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Abstract

Recently, more and more applications represent data ob-
jects as sets of feature vectors or multi-instance objects. In
this paper, we propose COSMIC, a method for deriving con-
cept lattices from multi-instance data based on hierarchical
density-based clustering. The found concepts correspond to
groups or clusters of multi-instance objects having similar
instances in common. We demonstrate that COSMIC out-
performs compared methods with respect to efficiency and
cluster quality and is capable to extract interesting patterns
in multi-instance data sets.

1. Introduction

More and more data mining applications employ sets of

feature vectors or multi-instance (MI) objects to represent

a single data object. For example, a molecule can be de-

scribed by the set of all conformations or shapes it might

adopt, or a web site can be described by a set of webpages.

In general, an MI object is represented by a set of object

descriptions of one and the same type, e.g. color histograms

or text vectors. We will call the elements of an MI object in-
stances. In this paper, we propose COSMIC, a method for

deriving COnceptually Specified Multi-Instance Clusters.

The idea of COSMIC is to derive a so-called concept lattice

as known from formal concept analyzes [4] to describe the

rich relationships between sets of feature vectors. Based on

the concept lattice we can derive flat as well as hierarchical

clusterings.

In formal concept analysis, each object o can be de-

scribed by a set of nominal attributes Desc(o). A concept C
is defined by a set of objects and a set of attributes Desc(C)
if for each object o ∈ C, Desc(C) ⊆ Desc(o) holds. In

other words, a concept is the maximal set of objects that

can be described by Desc(C). Additionally, concepts can

be specialized and generalized to sub- or super concepts by

adding or dropping attributes which decreases or increases

the set of objects that are covered by the concept. There-

fore, the set of all concepts for a given set of objects and

attributes is organized in the so-called concept lattice.

To derive a concept lattice from a set of MI objects, each

object has to be described by a set of nominal attributes

drawn from the corresponding instances. Thus, we have to

find groups of instances having a similar meaning, i.e. we

cluster the instances. Each cluster of instances does now

provide a so-called concept attribute (CA) and an MI ob-

ject can be described by the set of CAs its instances be-

long to. The clustering algorithm used for deriving CAs

should only group objects into a cluster that are really simi-

lar and should not require to specify the number of clusters

to be found in the data set. Thus, partitioning clustering

algorithms are not suitable for the given task. Therefore,

COSMIC relies on hierarchical density-based clustering [1]

which is capable to find an arbitrary number of clusters and

distinguishes noise instances. Furthermore, the found clus-

ter hierarchy describes the relationship between the found

CAs. After clustering the instances, COSMIC extracts the

CAs that are useful for describing formal concepts from the

resulting reachability plot and lists all concepts that can be

found in the given data set. The resulting concept lattice can

now be used to derive flat and hierarchical clusterings of the

given MI data set.

The rest of the paper is organized as follows. In Section

2, we will survey previous work in data mining with MI ob-

jects. Section 3 provides the necessary formal framework

for our approach to clustering MI objects. Afterwards, Sec-

tion 4 describes the complete COSMIC algorithm for gener-

ating a concept lattice. Section 5 displays the results of our

experimental evaluation, and Section 6 concludes the paper

with a summary.

2. Related Work

Data mining in multi-instance objects has so far been

predominantly studied w.r.t. classification (for a survey cf.

[12]). For clustering, MI objects were handled by complex

distance measures [3, 9] or kernel functions [5]. Employing

these similarity measures, it is possible to employ distance-
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based data mining approaches like k-NN classification, k-

medoid Clustering [6] or OPTICS [1], or kernel methods

[5]. Clustering data objects based on a concept lattice was

previously used for other data types such as text data [10].

However, to the best of our knowledge none of these meth-

ods deals with MI objects and the question of how to derive

CAs from a set of MI objects. In [7], a method to derive MI

clusters based on EM clustering was proposed. The method

clusters the instances using ordinary EM clustering and af-

terwards uses a multinomial process to group MI objects.

Though this method displayed promising results, finding a

meaningful clustering strongly depends on the input param-

eters. COSMIC employs a modification of the hierarchical

density-based clustering algorithm OPTICS [1] to generate

a reachability plot and to derive a cluster hierarchy.

3. Preliminaries

Let F be a feature space. Then, i ∈ F is called an in-
stance in F . A multi-instance (MI) object o is given by

an arbitrary sized set of instances o = {i1, . . . , ik} where

ij ∈ F . To denote the unique MI object an instance i be-

longs to, we will write MiObj(i). For example, a web site is

an MI object and its instances are the web pages within this

site.

To derive a concept lattice, we need to transform MI ob-

jects into objects that are described by a set of nominal at-

tributes. Thus, we employ clustering to group several in-

stances to so-called concept attributes (CAs). A CA c de-

scribes a set of similar instances Ic ⊂ F . For any i ∈ Ic,

we will denote ConAttr(i) = c.

Each CA c can now be considered as a nominal attribute

describing each MI object containing at least one element

of Ic. As mentioned above, we consider the CAs to be or-

ganized in a hierarchy. Thus, a CA might generalize several

more specialized CAs. Consider for example the CA “prod-

uct descriptions”. Subconcept Attributes (SubCAs) might

be “descriptions of hardware products” and “descriptions

of software products”. Let s, c be two concept attributes

in F where Is ⊆ F and Ic ⊆ F are the sets of members

of s and c, respectively. Then, s is called subconcept at-
tribute (SubCA) of c, denoted by SubCAc(s) iff Is ⊂ Ic.

Additionally, s is called direct subconcept attribute of c iff

�r : SubCAc(r) ∧ SubCAr(s).
To define a hierarchy, we start with one root CA call

containing all instances in F . Then, all CAs except for

the root CA are a SubCA of at least one other CA. Let

H = {c1, ..., cn} be a set of concept attributes in F . H
is called a concept hierarchy if F = call ∈ H .

Having derived a mapping of instances to CAs, we now

will formalize the resulting concept lattice as introduced in

formal concept analysis. Therefore, we will first of all in-

troduce a formal context (similar to [4]). Let D be a set of

objects and let H be a CA hierarchy. A formal hierarchical

context is now given by the triple (D, H, I) where I is a

binary relation between D and H: I ⊆ (D × H), and the

following condition holds:

∀ci, cj ∈ H,∀o ∈ D :
SubCAcj

(ci) ∧ (o, ci) ∈ I ⇒ (o, cj) ∈ I.
Thus, the context defines which CAs are contained in

which object. Furthermore, the condition states that if an

object is described by a CA ci, then it must also be described

by all of the ancestors of ci in the CA hierarchy.

To describe the output of COSMIC, we first of all need to

specify a single concept. Let (D, H, I) be a formal hierar-

chical context. An object set C ⊆ D together with a CA set

Desc(C) ⊆ H is called concept if the following conditions

hold:

(1) C = {o ∈ D|∀a ∈ Desc(C) : (o, a) ∈ I}
(2) Desc(C) = {a ∈ H|∀o ∈ C : (o, a) ∈ I}

We will call Desc(C) the concept description of C.

In other words, a concept is the maximal subset of the

objects which contains all elements of the concept descrip-

tion Desc(C). For example, a concept of websites could be

described by the concept attributes “employment”, “finan-

cial reports”, and “software development”. Each website

belonging to the concept must contain at least one web page

belonging to each of these CAs. At the same time there is

no website in the given context being described by these

concept attributes that is not part of the concept. Since a

concept that is not general enough is not useful for exam-

ining patterns in a data set, we will call the cardinality of

a concept C the support of C, denoted by support(C). For

building a concept lattice, it is therefore often sufficient to

only consider concepts that have a support above a certain

minimum threshold MinSup.

We will now specify subconcepts. Let C1, C2 be two

concepts in D w.r.t. to the context (D, H, I). Then C1 is

called subconcept of C2, denoted by SubConceptC2
(C1) iff

C1 ⊂ C2 ⇔ Desc(C1) ⊃ Desc(C2)
For example, a concept of web sites which is described

by the CAs “faculty pages” and “lectures” is a generaliza-

tion of the subconcept being described by “faculty pages”,

“lectures” and the additional CA “computer science lec-

tures”.

Finally, we can specify the concept lattice for a given

context. Let (D, H, I) be a formal context. The set of

all concepts that can be found in the context (D, H, I) to-

gether with the subconcept relation between these concepts

is called concept lattice.

The resulting concept lattice now describes an overlap-

ping hierarchical grouping of an MI data set that can be

explored directly. Additionally, we can use the concept lat-

tice to derive a flat disjunctive clustering by assigning each

MI object to the most specialized concept it belongs to. The
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goal of COSMIC is to derive a concept lattice over a data

set of MI objects containing all concepts having at least a

support of MinSup. The CAs this lattice is based on are

organized in a hierarchy and it is guaranteed that each CA

in this hierarchy is employed to describe at least one clus-

ter. While processing, COSMIC avoids considering useless

candidates for CAs whenever possible. Hence, COSMIC is

rather efficient.

4. COSMIC

The input of COSMIC is a set of MI objects over an ar-

bitrary feature space F . Additionally, we need a distance

measure dist : F × F → R+ for comparing the instances.

The result of COSMIC is a concept lattice which is defined

on the basis of a CA hierarchy. COSMIC proceeds in two

steps. The first step is based on the density-based notion

of clustering and, thus, needs the parameters which are spe-

cific for this approach, i.e. µ and ε. In the second step, we

only need to specify the minimum support of the concepts

called MinSup.

Deriving a Concept Hierarchy In the first step of COS-

MIC, the set of all instances I =
⋃

o∈D o is clustered with

the density-based clustering algorithm OPTICS [1]. How-

ever, to avoid CAs describing a single or only a small num-

ber of MI objects, we modified the definition of the core-

distance in order to find CAs which are dependent on at

least µ MI objects instead of µ arbitrary instances.

Definition 1 (Concept core-distance)
Let µ ∈ N, ε ∈ R+ and let D be a set of MI objects and
I =

⋃
o∈D o. The µ-nearest MI neighbors of an instance i

are the smallest set NMI
µ (i) ⊆ I that contains (at least) µ

instances for which the following conditions hold:

(1) ∀p ∈ NMI
µ (i),∀q ∈ D \ NMI

µ (i) :
dist(p, i) < dist(q, i)

(2) |{MiObj(x)|x ∈ NMI
µ (o)}| ≥ µ

Then, distµ(i) = max {dist(i, q) | q ∈ NMI
µ (i)}, and the

concept core-distance of instance i, denoted by
ConceptCoreDistεµ(i), is defined as follows:

ConceptCoreDistεµ(i) =
{

distµ(i) : distµ(i) ≤ ε
∞ : distµ(i) > ε

.

The resulting reachability plot implies a hierarchical

clustering of instances. However, not all of the clusters

might be useful for describing a concept and are thus suit-

able CAs. Therefore, COSMIC collects so-called hot spots

while generating the plot itself. The hot spots mark posi-

tions in the plot where a more general instance cluster can

hot spot 1

hot spot 2

A

Reach. plot and hot spots CA Hierarchy Concept Lattice

B C

D E

A

AA
B C AB AC

ABC

A

A

B C

D E

A
AB AC

ABC ACEACD

ABCEABCD

ABCDE

ACDE

Step 1

Step 2

Step 3

Figure 1. Example of derived CA hierarchy
and concept lattice.

be separated into more specialized clusters. The hot spots

are used in the next step to specialize already found CAs

and thus to derive new subconcepts. Technically, a hot spot

is a position in the reachability plot, where the reachability

distance is smaller on the right side and is smaller or equal

on the left side. Thus, a hot spot corresponds to a peak or

the rightmost position of a plateau in the reachability plot.

Two examples of hot spots are illustrated in Figure 1.

Deriving Attributes and Concepts The second step

of COSMIC generates all concepts that contain at least

MinSup MI objects. MinSup is the only parameter that has

to be specified for the actual extraction of MI clusters.The

input for the second part of COSMIC is the reachability plot

derived in the first step and the hot spots collected within

this plot. The general idea of this algorithm is to employ

a top-down sweep line algorithm to the reachability plot

which simultaneously extracts CAs and concepts. The al-

gorithm starts with a trivial set of one CA, namely call, and

a trivial concept which corresponds to the complete dataset

D and is described by {call}. Before starting the sweep

line algorithm, we first of all sort the hot spots descend-

ing w.r.t. their reachability distance in the plot. The sweep

line stops at each hot spot in this generated order and deter-

mines the CA the hot spot is contained in. In the following,

we will refer to this CA as the split CA. If the split CA is

not used for describing any concept, we already can exam-

ine the next hot spot because there cannot be any concept

being described by any SubCA of the split CA. This obser-

vation can be formalized in the following monotonicity cri-

terion: Let C = {c1, . . . , cm} be a set of CAs over the fea-

ture space F and M = {M1, . . . ,Ml} be a set of concepts

which are described by C. Furthermore, let cg ∈ C be some

CA and let Mg ∈ M be some concept with cg ∈ Desc(Mg).
Then for any subconcept Ms that can be described by

Desc(Mg) \ cg ∪ SubCA(cg)
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the following rule holds: |MG| ≤ k ⇒ |Ms| ≤ k.
If the split CA is an element of any concept description,

the algorithm determines the expansion of the new SubCAs.

Therefore, the plot is traversed in both directions beginning

with the hot spot and ending with a position for which the

reachability distance is again at least as large as at the hot

spot. Let us note that it might be necessary to cross some

plateau, i.e. an area of the plot having the same reachability

distance, before finding the indicated cluster. The CAs are

now stored in the CA hierarchy below the split CA. Since it

is possible to split a CA which is an inner node of the CA

hierarchy, the degree of the CA hierarchy is arbitrary.

After determining the SubCAs of the split CA, COSMIC

has to check if it is possible to extend any concept that is de-

scribed by the split CA. Thus, all concepts being described

by the split CA are checked if they can be specialized into

subconcepts that can be described by any of the new Sub-

CAs or the combination of both. If any of the resulting clus-

ter descriptions denotes a cluster having more than MinSup
elements, the concept lattice is extended. In the first two

cases, the new subconcept can be described by one of the

SubCAs and the new concepts are direct subconcepts of

the concept that is currently examined. In the third case,

the existence of a concept containing both SubCAs implies

that both previous cases form also a subconcept because the

new concept contains the intersection of the subconcepts

generated in the previous cases. Thus, if the concept being

described by both SubCAs has more than MinSup objects,

then the concepts containing only one of the SubCAs must

also have at least MinSup members. Let us note that deter-

mining the cardinality of the subconcepts can be done quite

efficiently. For every element of a concept that might be

split, we simply have to check if it has at least one instance

in any of the new subconcepts and then combine the results.

After a concept is processed that contains the split CA in its

description, additional links have to be added to the concept

lattice between each pair of newly constructed concepts for

which there was a subconcept relation between their father

concepts.

The algorithm terminates when there are no more hot

spots that could be processed. Figure 1 illustrates the pro-

cess of CA extraction and concept expansion on a simple

example having a plot based on two hot spots. The left col-

umn displays hot spots and corresponding concept attributes

in the reachability plot, the middle column displays the CA

hierarchy that can be derived from this plot. The right col-

umn contains all possible concept descriptions that can be

derived from the CA hierarchy.

5. Evaluation

All experiments were carried out on a workstation

equipped with 2 Opteron 1.8 GHz processors and 8 GB

memory. The compared algorithms are implemented in Java

1.5.

Table 1 summarizes the 5 real-world data sets employed

in the Experiments. The MUSK 1 and MUSK 2 data sets

were taken from the UCI repository [8] and describe a set

of molecules. The Dobson&Doig (DS 3) and BRENDA

(DS 4) data sets consist of enzyme data from the protein

data bank (PDB)1. For each subunit in a protein, we de-

rived a histogram over the occurrences of the 20 amino

acids and additional 6 exchange groups. The class labels

for DS 3 were obtained as described in [2] and the labels

for DS 4 correspond to 3rd level enzyme class numbers of

BRENDA2. The last data set (DS 5) consists of health care

web sites taken from WebKB3. Each page was described by

8,000 dimensional feature vector.

We compared COSMIC to density-based and k-medoid

clustering algorithms working on set-valued distance func-

tions. Therefore, we compared the effectiveness and the

efficiency of COSMIC with that of PAM and OPTICS. To

enable PAM and OPTICS to compare MI objects, we used

the Hausdorff distance (HD) [3], the minimum Hausdorff

distance (mHD) [11] and the Sum of Minimum Distances

(SMD) [3].

In order to find a unique mapping of MI objects to one

dedicated cluster, we determine the most specialized con-

cept, i.e. the concept having the most CAs in its descrip-

tion. If this method does not provide a unique mapping,

we additionally weight each CA with the inverse number

of instances supporting the CA and calculate the sum over

all CAs in the concept description. To assess the quality

of these clusters, we determined the majority class in each

cluster and calculated the precision. Finally, we computed

the weighted sum using the cluster sizes as weights.

To compare COSMIC to OPTICS, we calculated the

cluster hierarchy of OPTICS by applying a cluster extrac-

tion method that is based on hot spots. On the resulting

clustering, we mapped each object to its most specialized

cluster and summed up the precision of the most special

cluster. We compared all results of the compared clustering

approaches w.r.t. an equal number of clusters. On the av-

erage, the derived number of clusters was about four times

the number of classes.

For all data sets, COSMIC achieved a higher precision

than the other methods (cf. Figure 2). This suggests that

the MI clusters derived from the concept lattice are more

precise than using established set-valued distance functions.

For example, for DS 1 COSMIC achieved a precision of

0.858, whereas the best result of the remaining methods was

0.772.

1http://www.rcsb.org/pdb/
2http://www.brenda.uni-koeln.de/
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/

theo-11/www/wwkb/
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Table 1. Description of the test data sets.
Data Set 1 (DS 1) Data Set 2 (DS 2) Data Set 3 (DS 3) Data Set 4 (DS 4) Data Set 5 (DS 5)

Name MUSK 1 MUSK 2 Dobson & Doig Brenda Web

# MI-Obj. 92 102 969 10,254 46

# Inst. / MI-Obj. 5.2 64.7 2.4 1.977 7.72

# Classes 2 2 7 115 4
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Figure 2. Average Cluster Precision.
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Figure 3. Complete Runtime of COSMIC and
its comparison Partners.

In the following, we will describe an example concept

found in the concept lattice of the website data set DS 5.

The cluster hierarchy displayed several leaf concepts like

Menu Pages, Contact Pages, Employment Pages, Quarter
Results, Disclaimers and Company Descriptions. We iden-

tified a concept of websites that were described by Employ-
ment Pages, Company Descriptions and Contact Pages. The

member websites of this concept represent companies from

the biotech area that were trying to recruit new employees.

To measure the efficiency of COSMIC and its competi-

tors, we compared the elapsed runtime (cf. Figure 3). COS-

MIC showed a runtime behavior which is comparable to

the best of the remaining methods. Another interesting re-

sult can be observed when comparing the runtimes of the

two steps of COSMIC. The time that was spent on deriv-

ing the reachability plot from the set of all instances took

on the average about two orders of magnitude more time

than the second step deriving the concept lattice from the

plot. Thus, running COSMIC only requires an marginal ad-

ditional amount of time compared to running OPTICS on

the set of all instances.

6 Conclusion

In this paper, we proposed COSMIC, a method for deriv-

ing concept lattices from MI data sets. COSMIC describes

concepts of MI objects by sets of so-called cluster attributes

(CAs). A CA is a common pattern in the data space of

instances that might be used to characterize at least µ MI

objects. A CA hierarchy is calculated employing density-

based hierarchical clustering. The second step of COSMIC

extracts a concept lattice along with the CA hierarchy used

for the concept descriptions. The results of our experiments

demonstrate that COSMIC generates more precise cluster-

ings w.r.t. a reference class set and that COSMIC scales well

to even larger data sets.
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