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Abstract

We describe a large-scale application of methods for
finding plagiarism and self-plagiarism in research docu-
ment collections. The methods are applied to a collection
of 284,834 documents collected by arXiv.org over a 14 year
period, covering a few different research disciplines. The
methodology efficiently detects a variety of problematic au-
thor behaviors, and heuristics are developed to reduce the
number of false positives. The methods are also efficient
enough to implement as a real-time submission screen for a
collection many times larger.

1. Introduction

Improper reuse of text in academic research articles has a
long, but largely undocumented, history. With the advent of
widespread dissemination of electronic documents via the
internet, the problem might be expected to worsen, due to
the ease of obtaining and incorporating text written by oth-
ers. On the other hand, those determined to appropriate
text have long done so regardless of technology, whereas
the greater ease of detection in the electronic realm may
dissuade the less-determined. Full-text electronic research
document corpuses have grown substantially over the past
decade, and permit a systematic assessment of these issues.
To our knowledge, there has been no systematic assessment
even as to whether there is a background level of “bor-
rowed” text snippets in a typical corpus which is ordinar-
ily accepted by the community, and some threshold above
which verbatim reuse would be regarded as inappropriate.
In the following, we analyze these questions by making use
of the arXiv: a document corpus that has nearly 100% cov-
erage of certain research areas over an extended time period.

1.1. Background: the arXiv

The arXiv is an automated archive of physics, math-
ematics, computer science and quantitative biology arti-
cles [5, 15]. Since its creation in 1991, the arXiv has
grown to over 375,000 articles (as of 7 July 2006), currently
growing at a rate of more than 4000 new submissions each
month.

The arXiv corpus is an excellent testbed for various anal-
yses because the vast majority of articles are in formats from
which the text content can be extracted. Over 95% of arti-
cles are supplied as TeX source (including LaTeX and other
variants). These are automatically processed to produce
versions for display, with PDF by far the preferred format
at present. This process yields a set of PDF files amenable
to text extraction. Experience has shown that taking the text
from PDF is more practical than using the TeX source di-
rectly, because of the varied and complex macro substitu-
tions possible within TeX; in general a complete TeX sys-
tem is needed to interpret these.

There have been a small number of cases of plagiarism
reported to arXiv administrators by readers, some quite
egregious. The availability of efficient algorithms, as de-
scribed here, means that it will be possible to automate the
detection process, both to identify plagiarism in the existing
corpus, and to provide real-time detection of plagiarized or
duplicate articles at submission time.

1.2. Finding plagiarism and duplicates

Our first step will be to rank pairs of documents based
on a notion ofsimilarity between the two documents. By
“duplicate”, we refer to a document whose content is ef-
fectively an (improper) subset of another with overlapping
authorship (see Section 3.2.1 for further discussion). Find-
ing duplicates versus finding plagiarism requires different
notions of similarity.

Consider, for example, two 15-page documents sharing
one page of text. If the two have non-overlapping author-



ship and the articles do not reference one another, then shar-
ing an entire page of text should be considered suspect, and
these articles should be flagged with a high similarity score
for the plagiarism task. If the two documents are written
by the same author, however, this could simply be a case
of different research on the same dataset, with the descrip-
tion of the data set copied from the author’s own previous
work, so this should not score high on either the plagiarism
or duplicate-finding task. If the two documents share one
or more authors, and one references the other, and if the
overlap occurs in pages throughout one of the documents,
then these two documents could be conference and journal
versions of the same work, and should receive a high simi-
larity score on the task of finding duplicates, but not on the
plagiarism task.

1.3. Methodology

We now describe our approach for finding duplicates and
plagiarism in the arXiv. The tasks differ, as noted above, but
it is also clear that they share a common core capability: the
detection of textual similarity in pairs of documents. We ab-
stract this commonality by separating the two problems into
a task-independent first stage, and a task-dependent second
stage. First, we find all pairs of articles that have a signifi-
cant amount of text in common. Then we select the subset
of documents that satisfy further task-dependent conditions.

1.4. Outline

The remainder of this paper is structured as follows. We
first outline in Section 2 our approach for finding pairs
of documents that have similar passages of text. Then in
Section 3 we show the results of an extensive experimen-
tal study that guided our parameter selection for the task-
specific tuning of document similarity. Our results show
that our algorithms are effective in finding both duplicate
documents and plagiarism in the arXiv. We discuss related
work in Section 4, and we conclude in Section 5.

We emphasize that the contribution of this article is not
the methodology of detecting plagiarism or duplicates; in
fact, there has been much previous work in this area, as we
discuss in Section 4. To the best of our knowledge, how-
ever, this article describes the first large-scale application
of methods for finding plagiarism in document collections,
and it opens up interesting directions for future research.

2. Finding similar documents

We first discuss the problem of finding passages of text
that are held in common by two or more documents. Our
corpus is a collection ofdocuments; each document has
one or severalauthors. In our simple model, a document

is made up ofsentences, each consisting of a sequence of
words.

First note that a set-oriented approach, in which each
document is represented by a bag of words, is too coarse for
this problem: two different articles on the same topic could
have very similar bags of words regardless of whether they
contain plagiarized text. We thus maintain the order of the
words within a document, and use sentences as our unit of
abstraction. Sentences provide a natural partitioning of text,
though with the drawback that a single sentence is not lim-
ited in length. A plagiarizer could slightly modify a long
sentence so that the new sentence is formally different, but
would still be identified as plagiarism by a human reader.
To address this problem, we introduce the notion ofsimilar
sentences as having overlapping consecutive parts of some
fixed size. Our next two definitions capture this intuition.

Definition 2.1 Two sentences areν-similar if they contain
the same sequence ofν consecutive words.

Definition 2.2 Two documentsD and D′ are (ν,m)-
similar if there existm sentencess1, . . . , sm in D, andm

sentencess′1, . . . , s
′

m in D′, such thatsi is ν-similar to at
least ones′j for j ∈ {1, . . . ,m}. Note that we do not re-
quire that these sentences are consecutive in either of the
documents.

Shared sentences between documents, however, do not
always indicate plagiarism. Some common sentences are
used by many authors. For example, the sentence “This
paper is organized as follows.” occurs in a large number
of documents, and such common sentences should be ex-
cluded from our analysis. To take this into account, we re-
fine our definitions as follows:

Definition 2.3 A sequence of words isL-common if it is
shared by at leastL documents with non-overlapping au-
thorship. We call a sequence of wordsL-uncommonif it is
notL-common .

Definition 2.4 A sentence is(µ,L)-common if it contains
an L-common sequence ofµ words. We call a sentence
(µ,L)-uncommonif it is not (µ,L)-common.

Our definition of similar documents can now be refined
as follows:

Definition 2.5 Two documents are(µ,L; ν,m)-similar if
both contain at leastm different (µ,L)-uncommon sen-
tences that areν-similar to sentences in the other document.

In the remainder of this section, we describe our ap-
proach for finding all document pairs that are similar by our
definitions. Our approach is based on winnowing, a tech-
nique that has been previously used for plagiarism detection
in programming assignments [11].



2.1. The winnowing algorithm

The winnowing algorithm is an instance of document
fingerprinting: a document is summarized by a small set
of character sequences calledfingerprintswhich can be ef-
ficiently used to find copies of parts of a document in a
large document collection. Document comparison is then
reduced to finding exact matches in the sets of fingerprints.
These sets of fingerprints should satisfy two main require-
ments: first, documents with overlap will be guaranteed to
have intersecting sets of fingerprints; second, the sets of fin-
gerprints should be small enough to permit scaling the task
to large numbers of documents.

The winnowing algorithm [11] is one specific instance
of a fingerprinting algorithm. For a given document, the
algorithm first selects all contiguous subsequences of char-
acters of lengthk, calledk-grams. Note that a document
of length n hasn − k + 1 associatedk-grams. Thus if
two documents have ak-gram in common, then they have a
common sequence ofk characters. In practice, fingerprints
are not the actualk-grams, but instead (unique) hashes of
them.1 The set of fingerprints associated to a document is
reduced significantly by considering the document as a set
of n−w+1 overlappingwindowsof lengthw, and retaining
only enough hashes to ensure that each window contains at
least one hash. Ifw is sufficiently large compared tok, the
number of fingerprints associated to a document of lengthn

is significantly smaller thann−k+1. It is straightforwardly
shown [11] that even this reduced set of fingerprints can still
find copies of sufficiently long passages of text, depending
on the settings of parametersk andw: any match at least
as long as theguarantee thresholdt = w + k − 1 will be
detected.

2.2. Text winnowing

Winnowing was developed for arbitrary digital docu-
ments. The winnowing algorithm can be adapted to our
document collection by taking advantage of the background
knowledge that the dataset consists of text documents that
can be naturally segmented into words and sentences. This
permits selecting a much smaller initial set of possiblek-
grams, and a restricted set of windows, which will both in-
crease the speed of the algorithm and also permit working
with a smaller but nonetheless effective set of fingerprints.

The differences between the text and original versions of
winnowing are as follows:

• The minimum unit of text is a word instead of a char-
acter. This means that the fingerprint represents a se-
quence ofk consecutive words rather thank consecu-
tive characters, and that the size of the window is mea-
sured asw words, not characters.

1Collisions in the hash function produce false positives.

• Each fingerprint is a subsequence of a sentence. Each
window, from which a fingerprint is chosen, is a sub-
sequence of a sentence as well. If a sentence is shorter
thank words, it is ignored. If its length is greater than
or equal tok, but less thanw words, onek-gram is
chosen from this sentence.

The second refinement eliminates many windows and
fingerprints that would have to be calculated in the original
algorithm — those that cross sentence boundaries. It also
permits a more reliable measure of text overlap than just the
number of shared fingerprints. At one extreme,X shared
fingerprints could correspond to a consecutive piece of only
k + X − 1 words, because fingerprints can overlap. At the
other extreme, when no fingerprints overlap, there may be
X shared disjoint sequences ofk tokens apiece. This is an
inherent inconvenience of the original algorithm and is dealt
with here by counting the size of overlap as the number of
similar sentences, instead of the number of shared finger-
prints.

We now describe how text winnowing can be used to
find all pairs of documents similar by definitions 2.2 and
2.5. By settingt = ν, we can guarantee that allν-similar
sentences will be detected. Then we calculate the number
of sentences containing matching fingerprints and choose
all documents that share at leastm such sentences. The
resulting set of pairs will contain all(ν,m)-similar docu-
ments. It is important to note [11] that whenk < t this
set of pairs will be a superset of the target set. It will also
contain some (but likely not all) pairs of(ξ,m)-similar doc-
uments for allξ : k ≤ ξ < t. The value ofk determines
the “noise-rejection” threshold, i.e., matches of fewer than
k consecutive words will not be seen, sok is chosen as the
minimum number of consecutive matching words that are
likely to be of interest.

We can easily extend the approach to find all
(µ,L; t,m)-similar documents by takingµ = k. After de-
termining the number of files containing eachk-gram in
its fingerprint set, we identify a subset of allL-common
k-grams, and therefore a subset of all(k, L)-common sen-
tences. After eliminating them from the analysis, we are left
with a superset of all(k, L)-uncommon sentences, forming
a superset of all(k, L; t,m)-similar pairs of documents.

2.3. Data preprocessing

Most arXiv documents are stored either in PDF format
(3.3%) or in TeX format (95.2%), which can be converted
to PDF. In order to extract raw text uniformly, we use a PDF
to text converter (PDFTOHTML [8]). We now describe the
additional steps we took in some detail.



2.3.1. Parsing sentences

Additional processing is necessary before the PDF to
text conversion output can be used as input for text win-
nowing. First we need to split the text into sentences.
Periods and line breaks are possible markers of bor-
ders between sentences but there are some pitfalls: pe-
riods can appear in abbreviations and internet addresses
(“Prof. Ginsparg”,“www.cs.cornell.edu”), and line breaks
occur in the output of the PDF to text conversion not only
at the end of a paragraph but in the end of every visual line
of the original PDF document, i.e., most of the time in the
middle of a sentence. We cannot ignore line breaks and
consider periods alone, however, because headers and bul-
let items often do not end with periods.

We have chosen the following heuristics as rules for pars-
ing:

1. A line break followed by a capital letter is considered
an end of sentence.

2. A line break not followed by a capital letter is ignored.
3. A period at the end of common abbreviations such as

“Prof.”, “Dr.”, “Fig.” is ignored.
4. A period followed by a non-letter character (e.g.,

whitespace) is considered an end of sentence if the pre-
vious rule does not apply.

5. A period directly followed by a letter
(“www.cs.cornell.edu” or “U.S.” ) is ignored.

This parsing is not perfect — it sometimes breaks sen-
tences. The most problematic case we encounter is when a
proper noun appears in the middle of a sentence and hap-
pens to appear in the beginning of a line in the PDF doc-
ument. Then the first rule applies and the sentence is split.
An uncategorized abbreviation in the third rule can also split
the sentence. The latter case is not very dangerous here
since identical sentences in different documents will be bro-
ken in the same place. The former case, however, can have
a negative effect, because line breaks in the same sentence
can happen in different places in different PDF files, so the
same text might be parsed differently, resulting in a missed
match.

We also made some effort to recover words split into sev-
eral parts after PDF to text conversion. First, a hyphen fol-
lowed by a line break is recognized as a division of a word,
so we re-assembled the two word fragments into a single
word. Second, we apply a set of rules specific to the out-
put of the PDF to text converter to recover words with non-
English characters such asä, æ, ø, which appear corrupted
but are systematically recoverable.

2.3.2. Text cleaning

After sentence parsing, we further simplify the text in
each sentence as follows:

• Sequences of whitespace characters are collapsed to a
single space

• All characters except letters and spaces are removed
• Words consisting of a single letter are removed
• All letters are converted to lowercase

This further text cleaning improves our ability to detect
cases of interest without introducing false matches. Dur-
ing this process most formulae and variables are removed
from the text. This is done on purpose: identical formulae
by themselves do not mean that the text was copied.

2.3.3. Separating the bibliography

The bibliography can constitute a large fraction of a doc-
ument. Text overlaps from this section are not of interest for
similarity detection since we expect citations to be written
similarly or identically in differently authored documents.
The bibliography may contain additional useful informa-
tion, however, such as the name of an author from whose ar-
ticle text has been copied. During the preprocessing phase,
we attempt to find the beginning of the bibliography in the
text representation of each document by searching for the
line “References” or “Bibliography”. Since documents con-
taining a table of contents may have an additional single
“References” line, the last occurrence of such a heading is
used to split off the bibliography.

Empirical evidence shows that we succeeded in extract-
ing the bibliography from about 75% of the documents. The
most common reason for the failure of this simple strategy is
the absence of “References”, “Bibliography”, or any other
characteristic header.

2.3.4. Extracting author names

A crucial preprocessing task is correct extraction of au-
thors’ names. When comparing two documents, it is nec-
essary to know if they are written by the same author in
order to determine whether any overlapping text is a ques-
tion of plagiarism or instead self-plagiarism/duplicate arti-
cle. Fortunately, all arXiv documents have metadata con-
taining tagged names of authors, text of abstracts, and other
useful information.

Unfortunately, even after extracting names from meta-
data, in many cases there is still uncertainty about whether
or not two articles are written by the same author. One prob-
lem is that many authors, especially from countries whose
languages use other than the Latin alphabet (or use the Latin
alphabet with additional letters), transliterate their names
differently in different articles. We identify a set of dif-
ferent transliterations, taken from existing arXiv documents
(Table 1).

The second major problem for name extraction involves
large collaborations. Many arXiv documents, especially in



Russian German Armenian
ou = u ae = a ian = yan
ss = s oe = o
tch = ch ue = u
’e = yo
zh = j
ine = in
ski = sky = skii = skij = skiy

Table 1. Equivalent transliterations in names

astrophysics and high-energy physics, represent the work of
large groups of people. In many cases, not all members of
a collaboration are listed as authors. Sometimes they are all
listed as authors in the text of the article, but in the metadata
only one or two names appear, together with a parenthetical
note “for XXX collaboration”. Sometimes there is only a
single author followed by “et al” in the metadata, with no
explicit collaboration name given. These cases are prob-
lematic, because it turns out that there is a large amount
of reuse of text in reports by collaborations, typically by
members of the collaboration writing single-author papers
for independent conferences. Since it is important to dis-
tinguish texts created from within the same collaboration
from actual cases of plagiarism, we applied the following
heuristics. First, if the word “collaboration” is present in
the “Authors” field of the metadata, then we combine the
collaboration name into the list of extracted author names.
Second, we semi-manually created a list of the most com-
mon collaborations, and scan the entire metadata, including
abstract, for any such names. If a known collaboration name
is present anywhere in the metadata, then this collaboration
name is included in the list of authors as well. Standard text
will not ordinarily be mistaken for the name of a collabo-
ration because collaboration names are written in all upper-
case, which we distinguish in this analysis. For example,
the word “chess” will not be mistaken for the “CHESS Col-
laboration”.

2.4. Implementation

It is not efficient to store the full sequences of charac-
ters corresponding to our text fingerprints in memory. We
instead convert them to 64 bit integers. As in the work of
Broder [2], we use a hash function based on Rabin finger-
prints [9]. A 64 bit hash was sufficiently large to avoid hash
collisions (different fingerprints assigned the same integer).

The preprocessed text documents with one sentence per
line are read line-by-line, and the fingerprints are stored as
64 bit integers in a hash table. The key for each entry con-
sists of the first 32 bits of the fingerprint (multiple entries
with the same key are allowed) and the value of the entry
is a structure that contains the rest of the 64 bit fingerprint

plus the id number of the document containing it.
Once the entire hash table is assembled, each entry

can be analyzed to distinguish those fingerprints that are
shared by several documents from those that are unique.
At this stage, we also eliminate very common fingerprints,
those shared by many documents and likely to be common
phrases rather than explicitly borrowed text.

From the resulting table, we create a set of pairs of doc-
uments that share uncommon fingerprints for further analy-
sis. It is important that this set of pairs is far smaller than
the set of all possible pairs of documents, since all pairwise
comparisons would be infeasible for the large arXiv dataset.
We decrease the number of pairs further by selecting only
those pairs that overlap by at leastm uncommonk-similar
sentences. In the final stage, we analyze each pair from the
list and identify those most relevant for our purposes, by
methods detailed in Section 3.2.

2.5. Parameter setting

The experiments for choosing reasonable parametersk

andt of the winnowing algorithm were run on a subset of
the data, selecting only 7200 articles from the “physics”
subject area of arXiv. Parametersm andL were set to 4
based on intuition and computational restrictions. Later we
did some experiments that supported our choice ofL (de-
tails in Section 2.5.3).

The general framework of these experiments was the fol-
lowing: We setm = 4, looking for documents that share
at least four sentences containing uncommonk-grams, and
ran our algorithm many times with different values ofk and
t. We then manually assessed the differences between the
sets of results to determine whether those pairs should be
included or not, i.e., whether they constituted actual plagia-
rism or were false positives. These observations were used
to select parameter values that screened as many false pos-
itives as possible, without losing too many true positives.
Manual assessment of these differences was very time con-
suming so we used only a small subset of documents. The
values chosen appear to be adequate for present purposes,
but a more comprehensive assessment would be required to
determine optimal values. We defer this investigation to fu-
ture work.

2.5.1. Choosing the noise reduction threshold k

The first set of experiments was run withk = t for
k = 4, 5, 6, 7, 8, 9, in order to choose the most appropri-
atek. With these settings, the fingerprint sets contain all
possiblek-grams, so the results of each successive experi-
ment are always a subset of the previous one. After each
experiment, the reported cases were ranked by the size of
overlap. Then the five top cases that did not survive increas-
ing k were examined. The results are shown in Table 2: the



T values deleted deleted deleted
FP undefined TP

4 → 5 5 0 0
5 → 6 5 0 0
6 → 7 4 1 0
7 → 8 1 1 3
8 → 9 0 0 5

Table 2. Influence of K - size of K-gram

T values deleted deleted deleted
FP undefined TP

7 → 8 5 0 0
8 → 9 3 1 1
9 → 10 2 0 1
10 → 11 3 0 0
11 → 12 5 0 0
12 → 13 0 1 4
13 → 14 0 0 0

Table 3. Influence of T - window size

first column shows the change ink, and successive columns
show the number of false positives, hard to classify cases,
and true positives from the top five deleted cases.

From these results, we infer thatk = 7 is the most appro-
priate value fork for our purposes. Larger values lose true
positives, and smaller values introduce false positives with-
out adding true positives. We still have some false positives
for k = 7, but we would prefer to retain all true positives at
the expense of including some false positives.

2.5.2. Choosing the guarantee threshold t

After settingk = 7, we ran a new set of experiments to
determine the optimal value oft. The quality of detection
turns out to improve with increasingt. Formally, it is pos-
sible that each case present in the results witht = k will
be present in the results with the samek and largert. That
probability increases according to the overall similaritybe-
tween the two articles. Increasingk, we found that the least
similar cases were removed, and up to some point those
turned out to be false positives. Similarly, we increasedt

for fixedk and looked at the five top-ranked results that dis-
appear after this transition. If there were fewer than five
such results, we looked at the whole set available. Results
are shown in Table 3.
From these results, we inferred thatt = 12 is a sensible
choice, corresponding to a window sizew = t− k +1 = 6.

2.5.3. Common k-grams. Parameter L

Figure 1 shows on a log scale the distribution ofk-grams,
for k = 7 words, against the number of articles, with non-
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Figure 1. Distribution of K-grams over the
number of authors sharing them.

overlapping authorship, sharing them. The horizontal axis
is the number of articles with non-overlapping authorship
l (from 2 to 100), and the vertical axis is the number of
k-grams shared by exactlyl articles with non-overlapping
authorship.
The first bar on this histogram shows that there are more
than a millionk-grams shared only by two articles with
non-overlapping authorship — these are the units of over-
lap of primary interest for us. We include in the analysis
thek-grams represented by the second bar — those shared
by three articles with non-overlapping authorship, so that
we don’t miss the cases in which two different plagiarists
copy from the same source. When we includek-grams from
the third bar (shared by four different articles with non-
overlapping authorship), the results included sets of docu-
ments overlapping only by a section of boilerplate text (such
as standard institutional copyright paragraphs). Based on
these results, we chose to set the parameterL = 4 in our
algorithm, to identify7-grams used by four or more articles
with non-overlapping authorship as common.

Given all of the above, together with the discussion at the
end of Section 2.2, our algorithm ensures that we discover
all (7,4;12,4)-similar pairs of documents.

3. Experiments

In our experiments, we used a collection of arXiv arti-
cles from 1991 through early 2005. This dataset included
287,857 articles in PDF and TeX format. Out of those,
3023 were unusable due to conversion problems. The ex-
periments were run on a single CPU (64 bit, Itanium 2,
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Figure 2. Distribution of 7-gram matches with
multiple counting. All 7-grams.

1.3 GHz) with 64 GB RAM. After preprocessing, the final
run of the text winnowing algorithm and output of results
took 20 hours. In the first step, 204,828,7787-grams were
entered into the multiple entry hash table, on average 7217-
grams per document. A set of 440,224 pairs of documents,
each sharing at least 4 potentially uncommon7-grams, was
identified, and then reduced to 330,306 pairs sharing at least
4 potentially interesting similar sentences. This is our su-
perset of all pairs of (7,4;12,4)-similar documents. 312,685
of them are pairs of documents created by the same author
(duplicate candidates), and 17,621 are by different authors
(plagiarism candidates).

3.1. Distribution of k-gram matches

Here we examine the distributions ofk-gram matches in
the data, for the chosenk = 7. The horizontal axes in the
plots of this section show the number ofk-gram matches
(sharedk-grams). The vertical axes, plotted on a log scale,
show the total number of documents sharing the given num-
ber of k-grams. Each vertical bar corresponds to the total
for a bin of width 50 (plus 1, so that the log can always
be taken). Note that the number of sharedk-grams includes
repeat counting of anyk-gram that co-occurs in many docu-
ments. For example, a particular document will be counted
in the 1001–1050 bin if it shares 1025k-grams with one
other document, or 1k-gram with 1025 other documents.

Figure 2 shows the sharedk-grams for the whole corpus
of 284,834 documents, with all winnowedk-grams included
(∼ 2.9×108 totalk-gram matches for an average of∼1000
per document). At the left edge, we see that 15,313 docu-
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Figure 3. Distribution of 7-gram matches with
multiple counting. Three most common 7-
grams.

ments share 1–50k-grams, and at the far right we see that
just one document shares 48,510k-grams with other docu-
ments.

While the overall trend is a decrease in the number of
documents with increasing number of sharedk-grams, the
figure also shows additional structure of sharply rising and
slowly declining peaks. Each such peak corresponds to one
of the most commonk-grams or a combination thereof. For
example, the most common7-gram “this work was sup-
ported in part by” is shared by 12966 documents. This
means that each of these documents shares at least this7-
gram with 12965 other documents, and thus the total num-
ber of 7-gram matches with the rest of the corpus is at
least 12965. The peak, however, is not a single 12965 doc-
ument high spike because many of these documents also
share other7-grams with other documents, smearing the
peak rightwards to higher numbers of7-gram matches.

This explanation applies only if the numbers of docu-
ments sharing the most commonk-grams are large com-
pared to the average number ofk-gram matches, otherwise
the distribution would be smooth. The second most com-
mon 7-gram “can be expressed in terms of the” is shared
by 6541 documents, the third most common7-gram “work
was supported in part by the” is shared by 4612 documents,
and all other7-grams are shared by less than 3000 docu-
ments. These most common7-grams are shared by signifi-
cantly more documents than the average of∼1000 matches
per document, and thus show as clear peaks. Of the three
most prominent peaks, the first peak around 6500 corre-
sponds to the second most common7-gram, the second
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Figure 4. Distribution of 7-gram matches with
multiple counting. Interesting 7-grams.

peak around 12900 corresponds to the most common7-
gram, and the third peak around 17400 corresponds to the
documents sharing both the most common and the third
most common7-gram, as expected because those two7-
grams overlap.

Figure 3 highlights the contribution from commonk-
grams by showing only the contributions from the three
most common7-grams. The horizontal positions of the bars
correspond to the most visible peaks of the previous figure.
The positions of the peaks, from left to right, correspond to
3rd most commonk-gram,2nd, 2nd + 3rd, 1st, 1st + 3rd,
and1st + 2nd + 3rd.

Common7-grams are not only responsible for the peaks,
but in fact constitute much of histogram. Figure 4 shows
uncommon7-grams only, i.e., those appearing in at most
three documents. This graph shows a fairly smooth drop off
in number of documents for increasing numbers of7-gram
matches. There is still some structure for large numbers
of 7-gram matches, corresponding to matches in significant
portions of documents.

Finally, figure 5 depicts counts of sentences instead of7-
grams, and shows a smaller number of peaks than figure 2.
This is because of the high correlation of the first and third
most common7-grams responsible for the peaks in figure 2.
When the two7-grams “this work was supported in part by”
and “work was supported in part by the” occur in one docu-
ment, they typically occur in the same sentence, so the sen-
tence counts in figure 5 show no peak for the combination
of these two7-grams.
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Figure 5. Distribution of sentences with mul-
tiple counting.

3.2. Extracting interesting documents

After creating the superset of all (12,4;7,4)-similar doc-
ument pairs, we then extracted the subsets relevant to dif-
ferent tasks. As mentioned earlier, we will focus on the two
problems of duplicate and plagiarism detection. We apply
different rules to extract the corresponding subsets.

3.2.1. Duplicate detection

Duplicate here refers to an article essentially the same as
another by the same author, or a subset of another by the
same author. It can be a conference paper later extended to
a journal article, or vice versa, or an article whose contentis
included in a PhD thesis, and so on. Detection of duplicates
is helpful for improving search results: if there are many
versions of the same article in the repository, and this article
is relevant to the search query, then it is possible to prune (or
group) duplicates in the results for the benefit of the reader.

The primary rule for a pair containing a duplicate article
is clear: the two articles should have at least one author in
common. This rule is applied after preprocessing is com-
pleted, so the common author can be either a collaboration
or a specific individual.

Next we need to specify a criterion for determining when
a pair of highly similar documents with an author in com-
mon is considered to contain a duplicate. The document
must share similar sentences in every part of its text in order
to be considered a duplicate. On the other hand, we are not
interested in pairs in which both documents possess large
consecutive parts of unique (not shared) text, even if they



share chunks of some other text. We formalize this notion
of duplicate in the following way:

Definition 3.1 In a pair of similar documents,the largest
copy-free part of one document is the longest sequence of
consecutive sentences that includes no sentences similar to
any sentence in the other document. Theoriginality of the
document is the ratio of the length of its largest copy-free
part to the length of the whole document, where length is
measured in number of sentences. The document is consid-
ered aduplicate if its originality is less than someα.

In our experiments we have setα to 0.2.

3.2.2. Plagiarism detection

In plagiarism detection, unlike the case of duplicate de-
tection, the size of the unique part of the document does
not matter. The number of similar sentences is itself a good
measure of plagiarism similarity. This task, however, turned
out to be nontrivial in a different regard: there are many rea-
sons why shared text in two documents by different authors
might not turn out to be plagiarism. A number of additional
heuristics had to be applied in order to extract a set of pairs
containing only a few false positives (i.e., non-plagiarism
cases). Indications of possible false positives are:

1. An author of one document is a neighbor on the co-
author graph to an author of the other document. Peo-
ple from the same research group can both reuse text
from an earlier article, on which they were co-authors.

2. An author of one article appears in the text of refer-
ences of the other. This is usually an indication of
“mild plagiarism” — people who maliciously claim
someone’s work as their own normally do not cite their
source.

3. An author of one article appears in the text of the other
article. This can result from any of:

• not all authors are properly indicated in the meta-
data

• there is a direct citation from the other article
• the first document is a workshop proceedings and

the second is from the workshop
• one of the actual authors is mentioned only in the

acknowledgments

4. One or both articles are produced by a collaboration.
Although significant effort was made to solve the col-
laboration problem during the preprocessing step, col-
laborations remain a probable source of false positives.

5. Both previous conditions (3,4) hold: this is a very
strong evidence of a false positive, and occurs for ex-
ample when all actual authors are listed in the full text
of the article but not in the metadata.

heuristic affected cases impact
1. coauthor 8934 50.7%
2. referenced 6590 37.4%
3. mentioned 13148 74.6%
4. collaboration 2973 16.9%
5. ment. & coll. 2116 12.0%

Table 4. Heuristics applied to similar pairs of
documents written by different authors

These heuristics can be too strong, however, and could
result in elimination of true positives. The pairs flagged by
either heuristic 1 or 5 are discarded as false positives, but
those flagged only by any combination of 2,3,4 are retained
in a secondary set of results. The primary list contains only
those pairs with strong evidence of plagiarism, and the sec-
ondary contains mainly false positives, but some cases of
interest.

The impact of each heuristic is shown in Table 4. The
second column lists the number of affected cases and the
third shows the percentage of the affected cases in our set
of pairs of overlapping documents with non-overlapping au-
thorship (17621 pairs).

3.3. Results

3.3.1. Common k-grams

We found the document corpus to contain 429,258 com-
mon7-grams: consecutive sequences of 7 words shared by
at least 4 documents written by different authors. Table 5
shows the ten most frequently occurringk-grams, those that
appeared in the largest numbers of documents. The num-
bers in this table count the appearances of thesek-grams as
(winnowed) fingerprints, and therefore can underestimate
the true total numbers of appearances. These common7-
grams are instantly recognizable to people familiar with re-
search literature in the subject area, and typically fall into
classes such as: describing the structure of the article; de-
scribing equations, figures, tables; parts of common de-
scriptive research phrases; acknowledgment text; or insti-
tutional affiliations.

3.3.2. Duplicate detection results

We extracted 38,580 pairs of documents, at least one of
which had level of originality with respect to the other at
mostα = 0.2. After eliminating documents reported sev-
eral times — this happens when there are many copies of the
same work — 30,316 unique duplicates were left. This sug-
gests that documents containing significant self-plagiarism
and subsumed text constitute as much as 10% of the arXiv



7-gram Documents Authors All occurrences
this work was supported in part by 12966 2085 13161
can be expressed in terms of the 6541 2460 7379
work was supported in part by the 4612 1015 4760
first term on the right hand side 3337 1524 4000
it is easy to see that is 2974 1452 3605
operated by the association of universities for 2900 396 3372
department of physics and astronomy university of 2880 539 3018
the paper is organized as follows in 2764 1202 2766
there is one to one correspondence between 2418 1316 2967
term on the right hand side of 2404 1194 2846

Table 5. Most popular 7-grams
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Figure 6. Reported duplicates sorted by level
of originality.

corpus. Most of these redundant texts are apparently inten-
tional, but this analysis also uncovered 64 identical dupli-
cates. Many of those appear to have resulted from some
form of submitter error, for example someone trying to sub-
mit two different articles, with different metadata, but acci-
dentally submitting the same full text.

Figure 6 shows how the level of originality grows on the
first 50000 pairs, ordered by the level of originality of the
lower originality document in each pair. The smoothly in-
creasing function suggests that there is no way to choose a
natural threshold, separating duplicates from arguably dif-
ferent documents. Theα = 0.2 threshold was chosen here
based on nominal intuition, but does not appear to result in
false positives. There may nonetheless exist articles which
would be considered duplicates, despite the higher level of
originality, which we fail to detect.

3.3.3. Plagiarism detection results

Applying the heuristics of Section 3.2 to screen for false
positives or “mild” plagiarism left 677 pairs of documents
with at least four sentences sharing uncommon7-grams.
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Figure 7. First 100 cases of plagiarism sorted
by size of overlap.

Detailed manual analysis of the first 20 pairs from this list
revealed that 16 of them constitute clear cases of plagia-
rism. The 4 false positives resulted from i) two articles by
the same author with two non-standard transliterations of
his name, ii) two proceedings of different workshops shar-
ing an article written by the same author, iii) two articles
quoting the same text from Einstein, and iv) two articles
with significant overlap in references which had not been
automatically separable from the actual document texts.

Of the first 16 true positives, at least 3 appeared to be se-
rious plagiarism, in which an article was essentially a copy
of another written by others, albeit with many small text
modifications. Many of the others were cases of articles and
theses with an introductory or related work section appro-
priated from other sources, without even referencing them.

Figure 7 shows the size of overlap (number of sentences
sharing uncommon7-grams) in the top 100 of the 677
flagged cases. Although there are relatively few cases with
large chunks of text plagiarized, the number of cases be-
comes large as the size of the overlap decreases. The last
535 of the 677 cases came from 79 cases sharing 6 similar
sentences, 138 sharing 5, and 318 sharing 4.
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Figure 8. Subgraph of the overlaps graph.
Two major plagiarists.

The 677 flagged pairs contain 1086 unique articles.
Some of those appearing in multiple pairs are cases of a doc-
ument plagiarizing from more than one source, and some
from a source plagiarized multiple times: plagiarists often
copy from many sources, and some sources, such as lecture
notes, are attractive to many plagiarists.

There were an additional 7371 cases in the secondary
list, removed from the primary list by the heuristics of Sec-
tion 3.2. These are mainly false positives, but some exam-
ples of unethical behavior also appear. In the top 20 pairs,
three were cases in which tens of pages were copied into
a thesis without any modifications, although in these cases
the sources were at least acknowledged in the text. (Proper
usage, however, would require the entirety of the offending
text to be placed in direct quotes.)

The secondary list contains 10,072 unique documents
and the two lists together contain 10,763 unique documents.

3.3.4. Visualization

To identify interesting cases of plagiarism, it is useful to
employ a graphical representation of the lists of document
pairs. Many plagiarized articles contain text from differ-
ent sources, and therefore appear in many entries of these
lists. If the list is large, it is difficult to estimate the extent
of plagiarism in a single article. To overcome this prob-
lem we have visualized the results as a graph of overlaps:
each node is a document, edges connect overlapping docu-
ments, labels on edges show the number of shared similar
sentences. Black edges correspond to the primary list of re-
sults (most probably plagiarism), grey edges correspond to
the overlaps reported in the secondary list (“mild” plagia-
rism, if any at all). We have masked the ids of actual arXiv
documents with single-letter labels: A, B, C,. . . correspond
to sources; Z, Y, X, W correspond to documents containing
copied text. Which document in a pair contains original text
and which contains its copy was decided manually based on
submission dates and contents of papers.

Figure 8 shows a subgraph corresponding to two partic-
ularly egregious cases of plagiarism. X is a PhD thesis, two
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Figure 9. Subgraph of the overlaps graph. A
new case of real plagiarism.

thirds of which is copied from a variety of sources. Some
sources are acknowledged, but most are not. Y is a journal
article reviewing some area of physics. Several pieces of
it are copied verbatim from other articles. It is an amusing
coincidence that X and Y are connected: X copied in turn
from Y.

Another node, A, has several adjacent edges for an op-
posite reason: A corresponds to lecture notes, and several
people found it useful for their work. Apart from X which
contains many pages stolen from A, another thesis, Z, shows
a case of “mini-plagiarism”: a small chunk of 7 sentences
is copied from A.

The overlap graph was not really necessary to discover X
and Y: they had copied sufficiently many pages, even from
single sources, that they had appeared in the top cases in the
list of pairwise overlaps. Figure 9, on the other hand, shows
a less obvious case of plagiarism that is easily visualized in
the graphical representation. Node W here corresponds to
an article comparing different methods, and descriptions of
the methods are copied from other articles. Each description
is short, so the separate cases in the list of pairwise over-
laps might not appear to be significant. Combined together,
however, they indicate that a large part of the article’s text
is copied.

4. Related work

There has been much prior work on plagiarism detec-
tion tools. Most previous work was either intended for and
tested on small sets of documents, often less than 100, or
was designed and used for different types of text, such as
programming assignments. There has been less work on
scalable systems tuned for large text document collections.

Schleimer, Wilkerson, and Aiken [11] invented the win-
nowing algorithm, a variation of which we use here. It pro-
vides scalability and good efficiency, but since it was de-
veloped for Moss — a tool for checking programming as-
signments — it needed to be adapted for use on research
articles. A significant number of additional pre- and post-



processing heuristics were required for application to the
arXiv document collection.

Similarly, Broder [2] used document fingerprints, but
chose the smallestk-gram hashes from the entire document,
not from smaller windows. This permits detection of overall
similarity between documents for duplicate detection, but
not smaller overlaps between documents.

Brin et al. [1] developed COPS in 1994, a system de-
signed to detect copying in research articles. COPS is based
on strict comparison of sentences and therefore misses
smaller modifications of text. It was also reported to have
problems with parsing boundaries of sentences correctly.
The approach is otherwise similar to ours: they developed a
set of heuristics, such as elimination of common sentences,
to focus on the most significant cases. Their small dataset of
just 90 articles, however, did not permit development of fur-
ther improvements required for processing large collections
such as arXiv.

Koppel and Schler [6] suggested an approach to author-
ship detection, based on gradually removing the most use-
ful features of a text and comparing with other documents
using only the remaining features. Although the task is re-
lated, this approach cannot be directly applied to plagiarism
detection because it assumes that documents are written by
the single author, while we are interested in small plagia-
rized chunks of text.

In CHECK [14], another plagiarism detection system for
text documents, Si et al. address the problem of complexity
of pairwise comparisons by introducing hierarchical com-
parison: first only a set of primary keywords are used to
compare documents, and more detailed comparison follows
only if there is similarity at this top level. Comparison of
each pair of files is still necessary, however, even if quite
efficient for some of them. But a primary assumption of the
authors, that “comparisons between documents addressing
different subjects are usually not necessary in copy detec-
tion” does not hold in practice: we have discovered a num-
ber of cases in which for example a physics article includes
description of a mathematical method copied from a math-
ematics article.

Collberg et al.’s system SPLAT [3] crawls the websites
of top CS departments and collects research articles as a
dataset aimed at detecting self-plagiarism. SPLAT works at
the sentence level, with the similarity of documents based
on the numbers of both similar and identical sentences, and
where similarity of sentences is determined from the size of
the intersection of their sets of words. While the approach
works well for detecting self-plagiarism, it requires pair-
wise comparisons of documents and is thus not scalable.

Ribler and Abrams [10] suggested a method to visualize
the degree of overlap of one document with a set of docu-
ments. All possiblek-grams (not a winnowed subset) are
collected from all documents, andk-grams of the document

in question are plotted at different levels depending on how
common it is. This method does not require pairwise doc-
ument comparison, but requires collecting and keeping all
k-grams, which would be an issue in large data sets. While
indicating the presence of copied text, it does not identify
its precise source.

The SCAM system [12] developed by Shivakumar and
Garcia-Molina relies on word level analysis. Tuned to dis-
cover small overlaps, it results in many false positives when
word distributions are similar but the texts are still different.
This can happen often in research articles on the same sub-
ject. In later experiments with SCAM [13], the results are
improved by eliminating the most common words, and by
shifting to use of (unwinnowed)k-grams.

The approach used in MatchDetectReveal system by
Monostori et al. [7] avoids using a hash-function due to
concern about hash collisions. Instead they use algorithms
for exact string comparison: each document is represented
by a suffix tree data structure, without any loss of infor-
mation, and is then compared with other documents repre-
sented as strings of texts. This approach provides the most
exact results, but requires time consuming pairwise com-
parison. The authors suggest dealing with this problem by
running comparisons in parallel on different cluster nodes.

In recent work, David and Pinch [4] used a modified
version of our software to examine the extent and goals of
copying and plagiarism in user reviews on amazon.com.

5. Conclusion

From a set of 284,834 docs covering a time period of
over a decade, we found over 30,000 that might be consid-
ered duplicates, or excessive self-plagiarism: articles with
overlapping authorship whose largest connected copy-free
component was less than 20% of the total. We also identi-
fied over 500 cases of likely plagiarism from other authors,
and additionally over 1000 cases of likely mild plagiarism.
These constitute roughly 0.5% of the corpus, and an even
smaller percentage of authors, since many come from re-
peat offenders. Some of the problems are quite serious, and
many of the articles are published in conventional venues.
None of the plagiarizers, the victims, nor their publishers
have yet been notified, hence they remain anonymized here.
We can, however, dispel some uncertainty by pointing out
that while prominent (highly cited) authors are frequently
victimized, they do not appear to reuse text from others.

The above results may tend to exaggerate the extent of
the problematic behavior, but this needs further study. Many
of the isolated copied sentences are of “background” nature,
containing neither particularly unique information content
nor stylistic virtue, and the “victims” might not even feel
victimized. Some cases may reflect demographic and ed-
ucational differences in an international author pool, with



some careless reuse by non-native English writers who fear
garbling content by modifying it. A next step underway is
a private interface that displays the pairs of documents side
by side, with overlapping text highlighted, and the ability
to solicit confidential feedback from authors of both docu-
ments regarding the significance of the overlap.

We can also envision a module for real-time screening of
new submissions. The calculation of fingerprints for an in-
coming document is computationally efficient, and the win-
nowed fingerprint hashes for the existing corpus fit in a cou-
ple gigabytes of memory, so the database lookups are also
efficient. A flagged submission might receive the instant re-
sponse “Overlap detected with article X by (same|different)
authors, do you really wish to submit this?”, with the ef-
fect of modifying the long-term behavior of authors. This
would also assess how much better the honor system per-
forms once the probability of detection is known to be high.

6. Acknowledgements

We thank Patrick Ng for his contributions to the data
cleaning code. We also thank the Cornell Theory Center
for usage of their equipment to run some of the experi-
ments in this paper. This research was funded by NSF
grants IIS-0636259, IIS-0541507, and by the KD-D Initia-
tive. Any opinions, findings, conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the sponsors.

References

[1] S. Brin, J. Davis, and H. Garcia-Molina. Copy Detection
Mechanisms for Digital Documents. InProceedings of the
ACM SIGMOD Annual Conference, May 1995.

[2] A. Z. Broder. On the resemblance and containment of doc-
uments. InCompression and Complexity of Sequences (SE-
QUENCES’97), pages 21–29, 1997.

[3] C. Collberg, S. Kobourov, J. Louie, and T. Slattery. SPlaT:
A System for Self-Plagiarism Detection. InProceedings
of IADIS International Conference WWW/INTERNET 2003,
November 2003.

[4] S. David and T. Pinch. Six degrees of reputation: The use
and abuse of online review and recommendation systems.
First Monday, 11(3), 2006.

[5] P. Ginsparg. First steps towards electronic research commu-
nication.Computers in Physics, 8(4):390–396, 1994.

[6] M. Koppel and J. Schler. Authorship Verification as a One-
Class Classification Problem. InProceedings of 21st Inter-
national Conference on Machine Learning, pages 489–495,
July 2004.

[7] K. Monostori, A. Zaslavsky, and H. Schmidt. MatchDe-
tectReveal: Finding Overlapping and Similar Digital Doc-
uments. InInformation Resources Management Associa-
tion International Conference (IRMA2000), pages 955–957,
May 2000.

[8] G. Ovtcharov, R. Dorsch, and M. Kruk. PDFTO-
HTML v0.36: A utility which converts PDF file into
HTML and XML formats. Based on Xpdf 2.02 by Derek
B. Noonburg. http://pdftohtml.sourceforge.net/ [Accessed 4
July 2006].

[9] M. O. Rabin. Fingerprinting by random polynomials. Tech-
nical report, Center for Research in Computing Technology,
Harvard University, 1981.

[10] R. L. Ribler and M. Abrams. Using visualization to detect
plagiarism in computer science classes. InProceedings of
IEEE Symposium. on Information Visualization, pages 173–
178, October 2000.

[11] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing:
Local Algorithms for Document Fingerprinting. InPro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, pages 76–85, June 2003.

[12] N. Shivakumar and H. Garcia-Molina. SCAM: A Copy De-
tection Mechanism for Digital Documents. InProceedings
of 2nd International Conference in Theory and Practice of
Digital Libraries (DL’95), June 1995.

[13] N. Shivakumar and H. Garcia-Molina. Building a Scalable
and Accurate Copy Detection Mechanism. InProceedings
of 1st ACM International Conference on Digital Libraries
(DL’96), March 1996.

[14] A. Si, H. V. Leong, and R. W. Lau. CHECK: A Docu-
ment Plagiarism Detection System. InProceedings of ACM
Symposium for Applied Computing, pages 70–77, February
1997.

[15] S. Warner. The arXiv: Fourteen Years of Open Access
Scholarly Communication. In M. Halbert, editor,Free Cul-
ture and the Digital Library Symposium Proceedings, pages
56–68, October 2005.


