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Abstract

We present two new support vector approaches for or-
dinal regression. These approaches find the concentric
spheres with minimum volume that contain most of the
training samples. Both approaches guarantee that the radii
of the spheres are properly ordered at the optimal solution.
The size of the optimization problem is linear in the number
of training samples. The popular SMO algorithm is adapted
to solve the resulting optimization problem. Numerical ex-
periments on some real-world data sets verify the usefulness
of our approaches for data mining.

1 Introduction

We consider the supervised learning problem of predict-
ing variables of ordinal scale, a setting referred to as rank-
ing learning or ordinal regression. Here, the training sam-
ples are labelled by a set of ranks, which exhibits an order
among different categories. This problem arises frequently
in information retrieval where a user grades the documents
based on their importance. For example, a user can grade
every document in a set of retrieved documents into one of
the following categories: highly relevant, relevant, average,
irrelevant and highly irrelevant. These grades are differ-
ent from the class labels in classification problem as they
represent some ranking information. Standard classifica-
tion problems cannot make use of this ranking information
as they treat the class labels as unordered categories.

There are various approaches to solve the ordinal regres-
sion problem [3, 2]. The main difficulty of these approaches
is that the problem size of these formulations is a quadratic
function of the training data size. Shashua and Levin [6]
generalized the support vector formulation for ordinal re-
gression by finding r — 1 separating hyperplanes which
would separate the training data into r ordered classes. This
is done by modeling the ranks as the intervals on the real

Wei Chu

Center for Computational Learning Systems

Columbia University
New York, NY 10115, USA
chuwei @cs.columbia.edu

line. The problem with this approach is that the ordinal in-
equalities on the thresholds, by < by < ... < b,_; are
not included in the formulation. This might result in disor-
dered thresholds at the solution. This problem can be han-
dled by introducing explicit constraints in the problem for-
mulation that enforce the inequalities on the thresholds [1].
In this case, the size of the optimization problem is linear
in the number of training samples and the popular SMO al-
gorithm [5, 4] for SVMs can be easily adapted. Chu and
Keerthi [1] also proposed a new formulation which consid-
ers the training samples from all the ranks to determine each
threshold and gave the SMO algorithm for finding the solu-
tion of this formulation.

In this paper, we propose two approaches which use min-
imum enclosing sphere formulations to solve the ordinal re-
gression problem. For both approaches, the size of the opti-
mization problems is linear in the number of training sam-
ples and the SMO algorithm can be easily adapted. Com-
parison with the approaches in [1] on several benchmark
datasets shows that the proposed approaches are competi-
tive and scale well.

The paper is organized as follows. In Section 2 we
present the minimum enclosing sphere formulation with ex-
plicit inequality constraints on the radii. The second ap-
proach with implicit constraints on the radii is discussed in
Section 3. Numerical experiments comparing the two ap-
proaches with the other support vector approaches on var-
ious benchmark datasets are given in Section 4. Section 5
concludes the paper.

A word about our notation. We will use z to denote the
input vector of the ordinal regression problem. Let z =
¢(z) denote the feature space representation in a high di-
mensional reproducing kernel Hilbert space (RKHS) related
to z by a transformation. All the computations are done
using the reproducing kernel function, which is defined as
K(2y,2,) = ¢(x,) - #z,) = 2y - 2, where || - || denotes
inner product in the RKHS. We consider the ordinal regres-



sion problem with r ordered categories. These categories
will be denoted by consecutive integers, Y = {1,...,r}.
Assume that n; training examples exist in the j-th category
where j € Y and let the i-th training sample in this cate-
gory be denoted by z7, where #7 € R?. The total number

of training samples is n (= E;Zl n;).

2 Approach 1: Explicit Constraints on Radii

Support Vector Machines (SVM) map the input vectors
into feature vectors in a high dimensional RKHS [8], where
a linear machine is constructed by minimizing a regular-
ized functional. For ordinal regression problem, the support
vector formulation determines r — 1 separating hyperplanes,
w - ¢(x) —bj, j=1,...,r — 1, which would separate the
training data into r ordered bins [6, 1]. For each threshold
b;, the samples from the two adjacent categories, j and j+1
are considered for empirical errors.

We formulate the ordinal regression problem as finding
r—1 minimum volume concentric spheres with centre y and
radii, Rj,j = 1,...,r— 1 such that all (or most of) the data
points in j-th category lie in the annular region formed by
the spheres of radii Z; and R;_;. Here, we introduce two
auxiliary variables, Ry = 0 and R, = oo. One or a few very
remote training samples could result in very large spheres
which will not represent the data well. Therefore, we allow
for some data points in every category to lie outside their
designated region. More specifically, the squared distance
of each sample in the j-th category from the centre x4 should

— (R7 — 1) is the
error (denoted as 5{ ). Similarly, the squared distance of
each sample in the j-th category from the centre y should
be at least R7_; + 1, ot'herwise R, +1- ||zf - u||2 is
the error (denoted as £;”). See Figure 1 for the illustration.

Then the ordinal regression problem can be formulated as
the following primal problem:
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where C' gives the trade-off between the volume of the
spheres and the number of errors. Note that &I = & =
0Vi.

The primal problem is a convex programming problem.
Using Wolfe duality theory, by introducing the KKT condi-
tions into the Lagrangian and applying the kernel trick, the

Figure 1. An illustration of the definition of slack vari-
ables £ and £".The samples from rank 1, 2 and 3 are
shown respectively by circles, squares and crosses. £ and
£” indicate the squared distances between the points un-
der consideration.

dual problem becomes
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The dual problem is a convex quadratic programming
problem. One can solve this problem with respect to a7,
a:j and 7/ using SMO type algorlthm The training set
samples with non-zero values of a7 or a;” are called sup-
port vectors. Once the optimal values of a, o* and i are
obtained by solving this dual problem, the different radii,
R;, of the spheres can be obtained by calculating the dis-
tance between the centre of the sphere and a support vector
whose Lagrange multiplier lies in the range (0, C).

The rank of a test sample = can be determined by finding
the smallest sphere in the RKHS (out of r spheres) which
encompasses the given sample. For this purpose, the dis-
tance between ¢(z) and the centre of sphere, u, needs to be

calculated. The rank of any point z is then given by
argmin {k : [|6(z) — ull* < RY}. M
where p is derived from the KKT conditions as

Y (] — )]

2
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Let us define, f(z) = K(z,2) — % jaileg =
o) VK (7, x). Then, the rank of z is given by

agmin {k: f@) < B2 = [} ®)



Figure 2. An illustration of the definition of slack vari-
ables ¢ and £*. The samples from rank 1, 2 and 3 are
shown respectively by circles, squares and crosses. £ and
£” indicate the squared distances between the points un-
der consideration.

3 Approach 2: Implicit Constraints on Radii

In this section we present a different formulation for sup-
port vector ordinal regression. As in the case of Approach
1, this formulation also finds minimum volume concentric
spheres with centre g such that all (or most of) the data
points in the j-th category lie in the annular region formed
by spheres of radii I2; and IZ;_;. However, instead of con-
sidering the empirical errors from the samples of adjacent
categories to determine a radius, we allow the samples in
all the categories to contribute errors for each radius. More
specifically, the squared distance of a sample z; in the cate-
gory y; from the centre i should be at most R? — 1 for every
category 7 > y; and should be at least R;"- + 1 for every cat-
egory j < y;. Otherwise, ||z; — p||” — (R? — 1) is the error
denoted as &/, j > y; and (B2 + 1) — |2
denoted as &; J ,J < y;. See Figure 2 for the illustration.

We can thus write the new support vector ordinal regres-
sion problem as the following primal problem:

— p|)? is the error
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where j runs over 1,...,r — 1. Thus, there are  — 1 con-
straints associated with every sample rather than only two
constraints as in the case of the formulation discussed in
Section 2. A very nice property of this approach is that the
inequality constraints R7, | > R3,7 = 1,...,r — Lalways

hold at the optimal solution in spite of the fact that they are
not explicitly included in the new formulation. The proof of
this property is given below.

To prove the inequalities on the R;’s at the optimal so-
lution, let us consider the situation where the center y is
fixed and only the R;’s are optimized. In this case, the
empirical errors fg and & 7 are automatically determined
once the R; is given. For each rank £ let us define,

def {i ty; = kand ||z; — p/|> — R > —1} and

L® def {i :yi = kand ||z; — pl]* — R} < +1}. Itis
easy to see that I?; is optimal iff it minimizes the functional,
ej(R%) = R + 3oy Yiepow (2 — pll? = R + 1) +
> kmjr Ziel,jf’ (R? 4+ 1 — ||z; — u||?), Due to strict con-
vexity, there is a unique solution to this problem. Let RJQ-
denote the minimizer of e;(R?). Now we need to prove the
following lemma. R

Lemmal. R? <R3 <---<RZ_,

Proof. The “right side derivative” of e; with respect to
R?is

low
Ik

9;(R*) = & = Xy IV (RA) + Xy " (B
(6)

where |I}°"(R?)| denotes the size of the set I}V (R?).!
Take any one j and suppose R} > R3,,. Since R?,,
is strictly to the left of R;"- that minimizes e;, we have
g'(RJZH) <.

Since R? i+1 1s a minimizer of e;j1; we also have
ng(RjH) > 0. Thus we have g]H(RjH) 9j (Rj+1) >
0; also, by (6) we get

— L3N (RS )| =113 (R3]

which is impossible. This proves the lemma.

It is worth noting that Lemma 1 holds even for an ex-
tended problem formulation that allows the use of differ-
ent costs (different C' values) for different misclassifications
(class k misclassified as class j can have the cost CY). This
problem formulation is more appropriate for applications
such as collaborative filtering.

Using Wolfe duality theory, the dual problem of (4) - (5)
can be written as

maxy ., (Zg;; ag + 21;:_11 )’
- Zk i, )Wy (a, ) K (x4, )
+2 (Zj D Dty a*J)K(xi,mi)

0< gj+1(R]2'+1)_gJ( ]+1)

subject to the constraints, Ei:yiq’ ag — Zi:yi>]. a;.*j
1Vjand 0 < o, < CVi,j, where ¥,(a, a*)

I'The curve of g; is of slope 1 almost anywhere and having finite verti-
cal jumps.
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lem with respect to ] and a:j using SMO type algorithm.
Once the optimal « are obtained, the different radii, ; of
the spheres can be obtained by calculating the distance be-
tween the centre p of the sphere and the training set sample
whose Lagrange multiplier is in (0, C).

The rank of any point x is then given by

argmin {k : [|¢(x) — ull* < B}}. 7

Let us define f(z) = K(v,2) — -2 Y ,(X0, of —
yi—1 *j

io1 ;' )K(z, ;). Then, the rank of z is given by

argmkin {k: f(z) < R — ||p*|1}- €]

4 Numerical Experiments

The SMO algorithms for the two proposed support
vector ordinal regression formulations were evaluated on
some benchmark data sets. We collected eight benchmark
datasets that were used for metric regression problems.?
The target values were discretized into ordinal quantities us-
ing equal length binning. These bins divide the range of tar-
get values into a given number of intervals that are of same
length. The resulting rank values are ordered, representing
these intervals of the original metric quantities. For each
dataset, we generated two versions by discretizing the tar-
get values into five or ten ordinal scales respectively. Each
dataset was randomly partitioned into training/test splits
as specified in Table 1. The partitioning was repeated 20
times independently.> The input vectors were normalized
to zero mean and unit-variance, coordinate-wise. The Gaus-
sian kernel, K (z,z") = exp(—% Zi:l (@p — x;,)Q) where
k > 0 and x, denotes the p-th element of the input vector
x, was used in these experiments. Five-fold cross validation
was used to determine the optimal values of model param-
eters (the parameter « in the Gaussian kernel and the regu-
larization factor C') involved in the problem formulations,
and the test error was obtained using the optimal model
parameters for each formulation. The following two met-
rics which quantify the accuracy of predicted ordinal scales
{91, ..., 0:} with respect to true targets {y,...,y:} were
used: 1. Mean absolute error is the average deviation of
the prediction from the true target, i.e. 1 2221 |9: — vl
in which we treat the ordinal scales as consecutive integers.
2. Mean zero-one error is the fraction of incorrect predic-
tions on individual samples. We compare the generalization
capabilities of the proposed approaches with the Support
Vector approaches for ordinal regression described in [1].

>These regression datasets are available at
http://www.liacc.up.pt/"Itorgo/Regression/Datasets.html.
3The generated partitions can be accessed at

http://www.gatsby.ucl.ac.uk/"chuwei/ordinalregression.html.

Table 1. Datasets and their characteristics

Datasets #Attributes | Training | Test
Samples | Samples
Diabetes 2 30 13
Pyridimines 27 50 24
Triazines 60 100 86
Wisconsin 32 130 64
Machine CPU 6 150 59
Auto MPG 7 200 192
Boston Housing 13 300 206
Abalone 8 1000 3177

Table 3. CPU Time (in seconds) for the proposed algo-
rithms on the California Housing dataset and the Bank
Domain dataset. EXC (R) and IMC (R) indicate the pro-
posed approaches with explicit and implicit constraints
on the radii.

Training CPU Time (sec)
dataset size | California Housing | Bank Domain

100 0.0105| 0.055 0.007 | 0.0815
200 0.0355| .1315 0.03 2315
500 0.371 | 0.6845 0.205 | 1.2345
1000 2.5685| 4417 1.7225 | 6.6355

2000 38.28 28.82 23.649 | 34.1325

5000 1279 254.01 |320.691|163.6165

8000 - - 2473.3 | 645.921

The test results of these algorithms are reported in Table 2.
From this table, it is clear that the proposed approaches are
competitive. In particular, the approach with implicit con-
straints on the radii (Approach 2) is comparable with the
support vector approaches in [1] in terms of mean absolute
error. Clearly, Approach 2 discussed in this paper is an ex-
cellent alternative to the Support Vector approaches [1] for
ordinal regression.

4.1 Scaling

In this experiment, we empirically studied how the
two SMO algorithms scale with respect to training data
size. The California housing dataset and the Bank Domain
dataset were used in the scaling experiments.* For the Cal-
ifornia housing dataset, twenty training datasets with sizes
ranging from 100 to 5000 were generated by random selec-
tion from the original dataset. The continuous target vari-
able of the California Housing dataset was discretized to or-
dinal scale by using 10 equal-frequency bins. The datasets
were trained by the SMO algorithms for ordinal regression
formulations (using explicit and implicit constraints on the
radii) with a linear kernel and C' = 10. For the Bank Do-
main dataset, a similar procedure was adapted to generate
training datasets with sizes ranging from 100 to 8000. The
details of the CPU times of the SMO algorithms for differ-

4The California Housing dataset and the Bank Domain dataset are
available at http://www.liacc.up.pt/"ltorgo/Regression/.



Table 2. Comparison of the proposed approaches with the approaches reported in [1] on different benchmark datasets.
The targets of these benchmark datasets were discretized by 10 and 5-equal length bins. The results are the averages over 20
trials, along with the standard deviation. EXC (R) and IMC (R) respectively represent the proposed approaches with explicit
and implicit constraints on the radii. EXC (H) and IMC (H) respectively denote the approaches with explicit and implicit
constraints on the thresholds [1]. We use bold face to indicate the best result in each row.

10-equal length bins

5-equal length bins

Data Mean absolute error Mean absolute error
EXC (R) IMC(R) EXC (H) IMC (H) EXC (R) IMC(R) EXC (H) IMC (H)

Diabetes 1.50 +0.46 | 1.57+0.47 {1.34+0.40| 1.57+0.48 0.68 +0.14 | 0.72+0.16 | 0.67+0.12 | 0.70 = 0.12
Pyridimines | 0.92 +0.12 | 0.86 +0.11 | 0.95 + 0.21 0.88 +0.21 0.48 +0.11 | 0.46 £0.11 0.47+0.13 |0.46 +0.09

Triazines 1.33+0.09 |1.25+0.08 | 1.32£0.07 1.30 £0.08 | 0.70 £0.05 | 0.70£0.04 | 0.71 £0.03 0.71 £0.03

Wisconsin | 2.67 £0.23 [2.06+0.15 | 2.62 £ 0.28 2.14 £0.23 1.14+0.14 {1.00£0.09| 1.18 £0.15 1.02 +0.08

MachineCPU| 0.46 £+ 0.06 |0.45 + 0.08 | 0.47 &+ 0.06 0.46 £0.06 | 0.194+0.04 |0.18 :-0.04| 0.19£0.04 | 0.19+0.04
Auto MPG | 0.52£0.04 | 0.52+0.03 | 0.52+0.03 | 0.51+0.03 | 0.26 +0.02| 0.27 £ 0.02 | 0.26 + 0.02 | 0.26 + 0.02
Boston 0.50+0.04| 0.51 £0.04 | 0.51 £0.04 | 0.51£0.04 | 0.284+0.02 | 0.27+0.02| 0.28 £0.02 |0.27 + 0.02
Abalone 0.54 £0.01 |0.524+0.01| 0.53+0.01 | 0.524+0.01 {0.24 +0.01| 0.23 £0.01 0.25+£0.01 |[0.24+0.01

Mean zero-one error (%) Mean zero-one error (%)

Diabetes | 77.30 & 8.08 | 76.54 4+ 9.82 [75.77 £+ 8.74] 78.85 & 11.13 [54.23 £ 12.60]58.84 + 13.27[53.47 £ 11.57[58.08 £ 12.09
Pyridimines | 61.67 &+ 6.28 | 58.33 +8.76 | 63.13 & 7.80 |[57.29 &+ 10.20| 43.54 +8.71 [ 41.88 £9.01 | 43.13 £ 9.10 (41.67 £+ 6.48
Triazines |71.67 & 3.02 |69.77 &= 2.99( 71.28 & 2.54 | 71.92 £ 3.52 | 53.66 & 2.78 [63.60 &= 2.77| 53.95+ 1.57 |54.19 £ 2.18
Wisconsin [80.78 & 3.87( 84.30 - 3.88 | 82.16 +-3.74 | 85.94 4 3.89 |66.64 +-4.84|69.69 +4.77 | 66.41 £ 5.66 | 72.03 & 3.65
MachineCPU| 33.39 4 4.04 (32.71 &+ 4.57| 34.57 & 3.27 | 32.97 = 3.63 | 17.12 +3.06 {16.52 +-3.10| 17.03 &+ 3.28 | 17.37 & 3.15
Auto MPG | 44.67 +2.76 [42.29 - 3.11( 44.19 £ 2.75 | 44.22 4+ 2.86 |25.96 & 1.53|26.43 =1.71 | 25.73 +2.19 [25.57 = 2.33
Boston 40.99 + 2.46 | 42.18 + 2.81 |40.90 + 2.82| 42.23 +3.1 |25.44 +1.87|25.36 +1.91| 25.44 +1.99 | 25.36 + 2.19
Abalone [42.77 4+-0.62( 42.99 £ 0.88 | 42.98 £ 0.79 | 42.95 £ 0.77 |21.88 £ 0.47 [21.80 & 0.42] 22.28 & 0.37 |21.99 £ 0.40

ent dataset sizes are reported in Table 3. The SMO algo-
rithm for the formulation with implicit constraints has scal-
ing exponents of 2.4 and 2.0 respectively on the California
Housing dataset and the Bank Domain dataset. On the other
hand, the scaling exponents of the SMO algorithm for the
formulation with explicit constraints on these datasets were
close to 3. Thus the SMO algorithm for the support vector
ordinal regression formulation with implicit constraints on
the radii has better scaling properties and is suitable for data
mining applications.

5 Conclusion

Ordinal regression is an important supervised learning
problem with properties of both metric regression and clas-
sification. In this paper, we proposed two new approaches
to support vector ordinal regression which find r — 1 con-
centric spheres for r ranks using r — 1 radii. We also adapted
the SMO algorithms for these formulations. The results of
numerical experiments suggested that the generalization ca-
pabilities of the proposed approaches are competitive. Also,
the algorithm for implicit constraints formulation was found
to scale well. Thus, the proposed approaches are useful al-
ternatives to the existing support vector approaches and are
suitable for applications such as collaborative filtering. Fur-
ther, they can also be used for data with ordinal inputs.

Recently, the idea of Core Vector Machines (CVM) was
proposed where the two-category classification problem
was formulated as minimum enclosing ball (MEB) problem
in computational geometry [7]. The resulting algorithm is

very fast and is especially useful for very large datasets. The
idea of CVM can be extended to the formulations proposed
in this paper. We are currently investigating these details
and the results will be reported elsewhere.
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