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Abstract

Spatial co-location patterns represent thesubsetsof fea-
tures whose instances are frequently located together in
geographic space. Co-location pattern discovery presents
challenges since the instances of spatial features are em-
bedded in acontinuous spaceandsharea variety of spatial
relationships. A large fraction of the computation time is
devoted to identifying the instancesof co-location patterns.
We propose a novel join-lessapproach for co-location pat-
tern mining, which materializes spatial neighbor relation-
ships with no lossof co-location instances andreduces the
computational cost of identifying the instances. The join-
lessco-location mining algorithm is efficient since it uses
an instance-lookup scheme instead of an expensivespatial
or instance join operation for identifying co-location in-
stances. We prove the join-less algorithm is correct and
complete in finding co-location rules. The experimental
evaluationsusingsynthetic datasetsandreal world datasets
show the join-lessalgorithm performs more efficiently than
a current join-based algorithmandis scalablein densespa-
tial datasets.

1 Introduction

The explosive growth of spatial data and widespread
use of spatial databases emphasize the need for the auto-
mated discovery of spatial knowledge. Spatial data min-
ing [7, 8] is the processof discovering interesting and pre-
viously unknown, but potentially useful patterns from spa-
tial databases. Extracting interesting patterns from spatial
datasets is more difficult than extracting the corresponding
patterns from traditional numeric and categorical data due
to the complexity of spatial data types, spatial relationships
andspatial autocorrelation [10].

A spatial co-location pattern represents a subset of spa-�This work was partially supported by NSF grant 0431141and Oak
Ridge National Laboratory grant. The content of this work does not nec-
essarily reflect the position or policy of the government and no official
endorsement should be inferred.

tial featureswhoseinstancesarefrequently located in aspa-
tial neighborhood. For example, ecologists have foundthat
Nile Crocodiles and Egyptian Plover birds are frequently
co-located. The co-location rule, i.e., Nile Crocodile !
Egyptian Plover, predicts the presence of Egyptian Plover
birds in areaswith NileCrocodiles. Spatial co-location pat-
terns may yield important insights for many applications.
For example, amobileserviceprovider may beinterested in
mobile servicepatterns frequently requested by geographi-
cally neighboring users. The frequent neighboring request
sets can be used for providing attractive location-sensitive
advertisements, etc. Other application domains include
Earth science, public health, biology, transportation, etc.

Co-locationrulediscovery presentschallengesdueto the
followingreasons: First, it isdifficult to findco-location in-
stances sincethe instancesof spatial featuresare embedded
in a continuous space and share neighbor relationships. A
large fraction of the computation time is devoted to iden-
tifying the co-location instances. Second, it is non-trivial
to reuse association rule mining algorithms [3, 5] for co-
location pattern miningsincethere areno pre-defined trans-
actions in many spatial datasets. Thus, a current co-location
miningalgorithm [9] usesa join-based approach to findco-
location instances. Its computational performance suffers,
however, due to the large number of joins required as the
number of featuresand their instances increases.

In this paper, we propose a method to materialize the
neighbor relationships of a spatial dataset with no duplica-
tion of theneighbor relationshipsand nolossof co-location
instances, and present a novel join-less approach for co-
location pattern mining. The join-less co-location min-
ing algorithm reduces the computational cost of identify-
ing the instances of co-location patterns using an instance-
lookupscheme, and also has a coarse pruning step which
can filter candidate co-locations without finding exact co-
locationinstances. We analytically proveour join-lessalgo-
rithm is correct and complete, i.e., there are no false drop-
pings or false admissions in finding co-location rules. The
experimental evaluations using synthetic datasets and real
world datasets show the join-lessco-location mining algo-
rithm outperforms the join-based algorithm and is scalable



in densespatial datasets.
Theremainder of thepaper isorganized as follows. Sec-

tion 2 givesan overview of thebasic conceptsof co-location
pattern mining and the problem definition, and discusses
related works. In Section 3, we presents our join-lessap-
proach for co-location pattern mining. In Section 4, the
analytical analysis of the join-less co-location mining al-
gorithm is given. Section 5 presents the experimental eval-
uation. The conclusion and future work are discussed in
Section 6.

2 Co-location Pattern Mining

In this section, we describe the basic concepts of co-
location pattern miningandtheproblem definition, and dis-
cussthe related works.

2.1 Basic Concepts

Given a set of spatial featuresF , a set of their instancesS, and a neighbor relationship R over S, a co-locationC is a subset of spatial features C � F whose instancesI � S form a clique using a neighbor relationship R. A
co-location rule is of the form: C1 ! C2(p; 
p), whereC1 \ C2 = ;, p is the prevalence measure, and 
p is
the conditional probabilit y. For example, when a spatial
neighbor relationship R is a Euclidean distancemetric and
its threshold value d, two spatial objects are neighbors if
they satisfy the neighbor relationship, e.g., R(A.1, B.1) ,
(distan
e(A.1, B.1) � d). Figure 1 (a) shows an example
dataset with threespatial features, A, B and C. Each object
is represented by its feature type and the unique instanceid
of each feature type, e.g., A.1. Identified neighbor objects
are connected bysolid lines. Theinstanceof a co-locationis
aset of objectswhich includesan object of each featuretype
in the co-location and forms a clique relationship among
them. For example, in Figure 1 (a), fA.2, B.4, C.2g is an
instance of co-location fA, B, Cg since feature(A.2)=A,feature(B.4)=B and feature(C.2)=C, and R(A.2, B.4),R(A.2, C.2) andR(B.4, C.2).

The interest of a co-location pattern can be measured
by its prevalence and conditional probabilit y [9]. The
conditional probabili ty Pr(C1jC2) of a co-location
rule C1 ! C2 is the fraction of instances of C2 in the
neighborhood of instances of C1, i.e., Pr(C1jC2) =Number of distin
t instan
es of C1 in instan
es of C1[C2Number of instan
es of C1 .
The participation index is used as a co-location preva-
lence measure. First, the par ticipation ratio Pr(C; fi)
of feature fi in a co-location C = ff1; : : : ; fkg is the
fraction of objects of features fi in the neighborhood
of instances of co-location C � ffig, i.e., Pr(C; fi) =Number of distin
t obje
ts of fi in instan
es of CNumber of obje
ts of fi . The par tic-
ipation index Pi(C) of a co-location C = ff1; : : : ; fkg

is defined as Pi(C) = minfi2CfPr(C; fi)g. A high
participation index value indicates that the spatial features
in a co-location pattern likely show up together. For
example, in the dataset of Figure 1 (a), feature A has
four instances, feature B has five instances, and feature
C has three instances. Consider the prevalence values of
co-location
=fA, B, Cg. The instancesof co-location
 arefA.2, B.4, C.2g and fA.3, B.3, C.1g as shown in Figure 1
(c). The participation ratio of feature A in the co-location
, Pr(
, A) is 24 sinceonly A.2 andA.3 amongfour feature
A objects are involved in the co-location instances. Pr(
,
B) is 25 and Pr(
, C) is 23 . Thus the participation index of
co-location
, Pi(
), isminfPr(
, A), Pr(
, B), Pr(
, C)g
= 25 .

Lemma 1 Theparticipation ratio andtheparticipation in-
dexare monotonically nonincreasing with increases in the
sizeof the co-location.

For example, the participation index value of a size 3
co-location is not greater than the participation index
value of any size 2 co-location, e.g., Pi(fA;B;Cg)=25 �Pi(fA;Bg)=35 in Figure 1 (c). Please refer to [9] for the
proof of Lemma1.

2.2 Problem Definition

The formal problem definition for the co-location pat-
tern mining isas follows. Wefocusonfindinga correct and
complete set of co-location rules with reducing the compu-
tationcost.
Given:
1) A set of spatial features F = ff1; : : : ; fng and a set of
their instances S = S1 [ : : : [ Sn where Si(1 � i � n)
is a set of instances of feature fi and each instance 2 S
is a vector < feature type, instance id, location >, where
location2 a spatial framework
2) A neighbor relationshipR over locations
3) A minimum prevalencethreshold (min prev) andamin-
imum conditional probabilit y threshold (min 
ond prob)
Find:
A set of co-location rules with participation index �min prev and conditional probabilit y � min 
ond prob.
Objective:
1) Find a correct and completeset of co-location rules.
2) Reducethe computation cost.
Constraints:
1) R is a distance metric based neighbor relationship and
hasasymmetric property.
2) Thespatial dataset isapoint dataset.

2.3 Related Work

Theproblem of miningassociationrulesbased onspatial
relationshipswasfirst discussed in [5]. Thework discovers



C.2

C.1
B.1

B.5

     A.1

B.3

A.2

B.4

A.3

B.2

A.4

C.3

.

 :identified neighbor relation

.

  

F.i : instance i of feature type F

(a)

C.2

B.1

B.2

B.3

A.2

B.4

A.4

C.3

     A.1

C.1

A.3

B.5

cut neighbr relation   

.

.

Vornoi partition

(b)

  

A.2   B.4 A.2   C.2 B.3   C.3

A      B

A.1   B.1

A.3   B.3

A.1   C.1

A.4   C.1

A.3   C.1

B      CA      C

B.3   C.1

B.4   C.2

check a
neighborhood
relationship

join

  

.

A.3   B.3   C.1

A.2   B.4   C.2

A      B      C

.

(c)

C.2

C.1

B.2
B.5

A.3

B.1

B.3

     A.1

A.2

B.4

A.4

C.3
a cut neighbor relation  

a clique neighborhood

(d)

Figure 1. Different approaches for find ing co-location instances (a) Example dataset (b) Space parti-
tion (c) Instance join (d) Clique partition and p artial join

the subsets of spatial features frequently associated with a
specific feature, e.g., cancer. Directly applying this method
to a co-location problem may not capture our co-location
meaning with nospecific referencefeature.

Previous works on spatial co-location mining have pre-
sented different approaches for identifying co-location in-
stances. [6] uses spacepartitioning for identifying neigh-
boring objects for a frequent neighboring feature set. Fig-
ure1 (b) showsthespacepartitionmethodto findtheneigh-
boring objects of a subset of features, fA, Cg. First, it
decides the partition center points with base objects, e.g.,
feature A objects, A.1, A.2, A.3 and A.4, and decomposes
thespacefrom thepartitioning pointsusingageometric ap-
proach, i.e., Voronoi diagram, and then finds feature C ob-
jectswithin adistancethreshold from thepartitioning point
in each partition area. In this example, the identified neigh-
boring objects of fA, Cg are fA.3, C.1g and fA.2, C.2g.
However, note that fA.1, C.1g and fA.4, C.1g are also
neighboring objects of fA, Cg but they are not found by
the disjoint spacepartitions. Thus the distinct spaceparti-
tioningapproach may missco-locationinstancesacrosspar-
tition areasand generate incorrect results.

[9] proposes an instance join-based co-location mining
algorithm similar to apriori gen [3]. First, after finding
all neighbor pair objects(size 2 co-location instances) us-
ing a geometric method, the method finds the instances of
sizek(> 2) co-locations by joining the instances of its sizek � 1 subset co-locations where the first k � 2 objects are
common. Figure 1 (c) shows the procedure to generate the
instances of co-location fA, B, Cg. The instances of co-
location fA, Bg and the instances of co-location fA, Cg
are joined with the first objects, and then the neighbor rela-
tionships between the second objects are checked. This ap-
proach findscorrect andcomplete co-location instancesets.
However, the join-based approach is computationally ex-

pensive with the increase of co-location patterns and their
instances. [11] proposesapartial join approach. It transac-
tionizesa continuous spatial datainto aset of disjoint clique
neighborhoods while keeping track of the spatial neighbor
relations not modeled by the transactionization as shown
in Figure 1 (d). This approach reduces the number of ex-
pensive join operations dramatically in finding co-location
instances. However, the performance depends on the dis-
tribution of the spatial dataset, exactly the number of cut
neighbor relations.

3 A Join-lessApproach for Co-location Pat-
tern Mining

In this section, we discussa join-lessapproach for min-
ing co-location patterns. First, we describe our method to
materializespatial neighbor relationships, and then present
the join-lessco-location algorithm.

3.1 Neighborhood Materialization

The ideal neighborhoodmaterialization for co-location
mining is to find all maximal clique relationships from an
input dataset. However, it iscomputationally expensive. We
proposeto materializedisjoint star neighbor relationshipsas
a framework for efficient co-locationmining.

Definition 1 Given a spatial object oi 2 S whose feature
type is fi 2 F , the star neighborhood of oi is defined as a
set of spatial objects T = foj 2 Sjoi = oj _ (fi < fj ^R(oi; oj))g, wherefj 2 F is the feature typeof oj andR is
a neighbor relationship.

We define the star neighborhood of an object is a set of
the center object and objects in itsneighborhoodwhosefea-
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Figure 2. Neighbo rhood materialization

ture types aregreater than the feature type of the center ob-
ject in a lexical order. Figure 2 ill ustrates the method to
materializeneighbor relationships of a spatial dataset. The
neighborhoodareas of objects A.1, A.3, and B.4 are rep-
resented by dotted circles whose radii are a user specific
neighbor distance. The black solid lines in each circle rep-
resent a star neighbor relationship with the center object.
A.1 has two neighboring objects, B.1 and C.1. The star
neighborhood of A.1 is fA.1, B.1, C.1g including the cen-
ter object A.1. In the caseof A.3, threeneighboring objects
arepresent, A.4, B.3 andC.1. However, A.4 isnot included
in the star neighborhoodset of A.3 since we focus on co-
location relationships among different feature types. Next
consider the neighborhood of B.4. B.4 has two neighbor
objects, A.2 and C.2. However, A.2 is not included in the
star neighborhoodset of B.4 sincetheneighbor relationship
between A.2 and B.4 is already reflected in the star neigh-
borhoodset of A.2. A set of all star neighborhoods of the
spatial dataset is listed in Figure 2.

Definition 2 Let I = fo1; : : : ; okg � S be a set of spatial
objects whose feature typesff1; : : : ; fkg are different. If all
objects in I are neighbors to the first object o1, I is called
a star instanceof co-locationC=ff1; : : : ; fkg.

In Figure 2, a subset of the A.1 star neighborhood in-
cluding A.1, fA.1, B.1, C.1g is a star instance of fA, B,
Cg.
3.2 Join-lessCo-location Mining Algor ithm

The join-less co-location mining algorithm has three
phases. The first phase converts an input spatial dataset
into a set of disjoint star neighborhoods. The second phase
gathers the star instances of candidate co-locations from
the star neighborhood set, and coarsely filters candidate
co-locations by the prevalence value of the star instances.
The third phase filters co-location instances from the star
instances, and finds prevalent co-locations and generates
co-location rules. Figure 3 ill ustrates a join-lessalgorithm
trace. Algorithm 1 shows the pseudocode.
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Convert a spatial dataset to a set of disjoint star neigh-
borhoods (Step 1): Given an input dataset and a neigh-
bor relationship, first findall neighboring object pairsusing
a geometric method such as plane sweep [4], or a spatial
query method using quaternary treeor R-tree[8]. The star
neighborhoods are generated by grouping the neighboring
objects per each object. Figure 3 shows the star neighbor-
hoods sorted by the feature typeof the center objects.

Generate candidate co-locations(Step 4): First, we ini-
tialize all features to size 1 prevalent co-locations by the
definition of the participation index measure. The number
of instances per each feature can be known during the scan
of theinput spatial dataset for materializingtheneighbor re-
lationships. Sizek(k > 1) candidate co-locationsaregener-
ated from prevalent sizek�1 co-locations. Here, wehave a
feature level filtering of co-locations. If any subset of a can-
didate co-locationisnot prevalent, the candidate co-location
ispruned.

Filter the star instances of candidate co-locations from
the star neighborhoodset(Step 6): The star instances of
a candidate co-location are gathered from the star neigh-
borhoods whose center object feature type is the same as
the first feature of the candidate co-location. For example,
theinstancesof a candidate co-locationfB, Cg aregathered
from the feature B star neighborhoods, and the instancesoffA, B, Cg are gathered from the feature A star neighbor-
hoods. Notice that the number of candidate co-locations
examined in each star neighborhoodis much smaller than
thenumber of actual candidate co-locations.

Select coarse prevalent co-locations using their star in-
stances(Step 9): The size 2 star instances are clique in-
stances since our neighbor relationship is symmetric (step
8). Thus, we go to step 12 to find prevalent co-locations.
For size3 or more, we need to check if the star instance is



Algor ithm 1 Join-lessco-locationmining algorithm
InputsF = ff1; : : : ; fng:a set of spatial feature typesS:a spatial dataset, R:a neighbor relationshipmin prev, min 
ond prob
Output
A set of all prevalent co-location rules with
participation index � min prev and conditional
probability � min 
ond prob
Var iablesT=fTf1 ; : : : ; Tfng: a set of star neighborhoodsCk:a set of size k candidate co-locationsSIk:star instances of size k candi co-locationsCIk:clique instances of size k candi co-locationsPk:a set of size k prevalent co-locationsRk:a set of size k co-location rules
Method
1) TD=gen star neighborhoods(F, S, R);
2) P1=F; k = 2;
3) while (not empty Pk�1) do
4) Ck=gen candidate co-locations(Pk�1);
5) for t 2 T do
6) SIk=filter star instances(Ck; t);
7) end do
8) if k = 2 then CIk = SIk
9) else do Ck=select coarse prev co-location

(Ck; SIk;min prev)
10) CIk=filter clique instances(Ck; SIk);
11) end do
12) Pk=select prev co-location(Ck; CIk;min prev);
13) Rk=gen co-location rules(Pk;min 
ond prob);
14) k=k+1;
15) end do
16) return

S(R2; : : : ; Rk);
a clique instance. Before this procedure, we have a coarse
filtering step of co-locations. We filter the candidate co-
locations using the participation index from their star in-
stances. For example, in Figure3, theparticipation index of
candidate co-locationfA, B, Cg from thestar instancesis 35 .
If it is lessthan a user specified minimum prevalent thresh-
old, the candidate co-location fA, B, Cg is pruned without
examiningexact co-location instances.

Filter co-location instances(Step 10): From the star in-
stances of a candidate co-location, we filter its co-location
instances by looking upall the instances of the co-location
of features except the first feature of the candidate co-
location. For example, to check the cliqueness of a star
instancefA.1, B.1, C.1g of co-location fA, B, Cg, we ex-
amine if asubinstancefB.1, C.1g except A.1 is in theset of
clique instances of co-location fB, Cg. This instance look
up operation can be performed efficiently by an instance
key which iscomposed of the idsof objects in the instance.
As shown in Figure 3, fA.1, B.1, C.1g is not a co-location
instance, but fA.2, B.4, C.2g and fA.3, B.3, C.1g are co-
location instances.

Select prevalent co-location patterns(Step 12): The
refinement filtering of co-locations is done by the partic-
ipation index values calculated from their co-location in-
stances. Prevalent co-locations satisfying the minimum
prevalencethreshold areselected.

Generate co-location rules(Step 13): All co-location
rules satisfying a given minimum conditional probabilit y

are generated from a set of prevalent co-locations. Steps 3-
15arerepeated as thesizeof co-location patterns increases.

4 Analytical Analysis

We analyze our join-less co-location mining algorithm
for completenessandcorrectness. Completenessmeans the
join-lessalgorithm findsall co-locationruleswhosepartici-
pation index andconditional probabilit y satisfy auser spec-
ified minimum prevalence threshold and conditional prob-
abilit y threshold. Correctness means that all co-location
rules generated by the join-less algorithm have a partici-
pation index and a conditional probabilit y above a user-
specified minimum prevalence threshold and conditional
probabilit y. First weprovide related lemmas.

Lemma 2 The star partition model does not miss any
neighbor relationship of an input spatial data.

Proof The disjoint star partition model includes all neigh-
bor relations of each object and excludes only duplicate
neighbor relations which are already included in a star
neighborhood byDefinition 1.

Lemma 3 Let C = ff1; : : : ; fkg be a size k co-location
andSI be a set of star instances of C. The participation
index of C from SI is not lessthan the true participation
indexof C.

Proof The participation ratio of f1 from SI is the maxi-
mum possible probabilit y that the objects of feature f1 ofC have clique relationships with the objects of the other
features f2; : : : ; fk in C sinceonly objects of feature f1 in
the star instances can be included in a clique co-location
instance of C. The participation ratio of fj(1 < j � k)
from SI is also the maximum possible probabilit y that the
objects of feature fj have clique relationships with the ob-
jects of features f1 in C sinceour neighbor relationship is
symmetric. Thus the participation index of C calculated
from the star instances is not less than the true partici-
pation index of C, min fi2CfpossiblemaxPr(C; fi)g �minfi2CfPr(C; fi)g.
Lemma 4 Let an instance I = fo1; : : : ; okg be a star in-
stance of a co-location C = ff1; : : : ; fkg. If the subin-
stancefo2; : : : ; okg except o1 is a clique, the instanceI is
a clique.

Proof Inastar instanceI = fo1; : : : ; okg, thefirst object o1
has neighbor relationships to the other objects, o2; : : : ; ok
by Definition 2. Object oj(2 � j � k) has a neighbor rela-
tionship to o1 since the neighbor relationship is symmetric
and also has neighbor relationships to all the other objectsoh where 2 � h � k and h 6= j since fo2; : : : ; okg is a
clique. Thus each object oi(1 � i � k) has neighbor rela-
tionships to all other objects in I. I is a clique.
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Figure 4. Scalibity of the join-less algorithm: (a) by number of points, (b) by number of features, (c)
by neighbo r distance

Theorem 1 The join-lessco-location mining algorithm is
complete.

Proof The completenessof the join-lessalgorithm can be
shown by the following two parts. The first is that the
methodto materializetheneighbor relationshipsof an input
spatial data(step 1), themethodto gather star instances(step
6), andthemethodto filter cliqueinstances(step 10) are cor-
rect. The star partition model does not missany neighbor
relationship of a input spatial dataset by Lemma 2. The
star instances of co-locations gathered from the star neigh-
borhoods whose center object feature type is the same as
the first feature of the co-location, have correct star neigh-
bor relationships. Any potential co-location instanceis not
missed sincethe star instances are asuper set of the clique
instances. The method to filter co-location instances from
the star instances does not drop a true clique instance by
Lemma 4. Next, we show that the filtering steps of co-
locationsdo not droptrue co-locations. Thefeaturelevel fil-
tering by prevalent subsets(step 4) iscompleteby Lemma1.
The coarse filtering of co-locations(step 10) does not elim-
inate any true prevalent co-locations by Lemma 3. The re-
finement filtering(step 12) prunes only co-locations whose
true participation index is lessthan the threshold. Step 13
ensures that no co-location rules satisfying a user specific
conditional probabilit y aremissed.

Theorem 2 The join-lessco-location mining algorithm is
correct.

Proof The correctness of the join-less algorithm can be
guaranteed by steps 12 and 13. Step 12 selects only co-
locationswhoseparticipation indexes satisfy auser specific
prevalence threshold. The generated co-location rules by
step 13also satisfy auser specific conditional probabilit y.

5 Experimental Evaluation

We evaluate the join-lessco-location algorithm with the
join-based co-location algorithm [9] using synthetic and
real datasets. Synthetic datasets were generated using a
spatial data generator similar to the data generator used
in [9]. The number of features is 20, the average size of
co-locations is 5, the neighbor distanceis10 and thepreva-
lencethreshold is 0.3. All the experiments were performed
on a Sun SunBlade 1500with 1.0 GB main memory and
177MHz CPU.

5.1 Evaluation with Synthetic Datasets

We examined thescalabilit y of the join-lessalgorithm in
thenumber of point objects, thenumber of featuretypesand
distanceneighbor threshold.

1) Effect of the number of point objects: First, we com-
pared the effect of the number of points. We used two dif-
ferent spatial frames, 10; 000� 10; 000 and1; 000� 1; 000.
In the first frame, even if the number of points is increased
from 10K to 50K, the two algorithms showed similar exe-
cution time sincethe datasets are still sparse. In the second
frame, with the increaseof number of points, the join-based
algorithm execution time is dramatically increased due to
the increase of data density. As shown in Figure 4 (a), the
join-lessalgorithm shows scalibilit y to largedensedatasets.

2) Effect of thenumber of features: In thesecondexper-
iment, we compared theperformanceof the algorithmsasa
function of thenumber of features. We also used two differ-
ent densedatasetsof 15K points. Figure4 (b) shows the re-
sults. In the sparse dataset, the algorithms show similar ex-
ecutiontime even if thenumber of features increases. In the
dense dataset, overall execution time is decreased with the
increaseof features. Thereasonisthat under thesamenum-
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Figure 5. Real datasets: (a) A climate dataset, (b) A chimpanzee behavior dataset

ber of points, the increase of features causes the number of
points per each feature to be decreased, which in turn may
lead to a decrease in the number of co-location instances.
Overall the join-lessalgorithm showsbetter performance.

3) Effect of neighbor distance: The third experiment
examined the effect of different neighbor distances 10, 20,
40, 80 and 100. As shown in Figure 4 (c), the join-lessal-
gorithm shows lessincrease in the execution time with the
increase of distance threshold. The join-based algorithm
shows a rapid increase sincethe neighbor distanceincrease
makestheneighborhoodareaslarger andincreasesthenum-
ber of co-location instances.

5.2 Evaluation with Real Datasets

We used two different types of real world datasets. One
was an Earth dataset relating climate to vegetation growth
from [1]. Another dataset was an Ecology animal behavior
dataset. It contained female chimpanzeebehavior observa-
tion data from 1999to 2001from [2].

1) Earth climate data: The earth climate dataset in-
cludes monthly measurements of variables such as global
plant growth, e.g., Net Primary Production(NPP), and
climate variables, e.g., precipitation(PREC) on latitude-
longitude spherical grids. For example, (NPP-Hi, PREC-
Low) is one of the co-location patterns discovered, where
Hi(Low) denotes an unusually high(low) value of the mea-
surements. The total number of event features was 18. The
total number of feature instanceswas15,515. Weused 4 as
aneighborhood distancewhich means4 cells(each grid cell
is1 degree� 1 degree). Figure 5 (a) presents the execution
time of the three algorithms as a function of the prevalence
threshold. The join-lessmethodshows much better perfor-
mance at the lower threshold values. The performancedif-
ferencebetween the partial join methodand the join-based

methodis relatively small becausethe cut relationratio was
almost 0.8.

2) Ecology animal behavior data: The animal behavior
dataset has 24 chimpanzeefeatures. We assigned a unique
instance id to different location points per chimpanzeeid.
The total number of point instances was 698. Figure 5
(b) presents the execution time of the algorithms by differ-
ent neighbor distances. The execution time of the join-less
methodincreases more slowly than the other methods with
the increaseof distance andshowsbetter performance.

6 Conclusion and Future Work

In this paper, we propose ajoin-lessco-location mining
algorithm with a neighborhoodmaterialization. The algo-
rithm is efficient since it does not require expensive spa-
tial joins or instance joins for identifying co-location in-
stances. The experimental evaluation shows the join-less
method outperforms the join-based methodand is scalable
to densedatasets. As futurework, weplan to exploremeth-
ods to answer temporal questions such ashow a co-location
changes over time as well as methods to identify objects
showingsimilar moving patterns.
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