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Abstract 

 

 This paper presents PGMiner, a novel graph-based 

algorithm for mining frequent closed itemsets. Our 

approach consists of constructing a prefix graph 

structure and decomposing the database to variable 

length bit vectors, which are assigned to nodes of the 

graph. The main advantage of this representation is that 

the bit vectors at each node are relatively shorter than 

those produced by existing vertical mining methods. This 

facilitates fast frequency counting of itemsets via 

intersection operations. We also devise several inter-

node and intra-node pruning strategies to substantially 

reduce the combinatorial search space. Unlike other 

existing approaches, we do not need to store in memory 

the entire set of closed itemsets that have been mined so 

far in order to check whether a candidate itemset is 

closed. This dramatically reduces the memory usage of 

our algorithm, especially for low support thresholds. 

Our experiments using synthetic and real-world data 

sets show that PGMiner outperforms existing mining 

algorithms by as much as an order of magnitude and is 

scalable to very large databases. 

 

1. Introduction 
  

 Frequent closed itemset mining is the task of 

discovering frequent itemsets whose support counts are 

different than those of their supersets. Frequent closed 

itemsets provide a compact yet lossless representation of 

the frequent itemsets. Numerous algorithms have been 

developed to improve the efficiency of the closed itemset 

mining task [1, 2, 5, 7, 8, 9, 10, 12]. There are two 

typical strategies adopted by these algorithms: (1) an 

effective pruning strategy to reduce the combinatorial 

search space of candidate itemsets and (2) a compressed 

data representation to facilitate in-core processing of the 

itemsets.  Item merging and sub-itemset pruning are two 

of the most commonly used strategies employed by 

current algorithms [10]. These strategies ensure that 

many of the non-closed itemsets will not be examined 

when searching for frequent closed itemsets, thereby 

reducing the runtime of the algorithms.  

 Apart from the pruning strategies used, having a 

condensed representation of the database is also vital to 

achieve good efficiency. Existing algorithms such as 

FPclose [2] and CLOSET+ [10] construct a frequent 

pattern tree (FP-tree) structure [3] to encode the relevant 

itemsets and frequency information. In this 

representation, each transaction in the database is 

represented as a path from the root of the FP-tree. 

Compression is achieved by merging prefix paths of 

transactions that share the same items. A vertical 

database representation is another popular strategy, in 

which each item is associated with a column of values 

indicating the transactions that contain the item. For 

example, algorithms such as CHARM [12] use vertical 

tid-lists as their data representation while MAFIA [1] and 

DCI-Close [5] use vertical bit vectors.  

 Although an FP-tree often provides a compact 

representation of the data, our analysis shows that there 

are situations where the storage requirements of the tree 

may exceed even the database size, especially when the 

support threshold is low or when the database is very 

sparse. This is because each tree node encodes not only 

the item label, but also the support count and pointers to 

the parent, sibling, and child nodes. As shown in Table 1, 

the size of the initial FP-tree exceeds the database size 

for databases such as Chess and Kosarak. Algorithms 

that use the FP-tree structure must also recursively build 

smaller subtrees and traverse multiple branches of the 

trees to collect frequency information during the mining 

process. The overhead of reconstructing and traversing 

the FP-trees may degrade the overall performance of the 

algorithm [2].  

 Table 1 shows that the memory requirements for 

storing vertical bit vectors are generally less than that for 

FP-tree and vertical tid-lists, with the exception of the 

Kosarak data set. Vertical bit vectors also allow for fast 

support counting using  simple  bitwise AND  operations.  



Table 1. Characteristics of various condensed representations 

FP-Tree Database 

Name 

Database 

Size 

Min 

Support 
Num Nodes Size 

Vertical  

Bit Vector 

Size 

Vertical 

TID-list 

Size 

PrefixGraph 

Size 

Chess 474.4Kb 25% 31812 621Kb 19.9Kb 435.3Kb 239.6Kb 

Pumsb 14.0Mb 45% 183349 3.5MB 377.2Kb 8.58MB 4.28MB 

WebDocs 1150.4Mb 10% 50313644 959.6MB 52.8MB 296.5MB 111.6MB 

Kosarak 36.8Mb 0.08% 3425391 65.3MB 189.3MB 26.1MB 9.2MB 

 

However, when the database is large and sparse, the 

handling of long bit-vectors is quite inefficient since 

there are lots of zeros in the vectors. 

  Regardless of the representation, current closed 

itemset mining algorithms must compare the support of a 

candidate itemset against the support of its supersets. To 

perform this task more efficiently, many algorithms such 

as CLOSET+ [10], FPclose [2], and CHARM [12] store 

their intermediate result set, which contains all the closed 

itemsets that have been mined so far, in another data 

structure (FP-Tree, hash table etc.). Such a storage 

method is feasible as long as the number of closed 

itemsets is small. When the number of closed itemsets is 

large, it will consume considerable memory to store and 

time to search the itemsets. In fact, our analysis shows 

that in some cases the amount of memory occupied by 

the result set is several orders of magnitude larger than 

the size of initial FP-tree or vertical database 

representation. For example, in the Chess database with 

25% support threshold, storing the result set takes up to 

102MB, even though the size of the initial FP-Tree is 

only 621Kb! The cost for searching the result set (to 

determine whether a candidate itemset is closed) can also 

be very expensive. Our analysis on the Chess database 

shows that FPclose spends about 70% of its overall 

computation time searching the result-set.  

 In summary, both FP-Tree and vertical 

representations have their own strengths and limitations. 

In this paper, we introduce a novel representation called 

PrefixGraph, which leverages some of the positive 

aspects of existing representations. From FP-tree, it 

borrows the idea of projecting a database onto different 

nodes of a graph—but without the extra cost of 

traversing multiple branches of the tree to collect 

frequency information. A PrefixGraph also uses bit 

vectors to encode the database projection at each node. 

However, the length of its bit vector is considerably 

shorter than that used by existing vertical bit vector 

representations. We will discuss in more details how the 

graph is constructed in Section 2. From Table 1, note 

that the size of the prefix graph structure is moderate 

compared to other representations. For the Kosarak data 

set, it yields the most compact representation.  

 Using efficient pruning strategies derived from 

network flow analysis, a novel algorithm called PGMiner 

is developed. Our experimental results show that the 

memory usage for PGMiner does not grow quite as 

rapidly as other algorithms during the mining process. 

Furthermore, PGMiner outperforms FPclose [2], DCI-

Close [5] and CHARM [12], three state-of-the-art closed 

itemset mining algorithms, by an order of magnitude 

both in time and memory requirements. 

 The rest of the paper is organized as follows: Section 

2 introduces the PrefixGraph representation. Section 3 

describes the PGMiner algorithm. Section 4 presents the 

experimental results while Section 5 concludes the paper.  

  

2. PrefixGraph Representation 
 

 In this section, we describe the PrefixGraph 

representation and show in detail its construction. 

 

2.1 Preliminaries 
 

 Let I = {i1, i2, …,im} be a set of m distinct items. An 

itemset X is a non-empty subset of items; i.e. X ⊆ I. An 

itemset with k items is called a k-itemset. Items in a given 

itemset are assumed to be sorted according to some total 

order, p . We use the notation x p  y to indicate x 

precedes y according to the total order. The support of an 

itemset X, denoted as σ(X), is defined as the fraction of 

total transactions that contain X. An itemset is called 

frequent if its support is greater than or equal to a 

minimum support threshold ξ. An itemset X is closed if 

none of its proper supersets has exactly the same support 

count as X. Given a database D and a support threshold 

ξ, the problem of mining closed itemsets is to find all 

closed itemsets that pass the support threshold.  

 A PrefixGraph consists of a set of nodes and a set of 

directed edges connecting pairs of nodes. Any item in the 

database that satisfies the support threshold is 

represented as a node in the PrefixGraph. Each node is 

also associated with a projected bit vector database (see 

Figure 2). Before illustrating the PrefixGraph structure 

further, we give some useful definitions. 



Definition 1 (Prefix 2-Item) At a node k, an item i is 

called its prefix 2-item if ip k and {i, k} is a frequent 2-

itemset. 

Definition 2 (Prefix Itemset) Consider an itemset X = 

{i1, i2, …,ij-1, ij, ij+1,…,in}. A prefix itemset of X with 

respect to node ij is defined as all the items {i1, i2, …ij-1}. 

Definition 3 (Suffix Node) Let S be a set of nodes sorted 

based on frequency descending order. A suffix node with 

respect to node j is any node k∈S such that jp  k. 

Definition 4 (Suffix Link) A directed edge between 

node i and its suffix node k is called a suffix link. 

Definition 5 (Farthest-Node) Let S be a set of nodes 

sorted based on frequency descending order and T(j) be 

a set of suffix nodes for node j. Let W(j) ⊆ T(j) be a 

subset of the suffix nodes such that ∀n ∈ W(j), jn is a 

suffix link  in the PrefixGraph and {j, n} is a frequent 2-

itemset.  The Farthest-Node of node j is defined as the 

suffix node k, such that ∀n ∈ W(j), np  k. 

Example 1: Consider the PrefixGraph shown in Figure 2 

for the sample database in Table 2. The total order of the 

nodes are ap  b p  d p  e p  c. The prefix 2-item for 

node b is a, while the prefix 2-items for node c are a and 

b. The nodes d, e, and c are suffix nodes of b because b 

precedes these nodes. The edges bd, be and bc are 

examples of suffix links associated with node b. Finally, 

c is the Farthest-Node of b.  

 

Table 2. Sample database 

Transaction ID Items Frequent Items 

1 a, b, c, d,  a, b, d, c 

2 b, d, a, e, f, g a, b, d, e 

3 d, a, e a, d, e 

4 i, a, c, b a, b, c 

5 b, c, e b, e, c 

6 d, e, h d, e 

 

 

2.2 PrefixGraph Construction 
 

 We now illustrate the construction of the PrefixGraph 

using the transaction database given in Table 2 with 

support threshold ξ = 2. 

 First, we scan the database to identify the set of 

frequent items and their corresponding support counts. 

These frequent items form the nodes of the PrefixGraph. 

For the sample database, the list of frequent items are 

<(a:4), (b:4), (c:3), (d:4), (e:4)>, where (m:n) denotes an 

item m with support count n. 

 Once the nodes are identified, we order them based 

on the descending order of support count as shown in 

Figure 1(a). Next, we scan the database again to identify 

the prefix 2-items for each node. For example, the 

frequent 2-itemsets for nodes a, b, d, e, and c are (ab, ad, 

ac, ae), (ba, bd, be, bc), (da, db, de), (ea, eb, ed), and (ca, 

cb), respectively. The prefix 2-items and their 

corresponding support counts for these nodes are {}, 

{a:3}, {a:3, b:2}, {a:2, b:2, d:3}, and {a:2, b:3} 

respectively. For each node, we store its set of prefix 2-

items in a header table as shown in Figure 1(b). 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. PrefixGraph construction-a running 

example 

 The next stage of the graph construction is to store 

the transactions as bits in the projected bit vector 

database of the nodes. We scan the database, and for 

each transaction, infrequent items are removed and the 

remaining items are sorted based on the frequency 

descending order. Let T be the resulting itemset. Now for 

each item k in T, we select the corresponding node k and 

compare its prefix 2-items against the prefix itemset of T. 

If there is a match then these matching items are stored 

as bits in the projected bit vector database of node k.  

 For example, consider the first transaction of the 

sample database. After removing the infrequent items, 

the remaining items are: T= {a, b, d, c}.  Since the 

transaction has 4 frequent items we need to consider the 

nodes a, b, d, and c. Node a has no prefix 2-items and 

therefore nothing is stored. For node b, item a of the 

transaction matches with its prefix 2-item (i.e. a) and 

therefore bit <1> is stored in its projected bit vector DB. 

For node d, items {a, b} of T match with its prefix 2-

items and therefore bits <11> are stored in the projected 

bit vector DB. Similarly for node c, the bits for items {a, 

b} of the transaction are stored in the projected bit vector 

DB. Figures 1(c) and 1(d) show the PrefixGraph after 

storing the first two transactions. When storing a 

transaction such as {d, e} at node e, we need to store bits 

<001> in node e, since only item d of the transaction 

matches with the prefix 2-items of node e.  

(a)

(b)

(c)

(d)

a db e c

a db e c

ab abd aba

a db e c

ab abd aba

1 11 11

a db e c

ab abd aba

1

1

11

11

111 11

Bit Vector Databases

Header 

Tables

Nodes

<a, b, d, c>

<a, b, d, c>

<a, b, d, e>



 In the PrefixGraph structure, suffix links are created 

based on the transactions. For each item k in the 

transaction T, a suffix node m is selected such that m ∈ T 

and ∀n ∈ suffix nodes of k, m p  n. A suffix link is then 

created from node k to node m. For example, consider 

the transaction {a, b, d, c}. For node b we select the 

suffix node d (out of d and c) and add a suffix link from 

b to d. Figure 2 shows the complete PrefixGraph 

structure after storing all the transactions in the sample 

database.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Instead of explicitly creating links, the links are 

incorporated directly into the projected bit vector 

database. More specifically, we can group the bit vectors 

of the transactions that have the same suffix link together 

and store them contiguously in the projected bit vector 

database of the node. For this purpose, the projected bit 

vector database of each node is partitioned into bins, and 

the set of bit vectors in each bin corresponds to a suffix 

link. For example, transactions {a, b, d, e} and {a, d, e} 

both have the same suffix link (de) at node d, and thus, 

can be stored together in a bin. If a transaction has no 

suffix link beyond a given node, these transactions are 

stored in an additional bin called the terminating bin. For 

example, the transaction {a, d, e} is stored in the 

terminating bin of node e. All bins must be arranged 

contiguously, so that the intersection of bit vectors (item 

wise) can be done fast as a one large chunk of words. 

Also, we need to keep track of the starting location of 

each bin in order to identify the suffix links. 

 A summary of the PrefixGraph construction 

procedure is given in Algorithm 1. 

 

Algorithm 1 (PrefixGraph Construction) 

Input: A transaction database D and support threshold ξ 

Output: PrefixGraph structure 

Method:  

1. Scan the database D and find the frequent 1-

itemsets (nodes) and their supports. 

2. Sort the nodes in descending order of support. 

3. Find the frequent 2-itemsets for each node and 

create the header tables. 

4. For each transaction T: 

a. Sort the frequent items in T in descending 

order of their support. 

b. For each item k in T, select node k and 

match the prefix 2-items of node k with the 

items in T and if there is a match, store the 

matching items as a bit vector in the bit 

vector database of node k. 

 

2.3 Analysis of PrefixGraph Structure 
 

 The PrefixGraph construction algorithm requires 

three scans of the database. The first two scans are 

necessary to find frequent 1-itemset and 2-itemset, while 

the third scan is needed to construct the projected bit 

vector databases.  

 

Proposition 1 The size of the projected bit vector 

database of a node is bounded by the support count of 

the node times the number of prefix 2-items of that node. 

 Due to space limitations, readers may refer to [6] for 

the proof of this proposition. 

  

3. Frequent Closed Itemset Mining 
 

 In this section, we will study how to efficiently mine 

frequent closed itemsets from the PrefixGraph structure. 

The algorithm proceeds in two phases: first, we find the 

frequent closed itemsets for each node (these are known 

as local closed itemsets). We then check whether the 

local closed itemsets are also globally closed using 

various inter-node pruning techniques. Here we give the 

formal definitions of local and global closed itemsets. 

Definition 6 (Local Closed itemset) An itemset X, 

derived under node n is defined as locally closed, if there 

is no itemset Y (⊃ X) derived under the same node n with  

σ(Y) = σ(X). 

Definition 7 (Global Closed itemset) An itemset X, 

derived under node n is defined as globally closed, if 

there is no itemset Y (⊃ X) derived under any node k, (k∈  

set of all nodes) with  σ(Y) = σ(X).  

 

3.1 Intra-Node Closed Itemset Mining 
 

 In intra-node closed itemset mining we mine the 

locally closed itemsets from the projected bit vector 

database for each node. As shown in the next 

proposition, itemsets that are not locally closed are 

guaranteed to be non-globally closed. Such itemsets can 

therefore be excluded from further consideration.  

 

Figure 2. PrefixGraph representation 
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Proposition 2: For any given itemset X, derived under 

node n, if X is not locally closed then it is not globally 

closed. 

Proof. Since X is not locally closed, ∃ Y derived under 

node n, s. t. X ⊂ Y and σ(Y) = σ(X). Therefore, by the 

Definition 7, X cannot be globally closed.        ■ 

 In general, to generate frequent itemsets of a node, bit 

vectors of all distinct pairs of the itemsets are intersected 

and the cardinality of the resulting bit vector is checked. 

This is carried out recursively in a depth first manner 

until all the itemsets are enumerated. For example, in the 

itemset enumeration tree given in Figure-3, for itemset 

{a}, we generate all its combinations ({ab},{ac},{ad}). 

Then starting from {ab}, ({abc},{abd}) are generated. 

Similarly, itemsets {abcd}, {acd}, ({bc},{bd}), {bcd} 

and {cd} are enumerated in depth first manner. Note that 

any itemset {i1, i2, …,ik}  generated under a node n must 

have its node label appended as {i1, i2, …,ik, n}. We have 

omitted item n from the set enumeration tree in Figure 3 

for brevity. Similar to several past algorithms [1, 5, 8, 

12], we use two additional pruning techniques to rapidly 

identify the local closedness of the frequent itemset once 

it is generated. 

Proposition 3: (sub-itemset pruning) For a frequent 

itemset X and an already found closed itemset Y, if X ⊂ Y 

and σ(X)=σ(Y), then X and all X’s descendent itemsets in 

the set enumeration tree are not closed. 

Proposition 4: (item merging) For a frequent itemset X 

and an already found frequent itemset Y, if the tid-

set(X)⊆ tid-set(Y) and Y⊄ X, then X and all X’s 

descendent itemsets in the set enumeration tree are not 

closed. 

 A direct implementation of sub–itemset pruning 

requires storing possibly a large set of closed itemsets 

and performing subset checking to determine whether an 

itemset is set-included in a superset. To reduce these 

overheads, we limit the applicability of this pruning 

strategy to itemsets between two successive levels of the 

depth first search space. For example, itemset {ab} at 

level-2 generates its level-3 itemsets ({abc}, {abd}). 

Based on Proposition 3, if {abc} and {ac} have identical 

support counts, we can prune {ac} and its sub-tree. 

 The applicability of the item merging proposition to 

an itemset X requires that we perform subset checking of 

X’s bitmap with the bitmaps of all the processed (i.e. 

already mined) local itemsets of level-1 down to the 

parent level of itemset X. For example, if the itemset is 

{b, c, d} we need to check whether its bitmap is a subset 

of the bitmap of a. If it is a subset of bitmap(a), then {b, 

c, d} is not closed according to Proposition 4. In our 

vertical bit vector representation, such bitmap subset 

checking can be performed very fast. 

 The main advantage of local closed itemset mining is 

that itemset generation and support counting are very 

fast, since the projected database contains short bit 

vectors. Unlike FPclose and CLOSET+, the information 

needed for support counting is locally available and there 

is no need to traverse any other nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Itemset enumeration tree of a node 

   

 Application of both propositions ensures that we 

generate only the complete set of local closed itemsets 

for that node. In the next section, we develop an efficient 

flow based pruning strategy to verify whether the local 

closed itemsets are also globally closed.  

 

3.2 Inter-Node Pruning 
 

 In order to develop inter-node closed itemset pruning, 

we consider PrefixGraph structure as a network with 

transactions flowing through the nodes. Therefore, the 

problem of discovering a global closed itemset can be 

mapped to a network flow problem. 

 Let us first analyze the suffix links of the 

PrefixGraph structure. For a node n in the PrefixGraph 

G, we define the out-neighborhood and in-neighborhood 

of n by N
+
(n) = {m ∈ V(G) | (n, m) ∈ E(G)} and N

-
(n) = 

{m ∈ V(G) | (m, n) ∈ E(G)}, respectively (here V(G) 

and E(G) are the set of nodes and edges respectively).  

 For an edge (n, m) of the PrefixGraph G, ),( mnf is 

the flow along the edge and is considered as the set of 

transactions that flows through the edge (n, m). Further 

more we have, 0≤ ),( mnf ≤σ({nm}), where ),( mnf  

denotes the number of transactions.  

 Based on this, for any node n, its outgoing flow can 

be defined as OutF(n) = ),(
)(

mnf
nNm +∈

U and incoming 

flow can be defined as  InF(n) = ),(
)(

nmf
nNm −∈

U . More 

specifically, we denote ),( mnf X
 as all the transactions 

containing itemset X that flow from node n to m. Then, 

for a given itemset X derived under node n, the outgoing 

m n o

a   b   c    d

ab ac    ad bc bd cd

abc   abd acd bcd

abcd Depth First Traversal

Level -1

Level -2

Level -3

Level -4



flow of X can be defined as OutFX(n) = ),(
)(

mnf X
nNm +

∈

U . 

Similarly, the incoming flow of itemset X derived under 

node n can be defined as InFX(n) = ),(
)(

nmf X
nNm

−
∈

U . 

Here we give some properties of this flow based 

representation. 

 

Postulate 1: Given an itemset X derived under node n, 

where |X| ≥ 2, the following properties hold: 

I.  σ(X) = |InFX(n)| 

II.  InFX(n) ⊇ OutFX(n) 

III.  ∀m: OutFX(n) ⊇ InFXm(m), where npm and Xm 

= X ∪{m}. 
 

Example 2: Consider the PrefixGraph shown in Figure 

4, for the database given in Table 2. The out-

neighborhood of node b, N
+
(b) = {d, e, c} and the in-

neighborhood of node d, N
-
(d) = {b, a}. Transaction 

flow along edges (b,d) and (d,e) are ),( dbf ={t1, t2} and 

),( edf ={t2, t3} respectively, where ti is the transaction 

ID. The flows can also be defined with respect to a given 

itemset. For example, ),(},{ edf ba
= {t2}. The incoming 

flow for itemset {a, d, e} at node e, InF{a,d,e}(e) = {t2, t3} 

and |InF{a,d,e}(e)| =2 = σ(ade). 

 

 

 

 

 

 

 

 Under the network flow representation, a closed 

itemset can be defined as follows. 

 

Theorem 1: An itemset X derived under node n is 

globally closed if ∀m: InFX(n) ≠ InFXm(m), where npm 

and Xm = X ∪{m}. 

Proof. This theorem is simply a re-statement of the 

definition of closed itemset that no supersets of X have 

the same support as X. Note that each immediate superset 

Xm must be generated at some node m in the 

PrefixGraph structure and σ(Xm) = |InFXm(m)|.   ■ 

 

Corollary 1: The following conditions hold if X is not 

globally closed. 

I.  ∃m: InFX(n) = InFXm(m), where np  m. 

II.  ∃m: InFX(n) ⊆ InF(m), where np  m. 

Proof. Condition I follows directly from the contra 

positive of Theorem 1. Condition II holds because 

InFXm(m) ⊆ InF(m) (from the definition of incoming 

flow).         ■ 

 Based on this flow based representation, we develop 

several theorems that will assist us in identifying whether 

a given local closed itemset is globally closed. 

 

Theorem 2: For any itemset X derived under node n if, 

I. X is locally closed and 

II. ∃ X' s. t. X ⊂ X' and X' is known to be a globally 

closed itemset under the same node n 

then X must also be globally closed. 

Proof. To construct the proof, by contradiction, assume 

that X is not globally closed even though X’ is globally 

closed. By Corollary 1, ∃m: InFX(n) ⊆ InF(m). Since X 

⊂ X', InFX’(n) ⊆ InFX(n). Due to the transitive property 

of subset relation, InFX’(n) ⊆  InF(m), which contradicts 

the previous statement that X’ is a globally closed 

itemset. Thus, X must be globally closed.    ■ 

 This theorem states that if we have a globally closed 

itemset derived under some node, then all locally closed 

subsets of the itemset are also globally closed (upward 

closure property). For example, in the search space given 

in Figure 3, suppose we found itemset {a, c, d} is 

globally closed; then all of the locally closed subsets of 

{a, c, d} derived under node n are guaranteed to be 

globally closed. 

 Efficient implementation of this theorem requires 

keeping all of the globally closed itemsets of a particular 

node in memory for subset checking. To avoid this, we 

devise two optimization methods: First, when checking 

the global closedness of local closed itemsets, we start 

from the maximal closed itemset (leaf) of the 

enumeration tree. That way, if we determine the leaf 

itemset as globally closed (using other techniques 

described later), then all the local closed itemsets in its 

path (to the root) become globally closed. Second, based 

on our analysis, we found that there is temporal locality 

which can be exploited during the search, i.e., most local 

closed itemsets are subsets of the most recently found 

globally closed itemset. Therefore, each time we 

discovered a new globally closed itemset, we keep a 

copy of this itemset in memory. Then, when a new local 

closed itemset is found we compare it against this copy.  

  

Theorem 3: For any itemset X derived under node n if, 

I. X is locally closed and 

II. |InFX(n)| - |OutFX(n)| > 0 

then X is a globally closed itemset. 

Proof. To construct the proof, by contradiction, assume 

that X is not globally closed but |InFX(n)| > |OutFX(n)|. 

By Corollary 1, ∃m: InFX(n) = InFXm(m). From the third 

property of Proposition 1, |OutFX(n)| ≥ |InFXm(m)|. 

Putting them together, it follows that |InFX(n)| ≤ 

a db e c

f(b,c)

f(b,d) f(d,e)f(a,b) f(e,c)

f(b,e)

f(d,c)
f(a,d)

Figure 4. Transaction flow network 

 



|OutFX(n)|, which contradicts our initial assumption. 

Thus, X must be globally closed.               ■                                                                             

According to this theorem if the bitmap of a local 

closed itemset X, derived under node n, has at least one 

transaction that terminates at node n (i.e. those 

transactions do not flow to other nodes), then X is 

globally closed. In our PrefixGraph structure, all we 

need to do is to examine the bits in the terminating bin of 

the corresponding itemset’s bitmap. If at least one bit is 

‘1’ in the terminating bin of the itemset, then that itemset 

is globally closed. This is a very fast operation that 

requires checking the itemset’s own bit vector to 

determine the global closedness.  

 

Theorem 4: For any itemset X derived under node n if, 

I. X is locally closed and  

II. InFX(n) = OutFX(n) and 

III. X has exactly one suffix link to node m 

then X is not a globally closed itemset. 

Proof.  Let InFX(n) = OutFX(n). Since X has exactly one 

suffix link to a node m, OutFX(n) = InFXm(m). Putting 

them together, we obtain InFX(n) = InFXm(m), which 

according to Corollary 1 means that X is not globally 

closed.                            ■ 

 Theorem 4 suggests that if all of the transactions that 

belong to itemset X flow to exactly one other node, then 

X is not closed. In the PrefixGraph representation, once 

an itemset is generated its links can be analyzed by 

checking the bins of the bit vector. Based on the number 

of links, we can decide whether the itemset is not closed.  

 For the remaining local closed itemsets in which the 

previous theorems are inapplicable, we need to test 

whether they are globally closed. In order to determine 

the global closedness of a local closed itemset, we need 

to visit every suffix node and compare the support of its 

corresponding superset, which is a very expensive 

operation. The following theorem reduces the number of 

such nodes that need to be visited. 

 

Theorem 5: Let X be any itemset derived under node n 

and let t be the Farthest-Node of n w. r .t. itemset X. 

Then for any itemset X' s. t. X' ⊃ X derived under node 

m, np  mp  t, σ(X') ≠ σ(X).                               

 The proof is given in [6]. For a given itemset, this 

theorem identifies the first possible node that can 

generate a superset itemset with identical support. So all 

of the nodes between the current node, where the itemset 

is generated, and the farthest node w.r.t. the itemset 

(excluding the farthest node itself) can be ignored. Using 

this theorem, we can identify the set of nodes that can 

possibly generate a superset itemset with an identical 

support for a given itemset X, derived under node n, as: 

GENX(n)= {m ∈ set of nodes | Farthest-NodeX(n) p  m 

and ∀ items j of X, j ∈ prefix 2-items(m)}. 

 To identify the global closedness of an itemset X, 

generated under node n, we visit each node in GENX(n) 

until we determine its global closedness. Once we visit a 

node k ∈ GENX(n), we can generate the itemset Xk using 

its bit vector database and compare the support count 

with X. There are several optimization strategies that can 

be employed here. We found temporal locality property 

that can be exploited during the subsequent generation of 

itemsets in a node. In order to facilitate fast subsequent 

itemset generation, we keep the bit vectors of the most 

common subsets of the itemset, once they have been 

generated under a node for reuse. Due to space limitation 

more details are given in [6].  

 This itemset regeneration based closedness check is 

efficient because of the following reasons: first our bit 

vectors are shorter in length, so that intersection is fast. 

Second, we keep track of the bit vectors of most common 

itemsets in memory, which avoids complete regeneration. 

Third and more importantly, after applying Theorems 2-

4, the remaining percentage of itemsets that needs global 

closedness is much smaller. We have analyzed this in 

Section 4. 

 

3.3 Mining Algorithm 
 

 Based on the above discussion, we have the following 

algorithm for frequent closed itemset mining. 

 

Algorithm 2 (PGMiner) 

Input: PrefixGraph structure G and support threshold ξ 

Output: The complete set of frequent closed itemsets 

Method:  

1. Starting from the node with highest support 

count call MineNode(n) for each node n∈V(G). 

Procedure MineNode (n) 

1. With the depth first search paradigm, mine the 

local closed itemsets at node n in a top down 

manner by intersecting its bit vectors. Use 

Propositions 3 and 4 to prune non-closed local 

itemsets. 

2. Once at a leaf itemset X of the search path, use 

Theorems 2, 3 and 4 to detect global closedness 

for the local closed itemset found. If not 

detected, search the nodes in GENX(n) 

(Theorem 5) using the regeneration method. 

3. If an itemset is globally closed, mark all the 

local closed itemsets in the search path to the 

root as globally closed (by Theorem 2). Output 

any global closed itemset found. 

4. Stop when all prefix 2-items in the node have 

been processed, and reclaim memory of the bit 

vector DB of that node. 

 



4. Experimental Evaluation 
  

4.1 Evaluating Environment 
 

 We compared the performance of PGMiner against 

three state of the art algorithms: FPclose [2], DCI-Close 

[5], and CHARM [12], which uses the DiffSet [11]. We 

experimented with variety of databases as shown in 

Table 3. Most of the real-world databases were obtained 

from the FIMI repository†. Synthetic databases were 

generated using the IBM data generator [4]. Our machine 

consists of a 2.8 GHz Intel Pentium 4 processor with 1 

GB of memory running Linux. All recorded execution 

times refer to real time (that includes CPU and I/O time).  
 

Table 3. Characteristics of the databases 

Dataset No. of Transactions No. of Items 

Medical 5,939,734 5,912 

WebView2 77,513 3,340 

Chess 3,196 75 

WebDocs 1,692,082 5,267,656 

Pumsb 49,046 2,113 

Kosarak 990,002 41,270 

T40I10D100K 100,000 1,000 

T100I20D100K 100,000 997 

T20I8D500K 500,000 8,612 

T50I10DxK 25,000-50,000,000 25,000 

 

4.2 Experimental Results 
 

4.2.1 Performance Comparisons. Execution time 

comparison of PGMiner against other algorithms is 

shown in Figure 5. When an algorithm took considerably 

longer time compared to the rest, it was eventually 

terminated. Our analysis shows that in seven out of nine 

databases tested, PGMiner shows the best runtime when 

compared to all other algorithms at low support 

thresholds. For the remaining two databases (Chess, and 

Pumsb), although PGMiner outperforms both FPclose 

and CHARM, DCI-Close shows better runtime. This is 

because their search space enumeration method seems 

better suited for these smaller databases. We found that 

in some cases all other algorithms fail to mine databases 

at low support thresholds, while PGMiner can still run 

for even smaller levels of support thresholds. 

  In summary, PGMiner shows better run time 

performance because it has very low overhead due to the 

effectiveness of its flow based pruning strategies. Unlike 

other algorithms, PGMiner does not need to store the 

entire result set in memory. The PrefixGraph structure 

also has shorter bit vectors and this significantly reduces 

                                                                 

†  http://fimi.cs.helsinki.fi 

the bit vector intersection cost for large databases. Thus, 

PGMiner has better runtime and can scale to very lower 

levels of support thresholds. 
 

4.2.2 Memory Usage. The memory usage for all the 

algorithms on several databases is shown in Figure 6. We 

found that PGMiner mines all of the databases with low 

memory usage when compared with the other algorithms. 

In all these cases, FPclose shows higher memory 

consumption because of its storage based pruning 

strategy and the large FP-Tree structure it has to build for 

larger databases. However, DCI-Close shows better 

memory usage when compared with FPclose and 

CHARM. But in some cases (e.g. T40I10D100K), its 

memory consumption gets suddenly high when the 

threshold is gradually lowered. Note that the memory 

usage of PGMiner does not grow quite as rapidly as 

other algorithms during the mining process.  

 

4.2.3 Scalability. We have also measured the execution 

time of all the algorithms by increasing the number of 

transactions gradually. We use the T50I10DxK data set, 

where x is varied from 25,000 transactions (DB size 

6.9MB) to 50 million transactions (DB size 13.9GB), 

with minimum support threshold 0.1%. For this 

experiment we used a server (2 GHz) with 4 GB of 

memory, since these databases are of gigabyte size. The 

experimental results (see Figure 7) revealed that 

CHARM, FPclose, and DCI-Close could not reach more 

than 1 million transactions (1000K) of this database set. 

FPclose and DCI-Close crashed for the 5000K dataset. 

Analysis of memory usage for these algorithms revealed 

that they consume high memory space. See Figure 8. In 

the 5000K dataset, the FPclose algorithm fails because it 

has consumed all the available memory. Memory usage 

of DCI-Close is high even for the 1000K dataset. Note 

that PGMiner was able to reach 50 million transactions 

easily showing remarkably low memory usage. 
 

4.2.4 Effectiveness of the Flow Based Pruning. In our 

algorithm, when a local closed itemset is discovered, we 

first apply Theorem 2 and then if it cannot discover the 

closedness of the itemset, we apply Theorem 3. In Table 

4 we have shown the percentage of itemsets discovered 

by both these theorems.  
 

Table 4. Evaluation of global closedness check 

Data Set (min. sup.) Theorem 2 Theorem 3 

Chess (30%) 91.6% 8.0% 

WebDocs (10%) 94.1% 85.4% 

Pumsb (45%) 91.9% 30.5% 

Kosarak (0.08%) 65.5% 68.1% 

T20I8D500K (0.01%) 91.7% 26.4% 

T40I10D100K (0.1%) 67.6% 40.3% 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Execution time (in seconds) for CHARM, FPclose, DCI-Close and PGMiner 

 

 

 

 

 

 

 

 

 

 

Figure 6. Amount of memory (in MB) required at various support levels 
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 For example, In WebDocs dataset we were able to 

discover 94.1% of the total local closed itemsets as either 

globally closed or not by using Theorem 2. From the 

remaining percentage (i.e. 5.9%), 85.4% of itemsets were 

discovered by Theorem 3. Table 4 clearly shows that 

both Theorem 2 and Theorem 3 are capable of detecting 

global closedness of many local closed itemsets of the 

database. Moreover, these two techniques can be easily 

implemented and it is one of the key factors to achieve 

faster performance in our algorithm.  
 

5. Conclusions 
 

 This paper introduces a PrefixGraph representation 

for mining frequent closed itemsets. The key advantage 

of our representation is that it leverages the positive 

aspects from both FP-tree and vertical bit vector 

representations. The size of the PrefixGraph structure is 

quite moderate and its memory requirements do not grow 

as rapidly as other algorithms. Our proposed algorithm 

called PGMiner employs several effective itemset 

pruning strategies derived from network flow analysis. 

These strategies can be adapted to other existing 

algorithms (such as CLOSET [8]) that use projected 

databases to prune their non-closed itemsets.  

For future work, we plan to extend our current work 

to mine even larger databases measured in billions of 

transactions using the secondary memory.  
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