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Abstract

Many 0/1 datasets have a very large number of vari-

ables; on the other hand, they are sparse and the depen-

dency structure of the variables is simpler than the number

of variables would suggest. Defining the effective dimen-

sionality of such a dataset is a nontrivial problem. We con-

sider the problem of defining a robust measure of dimension

for 0/1 datasets, and show that the basic idea of fractal di-

mension can be adapted for binary data. However, as such

the fractal dimension is difficult to interpret. Hence we in-

troduce the concept of normalized fractal dimension. For

a dataset D, its normalized fractal dimension is the num-

ber of columns in a dataset D′ with independent columns

and having the same (unnormalized) fractal dimension as

D. The normalized fractal dimension measures the degree

of dependency structure of the data. We study the properties

of the normalized fractal dimension and discuss its compu-

tation. We give empirical results on the normalized fractal

dimension, comparing it against baseline measures such as

PCA. We also study the relationship of the dimension of the

whole dataset and the dimensions of subgroups formed by

clustering. The results indicate interesting differences be-

tween and within datasets.

1 Introduction

Many 0/1-datasets occurring in data mining are on one

hand complex, as they have a very high number of columns.

On the other hand, the datasets can be simple, as they might

be very sparse or have lots of structure. In this paper we

consider the problem of defining a notion of effective di-

mension for a binary dataset. We study ways of defining

a concept of dimension that would somehow capture the

complexity or simplicity of the dataset. Such a notion of ef-

fective dimension can be used as a general score describing

the complexity or simplicity of the dataset; Some potential

applications of the intrinsic dimensionality of a dataset in-

clude model selection problems in data analysis; it can also

be used in speeding up certain computations (see, e.g., [9]).

For continuous data there are many ways of defining the

dimension of a dataset. One approach is to use decompo-

sition methods such as SVD, PCA, or NMF (nonnegative

matrix factorization) [14, 19] and to count how many com-

ponents are needed to express, say, 90% of the variance in

the data. This number of components can be viewed as the

number of effective dimensions in the data.

In the aforementioned methods it is assumed that the

dataset is embedded into a higher-dimensional space by

some (smooth) mapping. The other main approach is to use

a different concept, that of fractal dimensions [3, 9, 15, 23].

Very roughly, the concept of fractal dimension is based on

the idea of counting the number of observations in a ball of

radius r and looking what the rate of growth of the number

is as a function of r. If the number grows as rk, then the

dimensionality of the data can be considered to be k. Note

that this approach does not provide any mapping that can be

used for the dimension reduction. Such mapping does not

even make sense because the dimension can be non-integral.

Applying these approaches to binary data is not easy.

Many of the component methods, such as PCA and SVD

are strongly based on the assumption that the data are real-

valued. NMF looks for a matrix decomposition with non-

negative entries and hence is somewhat better suited for bi-

nary data. However, the factor matrices may have contin-

uous values, which makes them difficult to interpret. The

component techniques aimed at discrete data (such as multi-

nomial PCA [6] or latent Dirichlet allocation (LDA) [4]) are

possible alternatives, but interpreting the results is hard.

In this paper we explore the notion of effective dimen-

sion for binary datasets by using the basic ideas from frac-

tal dimensions. Essentially, we consider the distribution of

the pairwise distances between random points in the dataset.

Denoting by Z this random variable, we study the ratio of

logP (Z < r) and log r, for different values of the r, and fit

a straight line to this; the slope of the line is the correlation

dimension of the dataset.

Interpreting the correlation dimension of discrete data

turns out to be quite difficult too, because the values of the

correlation dimension tend to very small. To relieve this

problem, we normalize them by considering what would be
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the number of variables in a dataset with the same corre-

lation dimension but with independent columns. This nor-

malized correlation dimension is our main concept.

We study the behavior of the correlation dimension and

the normalized correlation dimension, both theoretically

and empirically. We give approximations for correlation

dimension, in the case of independent variables, showing

that it decreases when the data becomes more sparse. We

also give theoretical evidence indicating that positive cor-

relations between the variables lead to smaller correlation

dimensions.

Our empirical results for generated data show that the

normalized correlation dimension of a dataset with K in-

dependent variables is very close to K , irrespective of the

sparsity of the attributes. We demonstrate that adding posi-

tive correlation decreases the dimension. For real datasets,

we show that different datasets have quite different normal-

ized correlation dimensions, and that the ratio of the number

of variables to the normalized correlation dimension varies

a lot. This indicates that the amount of structure in the

datasets is highly variable. We also compare the normal-

ized correlation dimension against the number of PCA com-

ponents needed to explain 90% of the variance in the data,

showing interesting differences among the datasets.

The rest of this paper is organized as follows. In

Section 2 we define the correlation dimension for binary

datasets. we analyze the correlation dimension in Section 3.

The correlation dimension produces too small values and

hence in Section 4 we provide means for scaling the dimen-

sion. In Section 5 we represent our tests with real world

datasets. In Section 6 we review the related literature, and

Section 7 is a short conclusion.

2 Correlation Dimension

There are several possible definitions of the fractal di-

mension of a subset of the Euclidean space; see, e.g., [3, 23]

for a survey; the Rényi dimensions [23] form a fairly general

family. The standard definitions of the fractal dimension are

not directly applicable in the discrete case, but they can be

modified to fit in.

The basic idea in the fractal dimensions is to study the

distance between two random data points.

We focus on the correlation dimension. Consider a 0/1

dataset D with K variables. Denote byZD the random vari-

able whose value is the L1 distance between two randomly

chosen points from D; thus 0 ≤ ZD ≤ K . Informally, the

correlation dimension is the slope of the line fitted in the

log-log plot of (r,P (ZD < r)).
The more formal definition is more complex because the

non-continuity of P (ZD < r) causes misbehavior in our

later definitions. To remedy these problems we first define

function f : N → R to be f (r) = P (ZD < r). We extend

this function to real numbers by linear interpolation. Thus

f(r) is a continuous function being equal to P (ZD < r)
when r is an integer.

Let 0 ≤ r1 < r2 ≤ K . Then the different radii r and the

function f for a given dataset D determine the point set

I (D, r1, r2, N) = {(log r, log f(r)) |

r = r1 +
i (r2 − r1)

N
, i = 0 . . .N

}

.

We usually omit the parameter N for the sake of brevity.

For example, assume that P (ZD ≤ r) ∝ rd for some

d, that is, the number of pairs of points within distance d
grows as rd. Then I(D, r1, r2) is a straight line and the

correlation dimension is equal to d.

Definition 1. The correlation dimension cdR (D; r1, r2) for

a binary dataset D and radii r1 and r2 is the slope of the

least-squares linear approximation I (Z, r1, r2).
Assume that we are given α1 and α2 such that 0 ≤ α1 <

α2 ≤ 1. We define cdA (D;α1, α2) to be cdR (D; r1, r2),
where the radii ri are set to be max

(

f−1 (αi) , 1
)

. The

reason for truncating ri is to avoid some misbehavior oc-

curring with extremely sparse datasets.

That is, I (D, r1, r2) is the set of points containing the

logarithm of the radius r and the logarithm of the frac-

tion of pairs of points from D that have L1 distance less

than or equal to r. The correlation dimension is the slope

of the line that fits these points best. The difference be-

tween cdR (D; r1, r2) and cdA (D;α1, α2) is that cdR is

defined by using the absolute bounds r1 and r2 for the ra-

dius r, whereas cdA uses the parameters α1 and α2 to spec-

ify the sizes of the tail of the distribution. For instance,

cdA (D; 1/4, 3/4) is the correlation dimension obtained by

first computing the values r1 and r2 such that one quarter of

the pairs of points have distance below r1, and one quarter

of the pairs have distance above r2. The dimension is then

obtained by computing N + 1 points (log r, log f(r)) with

r1 ≤ r ≤ r2, and by fitting a line to these points, in the

least-squares sense.

How can we compute the correlation dimension of a bi-

nary dataset D? The probability P (ZD < r) can be com-

puted
1

|D|2
∑

x∈D

∑

y∈D

I(|x− y| < r),

where I(|x− y| < r) is the indicator function having value

1 if |x− y| < r, and value 0 otherwise. Computing the

values P (ZD < r) for all r can thus be done trivially in

time O(N2K), where N is the number of points in D and

K is the number of variables. A sparse matrix represen-

tation yields to a running time of O(NM), where M is

the total number of 1’s in the data: If point i has mi 1’s,
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then
∑

imi = M , and computing the all pairwise distances

takes time

N
∑

i=1

N
∑

j=1

(mi +mj) = 2NM.

If the number of points in a dataset is so large that

quadratic computation time in the number of points is too

slow, we can take a random subset Ds from D and estimate

the probability P (Z < r) by

1

|D| |Ds|
∑

x∈D

∑

y∈Ds

I(|x− y| < r)

or by
1

|Ds|2
∑

x∈Ds

∑

y∈Ds

I(|x− y| < r).

3 Properties of binary correlation dimension

In this section we analyze the properties of the corre-

lation dimension cdR (D; r1, r2) for binary datasets. We

show the following results under some simplifying assump-

tions. First, we prove that if the original data has in-

dependent columns, then the correlation dimension grows

as the probabilities of the individual variables get closer

to 0.5. Second, we show that in the independent case

cdA (D;α, 1− α) grows as
√
K , where K is the number

of attributes (columns) in the dataset. Third, we prove that

if the variables are not independent, then the correlation di-

mension is smaller than for a dataset with the same margins

but independent variables.

The analysis is not easy, and we need to make some

simplifying assumptions. One complication is caused by

the fact that the definition of cdR (D; r1, r2) involves com-

puting the slope of a set of points. However, note that

I (D, r1, r2, 1) contains only two points, and hence we have

cdR (D; r1, r2, 1) =
log f(r2)− log f(r1)

log r2 − log r1
.

Similarly, in the case of cdA (D;α1, α2, 1) we have r1
and r2 such that αi = f(ri), and hence

cdA (D; r1, r2, 1) =
logα2 − logα1

log r2 − log r1
.

Throughout this section we will assume that the parameter

N in I (D, r1, r2, N) is equal to 1.

Proposition 2. Assume that the dataset D has K indepen-

dent variables, and that the probability of the variable i be-

ing 1 is pi for each i, and let qi = 2pi(1 − pi). Assuming

that K is large enough, we have

cdA (D;α, 1− α) ≈ C(α)

∑

i qi
√
∑

i qi(1− qi)
,

where C(α) is a constant depending only on α. In par-

ticular, if all probabilities pi are equal to p, then for q =
2p(1− p) we have

cdA (D;α, 1− α) = C(α)

√

Kq

1− q
.

The proposition indicates that the correlation dimension

is maximized for variables as close to 0.5 as possible.

Corollary 3. Assume the dataset D has independent

columns. The correlation dimension cdA (D;α, 1− α) is

maximized if the variables have frequency 0.5.

The proposition also tells that for a dataset with indepen-

dent identically distributed columns, the dimension grows

as a square root of the number of columns.

Proof of Proposition 2. Recall that

cdA (D;α, 1 − α) =
log(1 − α)− logα

log r2 − log r1
,

where r1 and r2 are such that α = f(r1) and 1−α = f(r2).
The numerator is log((1 − α)/α). Assume that K is large

enough that we can estimate f(r) by P (ZD < r).
We next study the denominator log r2 − log r1. We have

to analyze the distribution of the random variable ZD, the

L1 distance between two randomly chosen points from D.

For simplicity, we denote ZD by Z in the sequel. Let Zi

be the indicator variable having value 1 if two randomly

chosen elements from D disagree in variable i; then Z =
∑K

i=1 Zi.

Denote by qi = E [Zi] the probability that two ran-

domly chosen points from D differ in coordinate i. If pi
is the probability that variable i in D has value 1, then

qi = 2pi(1− pi), and it is easy to see that qi ≤ 1/2.

As Z =
∑K

i=1 Zi, the variable Z has a binomial dis-

tribution. For simplicity we use the normal approxima-

tion: Z is distributed as N(µ, σ), where µ =
∑

i qi and

σ2 =
∑

i qi(1 − qi). If K is large enough, this approxima-

tion is accurate.

By the symmetry of the normal distribution there is a

constant c such that r1 = µ−cσ and r2 = µ+cσ. Actually,

c is the inverse of the cumulative distribution function of

the normal distribution with parameters 0 and 1, i.e., c =
Φ−1(α) =

√
2 erf−1(2α− 1) The denominator is

log r2 − log r1 = log
µ+ cσ

µ− cσ
= log

∞
∑

n=0

(

2cσ

µ

)n

.

Dropping all but the two first terms and using the series for

logarithm we obtain that the numerate is

log r2 − log r1 ≈ 2cσ

µ
.
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By setting

C(α) =
log((1 − α)/α)

2c
=

log((1− α)/α)

2
√
2 erf−1(2α− 1)

we have the desired result.

If α = 1/4, then the constant C(α) in Proposition 2 is

about 0.815.

The correlation dimension has an interesting connection

to the average distance in randomly picked point pairs.

Proposition 4. Assume that the dataset D has K indepen-

dent variables, and that the probability of variable i being

1 is pi. Let qi =
∑

i 2pi(1 − pi). Let µ =
∑

i qi be the

average distance of two randomly picked points.

Assume that we are given two constants c1 and c2 such

that 0 ≤ c1 < c2 ≤ 1. Then we can approximate the

correlation dimension as

cdR (D; c1µ, c2µ) ≈ C(c1, c2)µ,

where C(c1, c2) depends only of c1 and c2.

Note that Proposition 4 gives an approximation for the

quantity cdR, while Proposition 2 is about cdA; this, how-

ever, is a superficial difference. More important is the fact

that in Proposition 4 we look at the case where the bounds

r1 and r2 are on the same side of the mean, whereas the

bounds corresponding to α and 1 − α from Proposition 2

are on the two sides of the mean. This implies that Propo-

sition 4 gives a stronger bound: the dimension grows as a

function of the mean µ, not as a function of µ/σ.

Example 5. Let D be a dataset with K dimensions, and

consider the set D′ obtained by copying each variable in D
to N new variables. Then

P (ZD < r) = P (ZD′ < Nr) ,

and hence

cdR (D; r1, r2) = cdR (D′;Nr1, Nr2) .

Given a dataset D with K columns, we denote by

ind (D) a random binary variable having K independent

components such that the probability of ith component be-

ing 1 is equal to the probability of ith column of D being

1. Alternatively, ind (D) can be considered as a dataset ob-

tained by permuting each column of D independently. We

conjecture that the correlation dimension of D is always

smaller than the correlation dimension of ind (D), given

that the original variables are all positively correlated.

Conjecture 6. Assume the marginal probability of all orig-

inal variables are less than 0.5, and that all pairs of original

variables are positively correlated. Then

cdA (D;α, 1− α) ≤ cdA (ind (D);α, 1− α) ,

i.e., the correlation dimension of the original data is not

larger than the correlation dimension of the data with each

column permuted randomly.

Support for this conjecture is provided by the fact that the

variance Var [ZD] of the variable ZD can be shown to be no

more than the variance Var
[

Zind(D)

]

; this does not, how-

ever, suffice for the proof. The intuition behind the above

conjecture is similar to what one observes in other types of

definitions of dimension: if we randomly permute each col-

umn of a dataset, we expect to see the rank of the matrix

to grow, and also explain an increase the number of PCA

components needed to explain, say, 90% of the variance.

In the experimental section we show the empirical evidence

for Conjecture 6.

4 Normalized correlation dimension

The definition of correlation dimension (Definition 1) is

based on the definition of correlation dimension for con-

tinuous data. We have argued that the definition has some

simple intuitive properties: for a dataset with independent

variables the dimension is smaller if the variables are sparse,

and the dimension shrinks if we add structure to the data by

making variables positively correlated.

However, the scale of the correlation dimension is not

very intuitive: the dimension of a dataset with K indepen-

dent variables is not K , although this would be the most nat-

ural value. The correlation dimension gives much smaller

values and hence we need some kind of normalization.

We showed Section 3 that under some conditions inde-

pendent variables maximize the correlation dimension. In-

formally, we define the normalized correlation dimension

of a dataset D to be the number of variables that a dataset

with independent variables must have in order to have the

same correlation dimension as D does.

More formally, let ind (H, p) be a dataset with H inde-

pendent variables, each of which is equal to 1 with proba-

bility p. From Proposition 1 we have an explicit formula for

cdA (ind (H, p);α, 1− α): setting q = 2p(1− p) we have

cdA (ind (H, p);α, 1− α) ≈ C(α)

√

Hq

1− q
.

If the dataset would have the same marginal frequency, say

s, for each variable, the normalized correlation dimension
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of a dataset D could be defined to be the number H , such

that

cdA (D;α, 1− α) and cdA (ind (H, s);α, 1− α)

are as close to each other as possible.

The problem with this way of normalizing the dimension

is that it takes as the point of comparison a dataset where

all the variables have the same marginal frequency. This is

very far from being true in real data. Thus we modify the

definition slightly.

We first find a value s such that

cdA (ind (K, s);α, 1− α) = cdA (ind (D);α, 1− α) ,

i.e., a summary of the marginal frequencies of the columns

of D: s is the frequency that variables of an independent

dataset should have in order that it has the same correlation

dimension as D has when the columns of D have been ran-

domized. We define the normalized correlation dimension,

denoted by ncdA (D;α, 1− α), to be an integer H such

that

cdA (ind (H, s);α, 1− α) = cdA (D;α, 1− α) .

Proposition 2 implies the following statement.

Proposition 7. Given a dataset D with K columns, the di-

mension ncdA (D;α, 1 − α) can be approximated by

ncdA (D;α, 1− α) ≈
(

cdA (D;α, 1− α)

cdA (ind (D);α, 1− α)

)2

K.

For examples, see the beginning of the next section.

5 Experimental results

In this section we describe our experimental results. We

first describe some results on synthetic data, and then dis-

cuss real datasets and compare the normalized correlation

dimension against PCA.

Unless otherwise mentioned, the dimension used in our

experiments was cdA (D;α1, α2, N) such that α1 = 1/4,

α1 = 3/4, and N = 50.

5.1 Synthetic datasets

In this section we provide empirical evidence to support

the analysis in Sections 3 and 4. In the first experiment we

generated 100 datasets with K independent columns and

random margins pi. For each dataset, the margins pi were

randomly picked by first picking pmax uniformly at random

from [0, 1]. Then, the probability pi was picked uniformly

50 100 150 200

50

100

150

200

nc
d A

(D
; 1

/4
, 3

/4
)

Number of independent variables

Figure 1. Normalized correlation dimension
for data having K independent dimensions

for K ∈ {50, 100, 150, 200}.

from [0, pmax]; this method results in datasets with differ-

ent densities. The box plot in Figure 1 shows that the nor-

malized dimension is very close to K , the number of vari-

ables in the data. This shows that for independent data the

normalized correlation dimension is equal to the number of

variables, and that the sparsity of the data does not influence

the results.

Next we tested Proposition 2 with synthetic data. We

generated 100 datasets having independent columns and

random margins, generated as described above. Figure 2

shows the correlation dimension as a function of µ/σ,

where µ = E [ZD] and σ2 = Var [ZD]. The figure shows

the behavior predicted by Proposition 2: the normalized

fractal dimension is a linear function of µ/σ, and the slope

is very close to C(1/4) = 0.815.

2 4 6 8 10

2

4

6

8

cd
A
(D

; 1
/4

, 3
/4

)

µ/σ

50 Dim
100 Dim
200 Dim

Figure 2. Correlation dimension as a func

tion of µ/σ for data with independent
columns (see Proposition 2). The yaxis is

cdA (D; 1/4, 3/4) and the xaxis is µ/σ, where
µ = E [ZD] and σ2 = Var [ZD]. The slope of the

line is about C(1/4) = 0.815.

The theoretical section analyzes only the simplest form

of the correlation dimension, that is, the case where N = 1.

We tested how the dimension behaves for different N . In

order to do that, we used generated datasets from the previ-
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ous experiments and plotted cdA (D; 1/4, 3/4, 50) against

cdA (D; 1/4, 3/4, 1). We see from Figure 3 that the corre-

lation dimension has little dependency of N .

2 4 6 8

2

4

6

8

cd
A
(D; 1/4, 3/4, 1)

cd
A
(D

; 1
/4

, 3
/4

, 5
0)

 

 

50 Dim
100 Dim
200 Dim

Figure 3. Correlation dimension
cdA (D; 1/4, 3/4, 50) as a function of

cdA (D; 1/4, 3/4, 1).

Next we verified the quality of the approximation of

Proposition 4. We used the same data from the previous ex-

periment. Figure 4 shows the correlation dimension against

µ = E [ZD], the average distance of two random points.

From the figure we see that Proposition 4 is partly sup-

ported: the correlation dimension behaves as a linear func-

tion of µ. However, the slope becomes more gentle as the

number of columns increases.

20 40 60

5

10

15

20

25

µ

cd
R

(D
; 0

.1
µ,

 µ
)

 

 

50 Dim
100 Dim
200 Dim

Figure 4. Correlation dimension as a function

of µ for data with independent columns (see
Proposition 4). The yaxis is cdA (D; 1/4, 3/4)
and the xaxis is µ = E [ZD], the average dis
tance between two random points.

Our fifth experiment tested how positive correlation af-

fects the correlation dimension. Conjecture 6 predicts that

positive correlation should decrease the correlation dimen-

sion. We tested this conjecture by creating random datasets

D such that column i depends on column i − 1. Let Xi be

variable number i in the generated dataset. We generated

data by a Markov process between the variables:

P (Xi = 1 | Xi−1 = 0) = P (Xi = 0 | Xi−1 = 1) = ti

and

P (X1 = 1) = P (X1 = 0) = 0.5,

where X = [X1, . . . , Xk] is the random element of D.

The reversal probabilities ti were randomly picked as

follows: For each dataset we picked uniformly a random

number tmax from the interval [0, 1]. We picked ti uniformly

from the interval [0, tmax]. Note that if the reversal proba-

bilities were 0.5, then the dataset would have independent

columns. Denoting Z = ZD, we have

P (Zi = 1 | Zi−1 = 0) = P (Zi = 0 | Zi−1 = 1)

= 2ti (1− ti) .

A rough measure of the amount of correlation in the data

is t =
∑

2ti (1− ti). Figure 5 shows the correlation di-

mension as a function of the quantity t. We see that the

datasets with strong correlations tend to have small dimen-

sions, as the theory predicts.

20 40 60

2

4

6

8

t

cd
A
(D

; 1
/4

, 3
/4

)

 

 

50 Dim.
100 Dim
200 Dim

Figure 5. Correlation dimension as a func
tion of t, a rough measure of correlation in a

dataset. The yaxis is cdA (D; 1/4, 3/4) and the

xaxis is the quantity t =
∑

2ti (1− ti), where
ti is the reversal probability between columns

i and i− 1.

Next, we go back to the first experiment to see whether

the normalized correlation dimension depends on the spar-

sity of data. Note that sparse datasets have small µ =
E [ZD]. Figure 6 shows the normalized correlation dimen-

sion as a function of µ for the datasets used in Figure 1.

We see that the normalized dimension does not depend of

sparsity, as expected.

Finally, we tested Proposition 7 by plotting the normal-

ized dimension as a function of
KcdA(D)2

cdA(ind(D))2
. We used the

generated datasets from the previous experiment and from

our fifth experiment, as well. Results given in Figure 7 re-

veal that the approximation is good for the used datasets.

5.2 Realworld datasets

In this section we investigate how our dimensions behave

with 9 real-world datasets: Accidents, Courses, Kosarak,
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Figure 6. Normalized correlation dimension
as a function of µ, the average distance be

tween two random points. The xaxis is
µ = E [ZD] and the yaxis is ncdA (D; 1/4, 3/4).
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A
(D)2/cd
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Figure 7. Normalized correlation dimension

as a function of KcdA (D)
2
/cdA (ind (D))

2
.

The top figure contains datasets with inde

pendent columns and in the bottom figure
adjacent columns of the datasets depend on

each other.

Paleo, POS, Retail, WebView-1, WebView-2 and 20 News-

groups. The basic information about the datasets is summa-

rized in Table 1.

Table 1. The basic statistics of the datasets.

The column K corresponds to the the number
of columns and the column N to the number

of rows. The last column is the density of 1’s

in percentages.

Data K N # of 1s Dens.

Accidents 469 340 183 11 500 870 7.21
Courses 5 021 2 405 64 743 0.54
Kosarak 41 271 990 002 8 019 015 0.02

Paleo 139 501 3 537 5.08
POS 1 657 515 597 3 367 020 0.39

Retail 16 470 88 162 908 576 0.06
WebView-1 497 59 602 149 639 0.51
WebView-2 3 340 77 512 358 278 0.14

The datasets are as follows. 20 Newsgroups1 is a collec-

tion of approximately 20 000 newsgroup documents across

20 different newsgroups [18]. Data in Accidents2 were ob-

tained from the Belgian “Analysis Form for Traffic Acci-

dents” forms that is filled out by a police officer for each

traffic accident that occurs with injured or deadly wounded

casualties on a public road in Belgium. In total, 340 183
traffic accident records are included in the dataset [12].

The datasets POS3, WebView-14 and WebView-25 were con-

tributed by Blue Martini Software as the KDD Cup 2000

data [16]. POS contains several years worth of point-of-

sale data from a large electronics retailer. WebView-1 and

WebView-2 contain several months worth of click-stream

data from two e-commerce web sites. Kosarak6 consists

of (anonymized) click-stream data of a Hungarian on-line

news portal. Retail7 is a retail market basket data supplied

by an anonymous Belgian retail supermarket store [5]. The

dataset Paleo8 contains information of species fossils found

in specific paleontological sites in Europe [10]. Courses is

a student–course dataset of courses completed by the Com-

puter Science students of the University of Helsinki.

We began our experiments by computing the correlation

dimension cdA (D; 1/4, 3/4) for each dataset. In order to

do that, we needed to estimate the probabilitiesP (ZD < r).
Since some of the datasets had a very large amount of rows

(see Table 1), we estimate the probabilities P (ZD < r) by

1

|D| |Ds|
∑

x∈D

∑

y∈Ds

I (|x− y| < r) , (1)

where I (|x− y| < r) is 1 if |x− y| < r, and 0 otherwise.

The set Ds was a random subset of D containing 10 000
points. Since Paleo and Courses have small number of

rows, no sampling is used and Ds was set to D for these

datasets. The evaluation times are discussed in the end of

the section.

We also computed cdA (ind (D); 1/4, 3/4), the corre-

lation dimension for the datasets with the same column

margins but independent columns. Our goal was to use

these numbers to provide empirical evidence for the the-

oretical sections. To calculate the dimensions we need to

estimate the probabilities P
(

Zind(D) < r
)

. The estimation

was done by generating 10 000 points from the distribution

of Zind(D).

The dimensions cdA (D) and cdA (ind (D)) are given in

Table 2. We see that the dimensions are very small. The

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://fimi.cs.helsinki.fi/data/accidents.dat.gz
3http://www.ecn.purdue.edu/KDDCUP/data/BMS-POS.dat.gz
4http://www.ecn.purdue.edu/KDDCUP/data/BMS-WebView-1.dat.gz
5http://www.ecn.purdue.edu/KDDCUP/data/BMS-WebView-2.dat.gz
6http://fimi.cs.helsinki.fi/data/kosarak.dat.gz
7http://fimi.cs.helsinki.fi/data/retail.dat.gz
8NOW public release 030717 available from [10].
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reason is that the datasets are quite sparse. We also observe

that cdA (ind (D)) is always larger than cdA (D), which

suggests that there is at least some structure in the datasets.

In addition, we used cdA (ind (D)) to verify Proposi-

tion 2. This was done by computing µ/σ, where µ =
E
[

Zind(D)

]

and σ2 = Var
[

Zind(D)

]

. We also computed

Ĉ(1/4) = cdA (ind (D); 1/4, 3/4)
σ

µ
.

Note that Proposition 2 suggests that Ĉ(1/4) ≈ 0.8. Table 2

shows us that this is indeed the case.

Table 2. Correlation dimensions of the

datasets. In the second column, D′ = ind (D).
The third column is the fraction µ/σ, where

µ = E [ZD′ ] and σ2 = Var [ZD′ ]. The fourth col

umn is an estimate of the coefficient C(1/4)
obtained by dividing cdA (D′) with µ/σ.

Data cdA (D) cdA (D′) µ/σ Ĉ (1/4)

Accidents 3.79 5.50 6.67 0.83
Courses 1.56 5.94 7.29 0.82
Kosarak 0.96 3.21 3.96 0.81

Paleo 1.21 3.20 3.87 0.83
POS 1.14 2.98 3.62 0.82

Retail 1.33 3.73 4.49 0.83
WebView-1 1.27 1.93 2.26 0.86
WebView-2 1.01 2.58 3.05 0.85

We continued our experiments by calculating the nor-

malized correlation dimension ncdA (D; 1/4, 3/4). For this

we computed the probability p such that

cdA (ind (K, p);α, 1 − α) = cdA (ind (D);α, 1− α)

using binary search. Also, the normalized dimension itself

was computed by using binary search. The normalized di-

mensions are given in Table 3.

Recall that the normalized correlation dimension of data

D indicates how many variables a dataset D′ with indepen-

dent columns should have so that the distributional behavior

of the pairwise distances between points would be about the

same in D and D′. Thus we note, for example, that for the

Paleo data the dimensionality is about 15, a fraction of 11%
of the number of columns in the original data.

The last column in Table 3 is the estimate predicted by

Proposition 7. Unlike with the synthetic datasets (see Sec-

tion 5.1), the estimate is poor in some cases. A probable

reason is that the examined datasets are extremely sparse,

and hence the techniques used to obtain Proposition 7 are

no longer accurate. This is supported by the observation

that Accident has the best estimate and the largest density.

Table 3. Normalized correlation dimensions

of the datasets.

Data K ncdA
ncdA(D)

K

KcdA(D)2

cdA(ind(D))2

Accidents 469 220 0.47 222.91
Courses 5 021 304 0.06 344.24
Kosarak 41 271 2 378 0.06 3 684.78

Paleo 139 15 0.11 19.90
POS 1 657 181 0.11 242.91

Retail 16 470 1 791 0.11 2 107.52
WebView-1 497 190 0.38 214.33
WebView-2 3 340 359 0.11 512.97

We also tested the accuracy of Proposition 7 with 20

Newsgroups dataset9. In Figure 8 we plotted the normalized

correlation dimension as a function of the estimate. We see

that the approximation overestimates the dimension but the

accuracy is better than in Table 3.
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Figure 8. Normalized correlation dimension

as a function of KcdA (D)
2
/cdA (ind (D))

2
.

Each point represents one newsgroup in 20

Newsgroups dataset.

We will compare the normalized correlation dimensions

against PCA in the next subsection.

Next we studied the running times of the computation of

the correlation dimension. Computing the distance of two

binary vectors can be done in O(M) time, where M is the

number of 1’s in the two vectors. Hence, estimating the

probabilities using Equation 1 can be done in O(|Ds|L),
where L is the number of 1’s in D. We need also to fit the

slope to get the actual dimension, but the time needed for

this operation is negligible compared to the time needed for

estimating the probabilities. Note that in our setup, the size

of Ds was fixed to 10 000 (except for Paleo and Courses).

Hence, the running time is proportional to the number of 1’s

in a dataset. The running times are given in Table 4.

9The messages were converted into bag-of-words representations and

200 most informative variables were kept.
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Table 4. The running times of the correlation
dimension in seconds for various datasets.

Time/# of 1’s: time in milliseconds divided by

the number of 1’s in the data.

Data # of 1’s Time Time/# of 1’s

Accidents 11 500 870 973 0.085
Courses 64 743 9 0.141

Paleo 3 537 0.1 0.039
Kosarak 8 019 015 793 0.099

POS 3 367 020 447 0.133
Retail 908 576 103 0.113

WebView-1 149 639 17 0.114
WebView-2 358 278 40 0.112

5.3 Correlation Dimension vs. other methods

There are different approaches for measuring the struc-

ture of a dataset. In this section we study how the normal-

ized dimension compares with other methods. Namely, we

compared the normalized fractal dimension against the PCA

approach and the average correlation coefficient.

We performed PCA to our datasets and computed the

percentage of the variance explained by the M first PCA

variables, where M = ncdA (D). Additionally, we cal-

culated how many PCA components are needed to explain

90% of the variance. The results are given in Table 5.

We observe that ncdA (D) PCA components explain rela-

tively large portion of the variance for Accidents, POS, and

WebView-1, but explains less for Paleo and WebView-2.

Table 5. Normalized correlation dimensions

versus PCA for various datasets. The sec

ond column is the percentage of variance ex
plained by ncdA (D) variables and the third

column is the number of variables needed to
explain 90% of the variance.

Data ncdA (D) PCA (%) 90% PCA Dim.

Accidents 220 99.83 81
Paleo 15 48.50 79
POS 181 84.48 246

WebView-1 190 87.89 208
WebView-2 359 59.73 1 394

We next tested how robust the normalized correlation di-

mension is with respect to the selection of variables.

Let us first explain the setup of our study. Since espe-

cially PCA is time-consuming, we created subsets of the

data by taking randomly 1000 transactions10. Let πM (D)
be the dataset obtained from D by selecting M columns

at random. We used different numbers of variables M for

different datasets. For each dataset D we took 50 random

subsets πM (D) and use them for our analysis.

We first performed PCA to each πM (D) and computed

the number of variables explaining 90% of the variance. We

also computed the average correlation coefficient for each

dataset. To be more precise, let cij be the correlation coef-

ficient between columns i and j in πM (D). We define the

average correlation coefficient to be

corr (D,M) =
1

M(M − 1)

∑

i<j

|cij | .

Since structure in a dataset is seen as a small normalized

fractal dimension, we expect that ncdA (πN (D)) will cor-

relate positively with the PCA approach and negatively with

the average correlation coefficient corr (πN (D)). The re-

sults are given in Figure 9.

We see from Figure 9 that there is a large degree of de-

pendency between these methods: The normalized dimen-

sion correlates positively with PCA dimension and nega-

tively with the average correlation, as expected. The most

interesting behavior is observed in the Paleo dataset. We see

that whereas PCA dimension says that Paleo should have

relatively high dimension, the normalized dimension sug-

gests a very small value. The average correlation agrees

with the normalized dimension. Also, we know that Paleo

has a very strong structure (by looking at the data) so this

suggests that the PCA approach overestimates the intrinsic

dimension for Paleo. This behavior can perhaps be partly

explained also by considering the margins of the datasets.

The margins of Paleo are relatively homogeneous whereas

the margins of the rest datasets are skewed.

We computed the correlation coefficients between the

normalized correlation dimension and the number of PCA

components needed. We also computed the correlation for

the normalized correlation dimension and the average cor-

relations. These correlations coefficients were computed for

each dataset D separately (recall that there were 50 random

subsets for each D). Also, we calculated the correlations

for the case when all the datasets were considered simul-

taneously. In addition, since Paleo behaved like an outlier,

we computed the coefficients for the case where all datasets

except Paleo were present. The results are given in Table 6

and they support the conclusions we draw from Figure 9.

5.4 Correlation dimension for subgroups gener
ated by clustering

In this section we study how the correlation dimension

of a dataset is related to the dimensions of its subsets. We

10except for Paleo which had only 501 rows.
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Figure 9. Normalized correlation dimension

for random subsets of the data. The yaxis
is the normalized correlation dimension (di

vided by the number of columns). In the up
per panel the xaxis is number of PCA compo

nents needed to explain 90% of the variance,

divided by the number of columns. In the
lower panel the xaxis is the average corre

lation. A single point represent one random

subset of the particular dataset. The num
ber of variables M for the subset is shown in

parentheses in the legend.

consider the case where the subsets are generated by clus-

tering. The connection of the dimensions of the clusters and

the dataset itself is not trivial.

We first studied the subject empirically using the Paleo

dataset. There is a cluster structure in Paleo, and hence we

used k-means to find 3 clusters and computed the dimen-

sions for these clusters. The dimensions are given in Ta-

ble 7.

We also conducted experiments with 20 Newsgroups.

First, we calculated the normalized correlation dimension

for each separate newsgroup. Then we created mixed

datasets from 4 newsgroups, one of religious, one about

computers, one recreational, and one science newsgroup.

There were 240 such datasets in total. We computed the

dimensions for each mix and compare them to the average

Table 6. Correlations between normalized di
mension against PCA and average correla

tion. Each row represents 50 random sub

sets of the particular dataset (see Figure 9).
The second last row contains the correlations

obtained by using the subsets from all the

datasets simultaneously. The last row is sim
ilar to the second last row except Paleo dataset

was omitted.

ncdA (D; 1/4, 3/4) vs.

Data PCA (90%) corr (D)

Accident 0.44 −0.23
Courses −0.51 −0.01
Kosarak −0.21 −0.02

Paleo 0.10 −0.31
POS 0.27 −0.54

Retail −0.48 −0.18
WebView-1 0.06 −0.33
WebView-2 0.70 −0.49

Total 0.09 −0.44
Total without Paleo 0.60 0.13

Table 7. Correlation dimension and normal

ized correlation dimension for Paleo data and
its clusters. The clusters were obtained using

the kmeans algorithm.

Data # of rows cdA (D) ncdA (D)

Cluster 1 51 2.56 37
Cluster 2 378 1.60 50
Cluster 3 72 2.53 46
Average – 2.23 44.33

Whole data 501 1.21 15

dimensions of the newsgroups contained in the mixing. The

scatterplot of the dimensions is given in Figure 10.

From the results we see that for our datasets the clusters

tend to have higher dimensions than the whole dataset. We

also see from Figure 10 that there is a positive correlation

between the dimension of a cluster and the dimension of the

whole dataset.

6 Related work

There has been a significant amount of work in defin-

ing the concept of dimensionality in datasets. Even though

most of the methods can be adapted to the case of binary
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data, they are not specifically tailored for it. For instance,

many methods assume real-valued numbers and they com-

pute vectors/components that have negative or continuous

values that are difficult to interpret. Such methods in-

clude, PCA, SVD, and non-negative matrix factorization

(NMF) [14, 19]. Other methods such as multinomial PCA

(mPCA) [6], and latent Dirichlet allocation (LDA) [4] as-

sume specific probabilistic models of generating the data

and the task is to discover latent components in the data

rather than reasoning about the intrinsic dimensionality of

the data. Methods for exact and approximate decomposi-

tions of binary matrices into binary matrices in Boolean

semiring have also been proposed [11, 21, 22], but simi-

larly to mPCA and LDA, they focus on finding components

instead of the intrinsic dimensionality.

The concept of fractal dimension has found many ap-

plications in the database and data mining communities,

such as, making nearest neighbor computations more effi-

cient [24], speeding up feature selection methods [29], out-

lier detection [27], and performing clustering tasks based on

the local dimensionality of the data points [13].

Many different notions of complexity of binary datasets

have been proposed and used in various contexts, for in-

stance VC-dimension [2], discrepancy [7], Kolmogorov

complexity [20] and entropy-based concepts [8, 25]. In

some of the above cases, such as Kolmogorov complexity

and entropy methods, there is no direct interpretation of the

measures as a notion of dimensionality of the data as they

are measures of compressibility. VC-dimension measures

the dimensionality of discrete data, but it is rather conserva-

tive as a binary dataset having VC-dimension d means that

there are d columns such that the projection of the dataset

on those coordinates results all possible bit vectors of length

d. Hence, VC-dimension does not make any difference be-

tween datasets {0, 1}d and {x ∈ {0, 1}K :
∑K

i=1 xi ≤ d},

although there is a great difference when d << K . Further-

more, computing the VC-dimension of a given dataset is a

difficult problem [26].

Related is also the work on random projections and di-

mensionality reductions, such as in [1], but this line of re-

search has different goals than ours. Finally, methods such

as multidimensional scaling (MDS) [17] and Isomap [28]

focus on embedding the data (not necessarily binary) in

low-dimensional spaces with small distortion, mainly for

visualization purposes.

7 Concluding remarks

We have given a definition of the effective dimension of

a binary dataset. The definition is based on ideas from frac-

tal dimensions: We studied how the distribution of the dis-

tances between two random data points from the dataset be-

haves, and fit a slope to the log-log set of points. We defined

the notion of normalized correlation dimension. It measures

the number of dimensions of the appropriate density that a

dataset with independent variables should have to have the

same correlation dimension as the original dataset.

We studied the behavior of correlation dimension and

normalized correlation dimension, both theoretically and

empirically. Under certain simplifying assumptions, we

were able to prove approximations for correlation dimen-

sion, and we verified these results using synthetic data.

Our empirical results for real data show that different

datasets have clearly very different normalized correlation

dimensions. In general, the normalized correlation dimen-

sion correlates with the number of PCA components that

are needed to explain 90% of the variance in the data, but

there are also intriguing differences.

Traditionally, dimension means the degrees of freedom

in the dataset. One can consider a dataset embedded into a

high-dimensional space by some (smooth) embedding map.

Traditional methods such as PCA try to negate this embed-

ding. Fractal dimensions, however, are based on different

notion, the behavior of the volume of data as a function of

neighborhoods. This means that the methods in this paper

do not provide a mapping to a lower-dimensional space, and

hence traditional applications, such as feature reduction, are

not (directly) possible. However, our study shows that frac-

tal dimensions have promising properties and we believe

that these dimensions are important as such.

A fundamental difference between the normalized cor-

relation dimension and PCA is the following. For a dataset

with independent columns PCA has no effect and selects the

columns that have the highest variance until some selected

percentage of the variance is explained. Thus, the number

of PCA components needed depends on the margins of the

columns. On the other hand, the normalized correlation di-
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mension is always equal to the number of variables for data

with independent columns.

Obviously, several open problems remain. It would be

interesting to have more general results about the theoretical

behavior of the normalized correlation dimension. In the

empirical side the study of the correlation dimensions of

the data and its subsets seems to be a promising direction.
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