error rate. We find that over-
sampling after we use BNS to select features will make the
false negative rate very low but significantly increase the
total error rate. There is a tradeoff between over-sampling
and metric bias. With NBC or SVM, we can address the
data skewness either from the class bias or metric bias but
not both.

Comparing all 4 feature selection methods: BNS,
OS+IG, IG and Odds with increasing bias, BNS is the best
in most cases without over-sampling. Odds is usually the
worst. Notice that over-sampling before feature selection
using IG is always better than using IG along. This is be-
cause the former can select more negative features. When
we select very few features (say less than 10), biased met-
rics are preferred as they can protect the minor class from
being overwhelmed by the major class. As the number of
features increases, negative features can help. This explains
why BNS excels when a large number (more than 100 for
SVM and 30 for NBC) of features are selected.

In sum, we can address the skewness using metric bias or
class bias. Directly combining sampling with unbiased met-
ric does not necessarily achieve better performance. Metric
bias is in general more effective than class bias.

4 Heuristics of Metric Bias

As mentioned above, using an unbiased feature selection
metric, i.e., by selecting both positive and negative features
we can usually increase the discriminability of the classifier.
This agrees with the results of [4] and [31]. However, the
uncertainty of each class should also be considered. We
have the following theorem from statistics:

Theorem 1 Assume each document{d1, d2, · · · , dm} in
one class can be considered as a sample from certain innate
population with meanµ and standard deviationσ. Then,
the mean of the sampling distribution ofd̄ = 1

m

∑m
i=1 di,

denoted byµd̄ andσd̄, resectively, are

µd̄ = µ, σd̄ = σ/
√

n

Actually, d̄ is used to estimate the probability of a word
appearing in one class. Clearly, the uncertainty (standard
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Figure 8. Various Ratios Using NBC and SVM

deviation)of this statistic is in reverse proportion to the num-
ber of instances in the class during training. Based on this
theorem, it is not difficult to follow that the estimation of
the probability of word occurrence in the minor class is as-
sociated with more uncertainty compared with that in the
major class. Therefore, our feature selection method should
bias toward the negative features to reduce uncertainty.

In [31], the authors tried to find the optimal ratio of pos-
itive and negative features but in vain. Based on the ob-
servation of superiority of BNS in the experiments and the
theorem above, we have the following conjecture:

Conjecture The ratio between positive and negative fea-
tures should be close to a smoothed class distribution.

The class distribution often does not follow the opti-
mal ratio for highly skewed data, as the minor class often
contains about one percent of the total training documents.
Thus, most of the time, only one positive feature is selected.
To achieve high discriminability, we need to smooth the dis-
tribution accordingly to select more positive features.

Smoothing function In our experiments, if the class per-
centage isp, then we select 1

1+exp(−α(p−0.5)) features out
of the total number for this class. Here,α is a parameter to
control the degree of smoothing. Typically,α between 4 to
7 works fine. Here, we just setα to 6.

We verify this conjecture by following the strategy
in [31]: Group positive and negative features first, and then
use a biased metric (we adopt IG as a reference) to select a
specified number of positive and negative features, respec-
tively. Here we just show the results of four representative
ratios. The first three ratios of positive and negative features
are equal (NATURAL), reverse (REVERSE) proportional
to the class distribution1, or 1:1 (HALF). And the forth ratio
is our conjecture to select features according to a smoothed
class distribution (SMOOTH).

1We select negative features if there are no enough positive features.
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Figure 9. T-test result of NBC
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Figure 10. T-test result Of SVM

Figure 8 shows the average performance of NBC and
SVM, respectively, under various feature selection meth-
ods: BNS, NATURAL, HALF, REVERSE, SMOOTH.
Again,5 × 5 cross validation is conducted on 18 data sets.
The numbers of selected features (x-axis) are 10, 20, 30,
· · ·, 90, 100, 200,· · ·, 900, 1000, 1500, and 2000, respec-
tively. Clearly, SMOOTH beats other ratios often and is
similar to BNS.

We also include in Figure 9 and 10 the T-test results com-
paring different feature selection ratios for NBC and SVM,
respectively. Specially, SMOOTH vs. NATURAL, HALF,
and REVERSE. The continuous line represents the count
that Heuristic A beats Heuristic B; the dashed line denotes
the reversed situation and the dotted line signals the cases
of “tie”.

Obviously, selecting features with a smoothed class dis-
tribution outperforms the two ratios: HALF and Reverse
dramatically, especially when we select 200 more features
for SVM and 50-200 features for NBC.Keep in mind
that those cases are when the best average performance
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Figure 11. SMOOTH vs. BNS

is achieved. Comparing smoothed distribution (SMOOTH)
and non-smoothed distribution (NATURAL), a huge differ-
ence can be found for NBC. For SVM, only when we se-
lect huge numbers of features(>700) can NATURAL out-
perform smoothed distribution. Meanwhile, SMOOTH per-
forms comparable to or even better than BNS in Figure 11
except when we select 200 more features for NBC, that is,
when NBC’s performance goes down sharply in Figure 8.

In conclusion, facing highly skewed data, it is more ap-
propriate to select features according to a smoothed class
distribution to achieve better performance.

5 Tradeoff between Metric Bias and Sam-
pling Ratio

In Section 4, we notice that there should be a trade-off
between metric bias and sampling. In [24] they suggest that
it is not necessarily the natural distribution or a balanced
distribution after sampling will obtain optimal performance.
However, feature selection bias is not investigated in that
paper. We now investigate a proper sampling ratio with dif-
ferent feature selection metric bias.

In order to observe a general trend, we select 100
features according to various feature ratio(#positive fea-
ture/100) and sampling ratio (the skew ratio after sampling,
i.e., #positive instances:#negative instances). The fea-
ture ratio ranges among 0, 0.01, 0.02, 0.03,· · ·,0.09, 0.1,
0.2, · · ·, 0.8, 0.9, 1.0 and the sampling ratio varies among
1
10 , 2

10 , · · · , 8
10 , 9

10 , 10
10 , 10

9 , 10
8 , · · · , 10

2 , 10
1 .

From Figure 12 and 13, we could see pretty the same
trend for both NBC and SVM. When positive features are
minority, sampling always decrease the performance. Only
when positive features dominate can sampling contribute
some improvements, and various sampling ratios always
yield almost the same performance.

The best performance is obtained when no sampling is
used and the feature ratio is between0.02 to 0.1, which cov-
ers, most of the time, the smoothed class distribution in our
previous experiments. This also suggests that our method is
very insensitive to the parameterα as long as the smoothed
distribution falls in a certain interval.
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Figure 12. NBC performance
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Figure 13. SVM performance
6 Conclusions

In order to handle highly skewed data with high dimen-
sionality, we discuss three types of class bias, feature se-
lection metric bias, and classifier bias. Over-sampling is an
effective way to address the class bias. BNS is a good unbi-
ased metric, and IG, CHI and Odds are biased metrics. This
work provides a systematic bias analysis and performs an
extensive empirical study to evaluate various combinations
to improve performance of text classification using typical
classifiers such as DT, NBC, and SVM. Experimental re-
sults suggest that:

• Sampling before feature selection can cause selection
of more negative features, which explains why over-
sampling improves the performance of decision trees
on highly skewed data.

• It is more effective to select good features than chang-
ing the class distribution for SVMs and NBC in dis-
crimination.

• With different uncertainty associated with majority
and minority classes, we propose a heuristic to se-
lect positive and negative features according to a
smoothed class distribution, which is shown to beat
other feature ratios and perform as well as BNS. This
also suggests that it is not the ranking method but the
feature ratio that matters.

• If a feature selection measure is biased, over-
sampling can have classification performance. But
when a feature selection measure is not biased, over-
sampling decreases the performance a lot.

• Concerning sampling after feature selection, perfor-
mances are insensitive to the sampling ratio.
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