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Abstract

Spaial co-location paterns represent the subsets of fea-
tures whaose instances are frequently located together in
geographic space Co-location pétern discovery presents
challenges snce the instances of spatial features are en
bedded in acontinuows Paceandshare a variety of spatial
relationships. A large fraction d the computation time is
dewoted to identifying the instances of co-location paterns.
We propose a novd join-lessapproach for co-location pa-
tern mining, which materializes atial neighba relation
ships with nolossof co-location instances and reduces the
computationd cost of identifying the instances. The join-
less co-location mining dgorithm is efficient since it uses
an instance-lookup scheme instead o an expensive spatial
or instance join operation for identifying co-location in-
stances. We prove the join-less algorithm is corred and
complete in findng co-location rules. The experimental
ewvaluations using synthetic datasets andreal world datasets
show the join-lessalgorithm performs more dficiently than
acurrent join-based algorithmandis calablein dense spa-
tial datasets.

1 Introduction

The explosive growth of spatial data and widespread
use of spatial databases emphasize the need for the auto-
mated discovery of spatia knowledge. Spatial data min-
ing [7, 8] isthe processof discovering interesting and pre-
viously unknawvn, but potentially useful patterns from spa-
tial databases. Extrading interesting petterns from spatial
datasets is more difficult than extrading the correspondng
patterns from traditional numeric and caegoricd data due
to the complexity of spatial data types, spatial relationships
and spatial autocorrelation [10].

A spatial co-locaion pettern represents a subset of spa-

*This work was partially suppated by NSF grant 0431141and Oak
Ridge National Laboratory grant. The content of this work does not nec
essrily refled the position a pdicy of the government and no dficia
endasement shoud be inferred.

tial feaureswhoseinstances are frequently located in aspa-
tial neighbahood For example, emlogists have foundthat
Nile Crocodiles and Egyptian Plover birds are frequently
co-located. The a-location rule, i.e., Nile Crocodile —
Egyptian Plover, predicts the presence of Egyptian Plover
birdsin areas with Nile Crocodiles. Spatial co-locaion pet-
terns may yield important insights for many applications.
For example, amobil e service provider may beinterested in
mobil e service patterns frequently requested by geographi-
cdly neighbaing users. The frequent neighbaing request
sets can be used for providing attradive locaion-sensitive
advertisements, etc. Other applicaion damains include
Earth science, pulic hedth, biology, transportation, etc.

Co-locationrule discovery presents chall enges dueto the
following reasons: First, it isdifficult to find co-locaionin-
stances sncethe instances of spatial feaures are enbedded
in a continuows ace &ad share neighba relationships. A
large fradion o the computation time is devoted to iden-
tifying the c-location instances. Sewnd, it is nontrivial
to reuse association rule mining algorithms [3, 5] for co-
location pettern mining sincethere ae no pre-defined trans-
adionsin many spatial datasets. Thus, a aurrent co-locaion
mining algorithm [9] uses a join-based approach to find co-
locaion instances. Its computational performance suffers,
however, due to the large number of joins required as the
number of feaures and their instances increases.

In this paper, we propcse a method to materialize the
neighba relationships of a spatial dataset with no dupica
tion d the neighba relationships and nolossof co-locaion
instances, and present a novel join-less approach for co-
locdion pettern mining. The join-less co-locaion min-
ing algorithm reduces the computational cost of identify-
ing the instances of co-locdion patterns using an instance-
lookup scheme, and aso has a marse pruning step which
can filter candidate co-locaions withou finding exad co-
locaioninstances. We analyticdly prove our join-lessalgo-
rithm is corred and complete, i.e., there ae no false drop-
pings or false admisdonsin finding co-locaion rules. The
experimental evaluations using synthetic datasets and red
world datasets show the join-less co-locaion mining algo-
rithm outperforms the join-based algorithm and is scdable



in dense spatial datasets.

The remainder of the paper is organized asfollows. Sec
tion 2 gvesan overview of the basic concepts of co-locdion
pattern mining and the problem definition, and dscusses
related works. In Sedion 3 we presents our join-less ap-
proach for co-locaion pattern mining. In Sedion 4, the
analyticd analysis of the join-less co-locaion mining al-
gorithm is given. Sedion 5 presents the experimental eval-
uation. The conclusion and future work are discussed in
Sedion 6

2 Co-location Pattern Mining

In this dion, we describe the basic concepts of co-
location pattern mining and the problem definition, and ds-
cussthe related works.

2.1 Basic Concepts

Given a set of spatial fedures F', a set of their instances
S, and a neighba relationship R over S, a co-location
C is a subset of spatial feaures C C F whose instances
I C S form a dique using a neighba relationship R. A
co-location rule is of the form: C; — Cy(p, cp), where
Cy N Cy = B, pis the prevdence measure, and cp is
the condtional probability. For example, when a spatial
neighba relationship R is a Euclidean distance metric and
its threshold value d, two spatial objeds are neighbas if
they satisfy the neighba relationship, e.g., R(A.1, B.1) <
(distance(A.1, B.1) < d). Figure 1 (a) shows an example
dataset with threespatial fedures, A, B and C. Each ohjed
is represented by its feaure type and the unique instanceid
of eat feaure type, e.g., A.1. ldentified neighba objeds
are conreded by solid lines. Theinstanceof a co-locaionis
aset of ohjeaswhichincludesan oljed of eat feauretype
in the a-locdion and forms a dique relationship among
them. For example, in Figure 1 (), {A.2, B.4, C.2} isan
instance of co-locdion {A, B, C} since feature(A.2)=A,
feature(B.4)=B and feature(C.2)=C, and R(A.2, B.4),
R(A.2,C.2) and R(B .4, C.2).

The interest of a m-locaion pettern can be measured
by its prevalence and condtional probability [9]. The
conditional probability Pr(C:|C3) of a am-locaion
rue C; — Csy is the fradion o instances of C5 in the
neighbahood d instances of C4, i.e, Pr(C:i|Cy) =

Number of distinct instances of C; in instances of C1UC>
Number of instances of Ci '

The participation index is used as a m-locaion preva-
lence measure. First, the participation ratio Pr(C, f;)
of fedure f; in a c-locdion C = {fi,..., fr} is the
fradion o objeds of feaures f; in the neighbahood

of instances of co-location C' — {f;}, i.e, Pr(C, f;) =
Number of distinct objects of f; ininst fC .

Nmber oL e oL ptnceael . The partic.
ipation index Pi(C) of a c-location C = {fi,..., fx}

is defined as Pi(C) = ming,cc{Pr(C, f;)}. A high
participation index value indicaes that the spatial feaures
in a o-locdion pettern likely show up together. For
example, in the dataset of Figure 1 (a), fedure A has
four instances, fedure B has five instances, and feaure
C has threeinstances. Consider the prevalence values of
co-locaionc={A, B, C}. Theinstances of co-locaionc are
{A.2,B.4,C.2} and {A.3, B.3, C.1} as shown in Figure 1
(c). The participation ratio of fedure A in the a-locdion
¢, Pr(c,A)is % sinceonly A.2 and A.3 amongfour feaure
A objeds are invalved in the @-location instances. Pr(c,
B) is £ and Pr(c, C) is 2. Thus the participation index of
co-locaione, Pi(c), ismin{Pr(c, A), Pr(c, B), Pr(c, C)}
— 2

z.
Lemma 1 The participationratio andthe participationin-
dexare monaonically nonincreasing with increases in the
size of the a-location.

For example, the participation index value of a size 3
co-locaion is naot greaer than the participation index
value of any size 2 co-locdion, eg., Pi({A, B,C})=2 <
Pi({A, B})=% in Figure 1 (c). Please refer to [9] for the
proof of Lemma 1.

2.2 Problem Definition

The formal problem definition for the co-locdion pet-
tern miningis asfoll ows. We focus onfinding a correa and
complete set of co-location rules with reducing the compu-
tation cost.

Given:

1) A set of spatial feaures F = {f1,..., fn} and a set of
their instances S = Sy U ... U S, where S;(1 < i < n)
is a set of instances of fedaure f; and ead instance € S
is avedor < fedure type, instanceid, location >, where
locéion € aspatial framework

2) A neighba relationship R over locations

3) A minimum prevalencethreshald (min_prev) andamin-
imum condtional probability threshold (min_cond_prob)
Find:

A set of co-locaion rules with participation index >
min_prev and condtional probability > min_cond_prob.
Objedive:

1) Find a corred and complete set of co-location rules.

2) Reducethe computation cost.

Constraints:

1) R is a distance metric based neighba relationship and
has a symmetric property.

2) The spatial dataset is a point dataset.

2.3 Reated Work

The problem of mining associationrules based onspatial
relationshipswasfirst discussed in [5]. Thework discovers
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Figure 1. Different approaches for find ing co-location instances (a) Example dataset (b) Space parti-
tion (c) Instance join (d) Clique partition and p artial join

the subsets of spatial feaures frequently associated with a
spedfic fedure, e.g., cancer. Diredly applying this method
to a m-locaion problem may not cgpture our co-location
meaning with nospedfic referencefedure.

Previous works on spatial co-location mining have pre-
sented different approaches for identifying co-location in-
stances. [6] uses acepartitioning for identifying reigh-
boring oljeds for a frequent neighbaing feaure set. Fig-
ure 1 (b) shows the spacepartition methodto find the neigh-
boring oljeds of a subset of fedaures, {A, C}. Firs, it
deddes the partition center points with base objeds, e.g.,
feaure A objeds, A.1, A.2, A.3 and A.4, and decompases
the spacefrom the partitioning pdnts using a geometric ap-
proach, i.e., Vorona diagram, and then finds feaure C ob-
jedswithin adistancethreshold from the partitioning pant
in ead partitionarea In this example, the identified neigh-
boring oljeds of {A, C} are {A.3, C.1} and {A.2, C.2}.
However, note that {A.1, C.1} and {A.4, C.1} are dso
neighbaing oljeds of {A, C} but they are not found by
the disjoint spacepartitions. Thus the distinct spaceparti-
tioning approach may missco-locaioninstances aaosspar-
tition areas and generate incorred resullts.

[9] proposes an instance join-based co-locaion mining
agorithm similar to apriori_gen [3]. First, after finding
al neighba pair objeds(size 2 co-locaion instances) us-
ing a geometric method, the method finds the instances of
size k(> 2) co-locdions by joining the instances of its sze
k — 1 subset co-locaions where the first £ — 2 objeds are
common. Figure 1 (c) shows the procedure to generate the
instances of co-locaion {A, B, C}. The instances of co-
location {A, B} and the instances of co-locaion {A, C}
are joined with the first objeds, and then the neighba rela-
tionships between the second ohjeds are chedked. This ap-
proach finds corred and complete co-locaioninstance sets.
However, the join-based approach is computationally ex-

pensive with the increase of co-location patterns and their
instances. [11] propcsesapartial join approadh. It transac
tionizesa cntinuows Patial datainto aset of digjoint clique
neighbahoods while kegping tradk of the spatial neighba
relations not modeled by the transadionizaion as shown
in Figure 1 (d). This approach reduces the number of ex-
pensive join operations dramaticdly in finding co-locaion
instances. However, the performance depends on the dis-
tribution of the spatial dataset, exadly the number of cut
neighba relations.

3 A Join-less Approach for Co-location Pat-
tern Mining

In this dion, we discussajoin-lessapproach for min-
ing co-location petterns. First, we describe our method to
materiali ze spatial neighba relationships, and then present
the join-lessco-locdion algorithm.

3.1 Neighborhood Materialization

The ided neighbahood materialization for co-locaion
mining is to find all maximal clique relationships from an
inpu dataset. However, it iscomputational y expensive. We
proposeto materiali zedigjoint star neighba relationships as
aframework for efficient co-locaion mining.

Definition 1 Given a spatial objed o; € S whose feature
typeis f; € F, the star neighborhood of o; is defined as a
set of spatial objeds T = {o; € S|o; = 0; V (fi < fj A
R(0;,05))}, where f; € F isthefeaturetypeof o; andR is
a neighba relationship.

We define the star neighbahood d an oljed is a set of
the canter objed and oljedsinits neighbahoodwhosefea
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Figure 2. Neighbo rhood materialization

ture types are greder than the feaure type of the center ob-
jed in alexicd order. Figure 2 ill ustrates the method to
materialize neighba relationships of a spatial dataset. The
neighbahood areas of objeds A.1, A.3, and B.4 are rep-
resented by ddted circles whose radii are auser spedfic
neighba distance. The blac solid linesin ead circle rep-
resent a star neighba relationship with the center objed.
A.1 has two neighbaing oljeds, B.1 and C.1. The star
neighbahood d A.1is {A.1, B.1, C.1} including the cen-
ter objed A.1. Inthe cae of A.3, threeneighbaing oljeds
are present, A.4, B.3 and C.1. However, A.4 isnat included
in the star neighbahoodset of A.3 since we focus on co-
location relationships among dff erent feaure types. Next
consider the neighbahood d B.4. B.4 has two neighba
objeds, A.2 and C.2. However, A.2 is nat included in the
star neighbahoodset of B.4 sincethe neighba relationship
between A.2 and B.4 is arealy refleded in the star neigh
borhoodset of A.2. A set of al star neighbahoods of the
spatial dataset islisted in Figure 2.

Definition 2 Let I = {o1,...,0,} C S be a set of spatial
objedswhose feature types{ f1, . . ., fx } aredifferent. If all
objedsin I are neighbas to the first objed o4, I iscalled
a star instanceof co-locationC={f1,..., fx}.

In Figure 2, a subset of the A.1 star neighbahoodin-
cluding A.1, {A.1, B.1, C.1} is a star instance of {A, B,
C}.

3.2 Join-lessCo-location Mining Algorithm

The join-less co-locaion mining algorithm has three
phases. The first phase conwerts an input spatial dataset
into a set of digoint star neighbahoods. The second plrase
gathers the star instances of candidate co-locaions from
the star neighbahood set, and coarsely filters candidate
co-locaions by the prevalence value of the star instances.
The third phese filters co-locaion instances from the star
instances, and finds prevalent co-locaions and generates
co-locaion rules. Figure 3 ill ustrates a join-lessagorithm
trace Algorithm 1 shows the pseudocode.

PHASE | Level 1 PHASE Il Level 2 Level 3

Feature A star neighborhoods A A B A C mA B C
Al,B1,C1 Al Al,B1 Al,C1 Al1,B.1,C.1|star
A2,B4,C2 A2 | A2,B4 A2.C2 A2,B.4,C.2|nstances
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Figure 3. Join-less algorithm trace

Corvert a spatial dataset to a set of digoint star neigh-
borhoods (Sep 1):  Given an inpu dataset and a neigh-
bor relationship, first find al neighbaing oljed pairs using
a geometric method such as plane sweep [4], or a spatial
guery method wsing queternary treeor R-tree[8]. The star
neighbahoods are generated by groupng the neighbaing
objeds per eat ojed. Figure 3 shows the star neighba-
hoods srted by the feaure type of the center objeds.

Generate canddate co-locations(Step 4): First, weini-
tialize dl feaures to size 1 prevalent co-locations by the
definition o the participation index measure. The number
of instances per ead feaure can be known during the scan
of theinput spatial dataset for materiali zing the neighba re-
lationships. Sizek(k > 1) candidate m-locations are gener-
ated from prevalent sizek — 1 co-locaions. Here, we have a
feaureleve filtering of co-locations. If any subset of a can-
didate co-locaionisnat prevaent, the candidate co-locaion
ispruned.

Filter the star instances of canddate ao-locations from
the star neighbahoodset(Step 6):  The star instances of
a candidate m-location are gathered from the star neigh-
borhoods whose center objed fedure type is the same &
the first feaure of the candidate co-locaion. For example,
theinstances of a candidate co-location {B, C} are gathered
from the feaure B star neighbahoods, and the instances of
{A, B, C} are gathered from the feaure A star neighba-
hoods. Notice that the number of candidate m-locdions
examined in ead star neighbahoodis much smaller than
the number of adual candidate co-locations.

Seled coarse prevalent co-locations using their star in-
stances(Sep 9): The size 2 star instances are dique in-
stances snce our neighba relationship is symmetric (step
8). Thus, we go to step 12to find prevalent co-locations.
For size 3 or more, we need to ched if the star instanceis



Algorithm 1 Join-lessco-locaion mining algorithm

Inputs
F={f1,...,fn}:a set of spatial feature types
S:a spatl al dataset, R:a neighbor relationship
min_prev, mzn_cond_prob
Output
A set of all prevalent co-location rules with
participation index > min_prev and conditional
probability > min_cond_prob
Variables
T={Ty,,...,Tf,}: a set of star nei ghborhoods
Cr:a set of size k candidate co-locations
SI;:star instances of size k candi co-locations
CI:clique instances of size k candi co-locations
P,:a set of size k prevalent co-locations
Ry:a set of size k co-location rules
Method
1) TD=gen star _nei ghbor hoods( F, S, R);
2) P=F; k = 2
3) while (not enpty P, 1) do
4) Cr=gen_candi dateco-l ocations( P;_1);
5) for t €T do
6) SIy=filter _star_.nstances(Ck,t);
7) end do
8) if k=2 then CI, = SI;
9) el se do Cj=sel ect coarse_prev_co-location

&, S, min_prev)
10) CI=filter clique.nstances(Cyg,SI);
11) end do
12) P=sel ect prev_co-location(Cy,Cly,min_prev);
13) Rp=gen_co-|ocation.rul es( Py, min_cond_prob);
14)  k=k+1;
15) end do
16) return |J(R2,...,Re);

a dique instance. Before this procedure, we have a @arse
filtering step of co-locaions. We filter the candidate -
locaions using the participation index from their star in-
stances. For example, in Figure 3, the participationindex of
candidate ao-locaion{A, B, C} from the star instancesis 2.
If it islessthan a user spedfied minimum prevalent thresh-
old, the candidate co-locaion {A, B, C} is pruned withou
examining exad co-location instances.

Filter co-locationinstances(Step 10): From the star in-
stances of a candidate m-location, we filter its co-location
instances by looking upall the instances of the m-locaion
of feaures except the first feaure of the candidate -
location. For example, to ched the diqueness of a star
instance {A.1, B.1, C.1} of co-locaion {A, B, C}, we &-
amineif asubinstance{B.1, C.1} except A.1isin the set of
clique instances of co-locaion {B, C}. This instance look
up operation can be performed efficiently by an instance
key which is composed of the ids of objedsin theinstance.
As dhown in Figure 3, {A.1, B.1, C.1} isnot a co-locaion
instance but {A.2, B.4, C.2} and {A.3, B.3, C.1} are m-
location instances.

Sled prevalent co-location paterns(Step 12: The
refinement filtering o co-locations is dore by the partic-
ipation index values cdculated from their co-locaion in-
stances. Prevalent co-locdions stisfying the minimum
prevalencethreshold are seleded.

Generate a-location rules(Sep 13: All co-locaion
rules stisfying a given minimum condtional probability

are generated from a set of prevalent co-locaions. Steps 3-
15arerepeaed asthe size of co-locaion petternsincreases.

4 Analytical Analysis

We analyze our join-less co-locaion mining algorithm
for completenessand corredness Completenessmeans the
join-lessalgorithm finds all co-location rules whose partici-
pationindex and condtional probability satisfy a user spec
ified minimum prevalence threshold and condtional prob-
ability threshold. Corredness means that al co-locaion
rules generated by the join-less algorithm have a partici-
pation index and a condtional probability above a user-
spedfied minimum prevalence threshald and condtional
probability. First we provide related lemmas.

Lemma 2 The star partition model does not miss any
neighba relationship of aninpu spatial data.

Proof The digoint star partition model includes all neigh
bor relations of eah ohjed and excludes only dudicae
neighba relations which are drealy included in a star
neighbahood byDefinition 1

Lemma3 Let C = {f1,..., fr} be a size k co-location
and ST be a set of star instances of C. The participation
index of C from ST is nat lessthan the true participation
indexof C.

Proof The participation ratio of f; from ST is the maxi-
mum paossble probability that the objeds of feaure f; of
C have dique relationships with the objeds of the other
feaures fs, ..., fi in C sinceonly objeds of feaure f; in
the star instances can be included in a dique a-locaion
instance of C. The participation ratio of f;(1 < j < k)
from ST is also the maximum possble probability that the
objeds of fedure f; have dique relationships with the ob-
jeds of fedures f1 in C since our neighba relationship is
symmetric. Thus the participation index of C' cdculated
from the star instances is not less than the true partici-
pation index of C', min ¢,cc{possible maz Pr(C, f;)} >
ming,ec{Pr(C, fi)}-

Lemma4 Let aninstance I = {oy,...,0x} bea star in-
stance of a co-location C' = {f1,..., fr}. If the subin-
stance {0, ..., 0} excet oy isaclique, theinstance I is
aclique

Proof Inastarinstancel = {oy,..., o}, thefirst objed oy
has neighba relationships to the other objeds, os, ..., 0
by Definition 2 Objed 0,(2 < j < k) hasaneighba rela-
tionship to o; sincethe neighba relationship is symmetric
and also has neighba relationships to all the other objeds
op Where2 < h < kandh # j since{os,...,or} isa
cligue. Thus eat obed o;(1 < i < k) hasneighba rela-
tionshipsto all other objedsin I. I isa dique.
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Figure 4. Scalibity of the join-less algorithm: (a) by number of points, (b) by number of features, (c)

by neighbo r distance

Theorem 1 The join-less co-location mining dgorithm is
complete.

Proof The completenessof the join-lessalgorithm can be
shown by the following two parts. The first is that the
methodto materiali zethe neighba relationships of aninpu
spatial data (step 1), the methodto gather star instances(step
6), and the methodto filter cliqueinstances(step 10 are cor-
red. The star partition model does nat missany neighba
relationship of a inpu spatial dataset by Lemma 2. The
star instances of co-locations gathered from the star neigh-
borhoods whase center objed feaure type is the same &
the first feaure of the m-location, have corred star neigh-
bor relationships. Any pdential co-locaion instanceis not
missed since the star instances are asuper set of the dique
instances. The method to filter co-location instances from
the star instances does nat drop a true dique instance by
Lemma 4. Next, we show that the filtering steps of co-
locaionsdo nd droptrue w-locaions. Thefeaurelevel fil-
tering by prevalent subsets(step 4) is complete by Lemma 1.
The ooarse filtering o co-locations(step 10) does nat elim-
inate any true prevalent co-locaions by Lemma 3. The re-
finement filtering(step 12) prunes only co-locaions whose
true participation index is lessthan the threshold. Step 13
ensures that no co-locaion rules satisfying a user spedfic
condtional probability are missed.

Theorem 2 The join-less co-location mining dgorithm is
corred.

Proof The corredness of the join-less agorithm can be
guaranteed by steps 12 and 13 Step 12 seleds only co-
locaions whose participation indexes stisfy auser spedfic
prevalence threshold. The generated co-locaion rules by
step 13also satisfy a user spedfic condtional probahility.

5 Experimental Evaluation

We evaluate the join-lessco-locaion algorithm with the
join-based co-locaion agorithm [9] using synthetic and
red datasets. Synthetic datasets were generated using a
spatial data generator similar to the data generator used
in [9]. The number of fedures is 20, the average size of
co-locaionsis 5, the neighba distanceis 10 and the preva-
lencethreshold is 0.3. All the experiments were performed
on a Sun SunBlade 1500with 1.0 GB main memory and
17™MHz CPU.

5.1 Evaluation with Synthetic Datasets

We examined the scdability of the join-lessalgorithm in
the number of point objeds, the number of feauretypesand
distanceneighba threshald.

1) Effed of the number of point objeds: First, we com-
pared the dfed of the number of paints. We used two dif-
ferent spatial frames, 10, 000 x 10,000 and 1, 000 x 1, 000.
In the first frame, even if the number of pointsisincreased
from 10K to 50K, the two algorithms showed similar exe-
cution time sincethe datasets are still sparse. In the second
frame, with the increase of number of points, the join-based
algorithm exeaution time is dramaticdly increased due to
the increase of data density. As hown in Figure 4 (a), the
join-lessalgorithm shows scdibility to large dense datasets.

2) Effed of the number of features: Inthe secondexper-
iment, we compared the performance of the dgorithmsasa
function o the number of fegures. We dso used two differ-
ent dense datasets of 15K poaints. Figure 4 (b) showsthere-
sults. In the sparse dataset, the dgorithms show similar ex-
eautiontime even if the number of feauresincreases. Inthe
dense dataset, overall exeaution time is deaeased with the
increase of fedures. Thereasonisthat under the same num-
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Figure 5. Real datasets: (a) A climate dataset, (b) A chimpanzee behavior dataset

ber of points, the increase of feaures causes the number of
points per ead feaure to be deaeased, which in turn may
lead to a deaease in the number of co-locéion instances.
Overall the join-lessalgorithm shows better performance.

3) Effed of neighba distance The third experiment
examined the dfea of different neighba distances 10, 20,
40, 80and 100 As shown in Figure 4 (c), the join-lessal-
gorithm shows lessincrease in the exeaution time with the
incresse of distance threshad. The join-based algorithm
shows arapid increase sincethe neighba distance increase
makesthe neighbahoodareas|arger andincreasesthe num-
ber of co-locaion instances.

5.2 Evaluation with Real Datasets

We used two diff erent types of red world datasets. One
was an Earth dataset relating climate to vegetation growth
from [1]. Ancther dataset was an Ecology animal behavior
dataset. It contained female chimpanzeebehavior observa-
tion datafrom 1999to 2001from [2].

1) Earth climate data: The eath climate dataset in-
cludes monthly measurements of variables such as global
plant growth, eg., Net Primary Prodution(NPP, and
climate variables, e.g., predpitation(PREC) on latitude-
longtude sphericd grids. For example, (NPRHi, PREC-
Low) is one of the co-locetion petterns discovered, where
Hi(Low) denotes an unwsually high(low) value of the mea
surements. The total number of event fedureswas 18. The
total number of feaureinstanceswas 15515 We used 4 as
aneighbahood dstancewhich means 4 cdls (ead grid cdl
is1 degreex 1 degree. Figure 5 (a) presents the exeaution
time of the three dgorithms as a function d the prevalence
threshdd. The join-lessmethod shows much better perfor-
mance & the lower threshald values. The performance dif-
ference between the partial join method and the join-based

methodisrelatively small because the aut relation ratio was
almost 0.8.

2) Ecology animal behavior data: The animal behavior
dataset has 24 chimpanzeefeaures. We assgned a unique
instance id to different locaion padnts per chimpanzeeid.
The total number of point instances was 698 Figure 5
(b) presents the exeaution time of the dgorithms by differ-
ent neighba distances. The exeautiontime of the join-less
methodincreases more slowly than the other methods with
the increase of distance and shows better performance.

6 Conclusion and Future Work

In this paper, we propcse ajoin-lessco-locaion mining
algorithm with a neighbahood materiali zaion. The dgo-
rithm is efficient since it does naot require expensive spa-
tial joins or instance joins for identifying co-locdion in-
stances. The experimental evaluation shows the join-less
method ouperforms the join-based method and is scdable
to dense datasets. As future work, we plan to explore meth-
ods to answer temporal questions such as how a co-locaion
changes over time & well as methods to identify objeds
showing similar moving petterns.
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