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Abstract

We describe a part-based object-recognition framework,
specialized to mining complex 3D objects from detailed 3D
images. Objects are modeled as a collection of parts to-
gether with a pairwise potential function. An efficient infer-
ence algorithm – based on belief propagation (BP) – finds
the optimal layout of parts, given some input image. We
introduce AggBP, a message aggregation scheme for BP,
in which groups of messages are approximated as a sin-
gle message. For objects consisting of N parts, we reduce
CPU time and memory requirements from O(N2) to O(N ).
We apply AggBP on synthetic data as well as a real-world
task identifying protein fragments in three-dimensional im-
ages. These experiments show that our improvements result
in minimal loss in accuracy in significantly less time.

1 Introduction

Several recent publications have explored the use of
part-based models for recognizing generic objects in im-
ages [3, 13, 6]. These models represent physical objects
as a graph: a collection of vertices (“parts”) connected by
edges enforcing pairwise constraints. An inference algo-
rithm finds the most probable location of each part in the
model given the image. Most previous work has only con-
sidered simple objects with relatively few parts. We present
a part-based object recognition framework capable of iden-
tifying objects with thousands of parts.

Rich, three-dimensional image data arises in many appli-
cations; for example, biological imaging techniques, such
as fMRI or confocal microscopy, produce high-quality 3D
images of tissues. X-ray crystallography yields a 3D elec-
tron density map, a three-dimensional image of a macro-
molecule. These data sources contain objects comprised of
many parts and connected with a complex topology. Even

rich two-dimensional data, such as detailed satellite im-
agery, may contain complex objects that cannot be inter-
preted using current methods.

To effectively mine complex 3D objects, our algorithm
uses an efficient message-passing inference algorithm based
on belief propagation [11]. Unfortunately, for large, highly
connected graphs, standard BP may not offer enough effi-
ciency. In fully connected graphs, with thousands of ver-
tices, approximations to BP’s messages may be necessary
to compute marginal distributions in a reasonable amount
of time. We describe AggBP (for aggregate BP), which ap-
proximates groups of BP messages with a single message.
For fully connected graphs, AggBP reduces BP’s running
time (in a graph with N nodes) from O(N2) to O(N ).

Finally, we test our approximation techniques using both
real-world and synthetic data. Our first testbed is on a real-
world computer-vision task, identifying protein fragments
in three-dimensional images. Interpreting these protein im-
ages is a very important step in determining protein struc-
tures using x-ray crystallography. AggBP lets us scale inter-
pretation to large proteins in large 3D images. Our second
testbed uses a synthetic object generator to test AggBP’s
performance finding objects with various part topologies.

2 Part-Based Object Recognition

Following others [3], our framework describes some
class of objects using a pairwise undirected graphical
model. Pairwise undirected graphical models define the
joint probability distribution of a set of variables on a graph,
as the product of potential functions associated with each
edge and each vertex in the graph.

2.1 Undirected graphical models

Given a graph G = (V, E), we associate each vertex
s with random variable xs ∈ x, conditioned on observa-



Figure 1. A sample graphical model for recog-
nizing a person in an image. Thicker lines in-
dicate skeletal edges, while thinner lines in-
dicate occupancy edges.

tion variables y. For object recognition, these xs’s describe
the 3D position (and possibly orientation) of part s. Each
vertex has a corresponding observation potential ψs(xs, y),
and each edge is associated with an structural potential
ψst(xs, xt). Then, we represent the probability of some lay-
out of parts given the image as

p(x|y) ∝
∏

(s,t)∈E

ψst(xs, xt)×
∏
s∈V

ψs(xs|y) (1)

Usually we are concerned with finding the labels xs ∈ x
that maximize this joint probability.

To describe an object in this part-based framework, one
provides three pieces of data: a part graph, each node’s
observation potential, and each edge’s structural potential.
Given a part graph, these potential functions are typically
learned from previously solved problem instances; this is
described in more detail in a working paper [2] of ours.

In our object-recognition framework, the part graph is
fully connected. The reason is best illustrated by exam-
ple. Figure 1 shows a model used to recognize people in
images. A sparsely connected skeleton (the thick edges)
connects highly correlated nodes; the corresponding skele-
tal potential may take any form. However, any other part
pair – for example, the two arms – have labels that are not
completely (conditionally) independent: the parts may not
occupy the same 3D space. Occupancy edges connecting
all other pairs of parts ensure that no two parts in the model
occupy the same 3D space; the corresponding occupancy
potential is typically a step function that is only non-zero
when connected parts are sufficiently distant.

2.2 Belief propagation

Given an image and this graphical model, inference at-
tempts to find the most-probable location of each of the ob-
ject’s parts in the image. Because our object graph contains
loops, exact inference methods will not work. Instead, our
framework uses belief propagation (BP) [11], a message-
passing approximate inference algorithm. BP computes the
marginal probability over each xs (each part’s location) by

Algorithm 1: Belief propagation

input : Observational potentials ψs(xs|y) and
structural potentials ψst(xs, xy)

output: An approximation to the marginal
b̂s(xs|y) ≈

∑
x1

. . .
∑
xs−1

∑
xs+1

. . .
∑
xN

P (x|y)

while b̂’s have not converged do
foreach part s = 1 . . . N do

b̂s(xs|y)← ψs(xs|y)
foreach part t = 1 . . . N do

if t 6= s and b̂t has been updated then
mn

t→s(xs)←
∫

xt
ψst × b̂n

t

mn−1
s→t

dxt

end
b̂s(xs|y)← b̂s(xs|y)×mn

t→s(xs)
end

end
end

passing a series of local messages. Pseudocode appears in
Algorithm 1. At each iteration, a part in the model com-
putes the product of all incoming messages, then passes a
convolution of this product to its neighbors (for clarity, the
message’s dependence on y is usually dropped):

mn
t→s(xs) ∝

∫
xt

ψst(xs, xt)× ψt(xt|y)

×
∏

u∈Γ(t)\s

mn−1
u→t(xt) dxt (2)

This message can be thought of as indicating where node t
expects to find s, based on t’s belief. An approximation to
the marginal (or belief ) is given by the product of incoming
messages and observation potential ψs:

b̂ns (xs|y) ∝ ψs(xs|y)×
∏

u∈Γ(t)

mn
u→t(xt) (3)

In tree-structured graphs, BP is exact. In graphs with
cycles, there are no guarantees to BP’s correctness; how-
ever, BP often produces good estimates in practice [10].
Our working paper [2] discusses related work in this area.

3 AggBP: Scaling Belief Propagation

When modeling objects with hundreds of parts, the num-
ber of BP messages quickly becomes overwhelming. To
make BP tractable in these types of graphs, we propose
AggBP, which approximates some subset of outgoing mes-
sages at a single node with a single message, replacing
many message computations with relatively few. In the
undirected graphs used for 3D object recognition, pairs of
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Figure 2. AggBP approximates (a) a group of
messages with (b) a single message.

nodes along skeleton edges are highly correlated; messages
along these edges have high information content. How-
ever, in these graphs, the majority of edges are occupancy
edges, which enforce the constraint that two parts cannot
occupy the same 3D space. The potential functions associ-
ated with these edges are weak (that is, nearly uniform) and
messages along these edges carry little information. Along
these edges, then, we can make some approximations.

Formally, BP’s message update, given by Equation 3,
can be alternately written:

mn
t→s(xs)← α1

∫
xt

ψst(xs, xt)×
b̂nt (xt|y)
mn−1

s→t(xt)
dxt (4)

The denominator in the above, mn−1
s→t(xt) is a term to

avoid double-counting, making the method exact in tree-
structured graphs. In loopy graphs, such double-counting
is unavoidable. Along occupancy edges this denominator
carries little information, and AggBP drops it:

mn
t→s(xs)← α2

∫
xt

ψst(xs, xt)× b̂nt (xt|y) dxt (5)

The key advantage of doing this is that, if the structural po-
tential ψst is identical along all occupancy edges, then all
occupancy messages outgoing from a single node are identi-
cal. We refer to these approximate messages as mt→∗(x∗),
illustrated for a chain in Figure 2.

This approximation reduces the number of occupancy
messages computed from O(N2) to O(N ). However, up-
dating the belief for some part still requires multiplying all
the incoming occupancy messages; the running time is still
O(N2). To get around this, we send these aggregate mes-
sages to a central accumulator:

ACC(x∗)←
N∏

t=1

mt→∗(x∗) (6)

This accumulator is then used to update each node’s belief
in a constant number of operations, reducing AggBP’s run-

Algorithm 2: Aggregate belief propagation.

initialize accumulator ACC, messages m to 1
while b̂’s have not converged do

foreach part s = 1 . . . N do
ACC ← ACC/mn−1

s→∗
b̂s(xs|y)← ψs ×ACC
foreach part t = 1 . . . N do

if s is skeleton neighbor of t then
if b̂t has been updated then

mn
t→s(xs)←

∫
xt
ψst × b̂n

t

mn−1
s→t

dxt

end
b̂s(xs|y)← b̂s(xs|y)× (mn

t→s/m
n
t→∗)

end
end
// compute agg. msg., send to accumulator
mn

s→∗(xs)←
∫

xt
ψ∗s × b̂ns (xs|y)

ACC ← ACC ×mn
s→∗

end
end

time to O(N ). For a chain:

b̂1 ← ψ1 ×ACC ×
m2→1

m1→∗ ×m2→∗

b̂2 ← ψ2 ×ACC ×
m1→2 ×m3→2

m1→∗ ×m2→∗ ×m3→∗
...

b̂k ← ψk ×ACC ×
mk−1→k ×mk+1→k

mk−1→∗ ×mk→∗ ×mk+1→∗

Algorithm 2 gives a pseudocode overview of AggBP. The
key difference from Algorithm 1 is in the inner loop, “if
s is a skeleton neighbor of t.” In our object recognition
framework, the skeleton graph is sparsely connected, and
this loop is rarely entered.

Finally, when the occupancy edges all have different po-
tential functions, AggBP can still take advantage of this ap-
proximation, with additional approximation error. In this
case, AggBP computes the broadcast message from a part t
using the average potential function outgoing from t:

mn
t→∗(x∗)← α

∫
x∗

∑N
u=1 ψtu(xt, x∗)

N
× b̂nt (xt)dxt (7)

4 Experiments

In this section, we compare the standard belief propaga-
tion algorithm with AggBP, using both real-world and syn-
thetic datasets. The real-world task is based upon locating
protein fragments in 3D images., while our synthetic dataset



(a) (b) 

Figure 3. Given a protein’s amino-acid se-
quence and a density map, (a) interpretation
finds each atom’s position. (b) A backbone
trace finds a key atom in each amino acid.

allows us to explore recognizing objects with more complex
graph topologies.

4.1 Protein fragment identification

One application for object recognition arises from x-
ray crystallography. In determining the three-dimensional
structure of a protein, crystallography produces a three-
dimensional image of the protein, known as an electron den-
sity map. As illustrated in Figure 3, finding all the atoms (or
interpreting) this map [12] is the final time-consuming step
of x-ray crystallography. Alternatively, a backbone trace fo-
cuses instead on locating a key carbon atom – the alpha car-
bon, or Cα – contained in each amino acid. We use AggBP
to automatically determine a 3D backbone trace given an
electron density map and a protein sequence.

Details about this task, empirical results, and compar-
ison to other methods is found in previous work by this
paper’s authors [1, 2]. Here we briefly describe backbone
tracing using our object-recognition framework. We con-
struct a graph where each node s represents an amino-acid
in the protein. The label ws = {xs, qs} for each amino-acid
consists of seven terms: the 3D Cartesian coordinates xs of
the amino acid’s Cα, and four internal rotational parameters
qs. Probability distributions over Cartesian space are repre-
sented using a discretized probability density estimate.

Protein-specific structural and observation potential
functions are learned from previously solved structures [1].
Each node’s potential function ψs(ws, y) is computed by
matching a learned set of small protein-fragment templates
to the electron density map. Edge potential functions are of
two basic types: Skeletal edges run along the linear amino-
acid chain, while occupancy edges connect all non-adjacent
pairs of amino acids, ensuring they don’t occupy the same
3D space.

4.1.1 Results

Five density maps were provided by crystallographer
George Phillips, at UW-Madison. We convoluted the maps
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Figure 4. A comparison of memory and CPU
time usage between our approximate-BP and
standard BP.

with a Gaussian to simulate a poor-quality (3Å) density
map, on which other automated interpretation methods pro-
duce poor results [1]. For each map, we were provided
the amino-acid sequence and the “true” crystallographer-
determined solution.

Using these maps, we compare standard BP inference
(ExactBP) to AggBP accuracy at tracing the protein back-
bone. ExactBP was unable to scale to the entire protein, so
we considered locating fragments of 15 to 65 amino acids.
Normalized CPU time per iteration and memory usage of
the two techniques are illustrated in Figure 4; normaliza-
tion sets exact-BP’s time and memory usage locating a 15
amino-acid fragment to 1.0 (in an average-sized protein,
about 200 MB and 120 sec, respectively).

Results from this experiment appear in Figure 5. We plot
two different metrics – RMS deviation and log-likelihood of
the maximum-marginal interpretation – as a function of it-
eration. The solutions found by these two methods differ,
however, in terms of RMS error versus the true trace, both
produce equally accurate traces. More interestingly, Fig-
ure 5b shows the log-likelihood of the maximum-marginal
interpretation. Under this metric, AggBP produces a bet-
ter solution. Figure 5c shows the RMS error as a function
of protein-fragment length. Not surprisingly, both methods
seem to perform slightly worse when searching for longer
fragments; still, the predicted structure is fairly accurate –
considering the quality of the maps – with an RMS error of
under 4Å.

Finally, a scatterplot of log-likelihoods, where each of
the 90 fragments is represented as a point, is illustrated in
Figure 6. In this figure, points below the diagonal corre-
spond to fragments on which our AggBP produced a more-
likely interpretation. For almost every fragment, AggBP
produces a solution with a greater log-likelihood than does
standard BP. This difference is statistically significant; a
two-tailed, paired t test gives a p value of 0.014.
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Figure 5. AggBP and ExactBP’s error at each iteration, using (a) RMS deviation and (b) log-likelihood
of the interpretation. Additionally, (c) shows RMS error as a function of protein fragment size.
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Figure 6. A scatterplot showing – for each of
the 90 target fragments – the log likelihood of
AggBP’s trace versus ExactBP’s trace.

4.2 Synthetic object recognition

The previous section illustrated performance under a
limited topology: the skeletal structure is a chain, and all oc-
cupancy potentials were identical. In this section, we con-
struct a synthetic object generator that explores AggBP’s
performance identifying objects with varying topologies.

4.2.1 Object generator

We have developed a synthetic object generator to better un-
derstand how well AggBP works over the range of possible
tasks locating 3D objects composed of interconnected parts.
This generator lets us vary graph topology and individual
part parameters, as in Figure 7. The generator constructs ob-
jects with a predefined number of parts, in a tree-structured
skeleton. Given some branching factor, the skeleton is ran-
domly assembled from the parts. All part pairs not con-
nected in the skeleton are connected with occupancy edges.

Each part is given a radius and a softness, from which the
structural potentials are derived. Parts directly connected in
the skeleton have a distance exactly equal to the sum of their

vary radii

increase
branching factor

allow spatial 
overlap

Figure 7. An illustration of parameters vari-
able in our graph generator.

radii, while no other part pairs may be closer than the sum
of their radii. The softness parameter allows this occupancy
constraint to be violated with low probability.

Our testbed generator also artificially generates obser-
vation potentials ψobs, the prior probability distribution of
each part’s location in 3D space. This would normally be
generated by a pattern matching algorithm. Our object gen-
erator assumes we have a classifier with an area under the
precision-recall curve (AUPRC) of 0.3. Further discussion
of this generator appears in our working paper [2].

4.2.2 Results

Our generator varies three different model parameters:
• branching-factor: the average branching factor in the

skeleton graph (default = 2)
• softness: each part’s softness (default = 0)
• σ(radius): the standard deviation of radii (default = 0)

In every graph, the average part radius was fixed (at 1 grid
point), and each model was constructed of 100 parts.

We use our object recognition framework to search for
the optimal layout of parts, given some generated object and
observation potentials. As in the previous section, we com-
pare AggBP versus ExactBP. We assumed that part parame-
ters – radius and softness – are known (or are learned) by
the algorithm. We run until convergence, for a maximum of
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Figure 8. A comparison of ExactBP and AggBP on synthetic data. We report error as we vary (a)
skeleton branching factor, (b) part softness, and (c) radius standard deviation.

20 iterations, taking the highest-likelihood solution at any
iteration, and averaging over 20 random part graphs.

A comparison of the errors from ExactBP and AggBP’s
interpretations appears in Figure 8. Figure 8a shows both
methods are equally accurate under varying branching fac-
tors. Figure 8c shows that small to moderate variance in
object radii is handled well by AggBP, even though the ag-
gregation ignores these variations. The most interesting re-
sult, however, is that in Figure 8b, where the object softness
is varied. Here, for any non-zero softness, AggBP finds a
more accurate solution than standard BP.

It is unclear why AggBP should sometimes produce
more-accurate results than standard BP. AggBP ignores a
term that serves to avoid feedback – feedback unavoidable
in graphs with loops. It seems that in some cases, ignor-
ing this term produces a more-accurate approximation, per-
haps by dampening these feedback loops inherent in loopy
belief propagation. Even without the improved accuracy,
the computational savings makes AggBP’s approximation
an important technique for mining large images.

5 Conclusions

We describe a part-based, 3D object recognition frame-
work, well suited to mining detailed 3D image data. We in-
troduce AggBP, a message approximation and aggregation
scheme that makes BP tractable in large, highly connected
graphs. In the fully connected graphs used by our object-
recognition framework, we reduce the runtime and memory
requirements in anN -node graph from O(N2) to O(N ). Ex-
periments on a 3D biological vision task as well as synthetic
data show that AggBP produces solutions as good or better
then standard BP.
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