
Frequent Closed Itemset Mining Using Prefix Graphs

 with an Efficient Flow-Based Pruning Strategy

H. D. K. Moonesinghe, Samah Fodeh, Pang-Ning Tan

Department of Computer Science & Engineering

Michigan State University

East Lansing, MI 48824

(moonesin, fodehsam, ptan)@cse.msu.edu

Abstract

 This paper presents PGMiner, a novel graph-based

algorithm for mining frequent closed itemsets. Our

approach consists of constructing a prefix graph

structure and decomposing the database to variable

length bit vectors, which are assigned to nodes of the

graph. The main advantage of this representation is that

the bit vectors at each node are relatively shorter than

those produced by existing vertical mining methods. This

facilitates fast frequency counting of itemsets via

intersection operations. We also devise several inter-

node and intra-node pruning strategies to substantially

reduce the combinatorial search space. Unlike other

existing approaches, we do not need to store in memory

the entire set of closed itemsets that have been mined so

far in order to check whether a candidate itemset is

closed. This dramatically reduces the memory usage of

our algorithm, especially for low support thresholds.

Our experiments using synthetic and real-world data

sets show that PGMiner outperforms existing mining

algorithms by as much as an order of magnitude and is

scalable to very large databases.

1. Introduction

 Frequent closed itemset mining is the task of

discovering frequent itemsets whose support counts are

different than those of their supersets. Frequent closed

itemsets provide a compact yet lossless representation of

the frequent itemsets. Numerous algorithms have been

developed to improve the efficiency of the closed itemset

mining task [1, 2, 5, 7, 8, 9, 10, 12]. There are two

typical strategies adopted by these algorithms: (1) an

effective pruning strategy to reduce the combinatorial

search space of candidate itemsets and (2) a compressed

data representation to facilitate in-core processing of the

itemsets. Item merging and sub-itemset pruning are two

of the most commonly used strategies employed by

current algorithms [10]. These strategies ensure that

many of the non-closed itemsets will not be examined

when searching for frequent closed itemsets, thereby

reducing the runtime of the algorithms.

 Apart from the pruning strategies used, having a

condensed representation of the database is also vital to

achieve good efficiency. Existing algorithms such as

FPclose [2] and CLOSET+ [10] construct a frequent

pattern tree (FP-tree) structure [3] to encode the relevant

itemsets and frequency information. In this

representation, each transaction in the database is

represented as a path from the root of the FP-tree.

Compression is achieved by merging prefix paths of

transactions that share the same items. A vertical

database representation is another popular strategy, in

which each item is associated with a column of values

indicating the transactions that contain the item. For

example, algorithms such as CHARM [12] use vertical

tid-lists as their data representation while MAFIA [1] and

DCI-Close [5] use vertical bit vectors.

 Although an FP-tree often provides a compact

representation of the data, our analysis shows that there

are situations where the storage requirements of the tree

may exceed even the database size, especially when the

support threshold is low or when the database is very

sparse. This is because each tree node encodes not only

the item label, but also the support count and pointers to

the parent, sibling, and child nodes. As shown in Table 1,

the size of the initial FP-tree exceeds the database size

for databases such as Chess and Kosarak. Algorithms

that use the FP-tree structure must also recursively build

smaller subtrees and traverse multiple branches of the

trees to collect frequency information during the mining

process. The overhead of reconstructing and traversing

the FP-trees may degrade the overall performance of the

algorithm [2].

 Table 1 shows that the memory requirements for

storing vertical bit vectors are generally less than that for

FP-tree and vertical tid-lists, with the exception of the

Kosarak data set. Vertical bit vectors also allow for fast

support counting using simple bitwise AND operations.

Table 1. Characteristics of various condensed representations

FP-Tree Database

Name

Database

Size

Min

Support
Num Nodes Size

Vertical

Bit Vector

Size

Vertical

TID-list

Size

PrefixGraph

Size

Chess 474.4Kb 25% 31812 621Kb 19.9Kb 435.3Kb 239.6Kb

Pumsb 14.0Mb 45% 183349 3.5MB 377.2Kb 8.58MB 4.28MB

WebDocs 1150.4Mb 10% 50313644 959.6MB 52.8MB 296.5MB 111.6MB

Kosarak 36.8Mb 0.08% 3425391 65.3MB 189.3MB 26.1MB 9.2MB

However, when the database is large and sparse, the

handling of long bit-vectors is quite inefficient since

there are lots of zeros in the vectors.

 Regardless of the representation, current closed

itemset mining algorithms must compare the support of a

candidate itemset against the support of its supersets. To

perform this task more efficiently, many algorithms such

as CLOSET+ [10], FPclose [2], and CHARM [12] store

their intermediate result set, which contains all the closed

itemsets that have been mined so far, in another data

structure (FP-Tree, hash table etc.). Such a storage

method is feasible as long as the number of closed

itemsets is small. When the number of closed itemsets is

large, it will consume considerable memory to store and

time to search the itemsets. In fact, our analysis shows

that in some cases the amount of memory occupied by

the result set is several orders of magnitude larger than

the size of initial FP-tree or vertical database

representation. For example, in the Chess database with

25% support threshold, storing the result set takes up to

102MB, even though the size of the initial FP-Tree is

only 621Kb! The cost for searching the result set (to

determine whether a candidate itemset is closed) can also

be very expensive. Our analysis on the Chess database

shows that FPclose spends about 70% of its overall

computation time searching the result-set.

 In summary, both FP-Tree and vertical

representations have their own strengths and limitations.

In this paper, we introduce a novel representation called

PrefixGraph, which leverages some of the positive

aspects of existing representations. From FP-tree, it

borrows the idea of projecting a database onto different

nodes of a graph—but without the extra cost of

traversing multiple branches of the tree to collect

frequency information. A PrefixGraph also uses bit

vectors to encode the database projection at each node.

However, the length of its bit vector is considerably

shorter than that used by existing vertical bit vector

representations. We will discuss in more details how the

graph is constructed in Section 2. From Table 1, note

that the size of the prefix graph structure is moderate

compared to other representations. For the Kosarak data

set, it yields the most compact representation.

 Using efficient pruning strategies derived from

network flow analysis, a novel algorithm called PGMiner

is developed. Our experimental results show that the

memory usage for PGMiner does not grow quite as

rapidly as other algorithms during the mining process.

Furthermore, PGMiner outperforms FPclose [2], DCI-

Close [5] and CHARM [12], three state-of-the-art closed

itemset mining algorithms, by an order of magnitude

both in time and memory requirements.

 The rest of the paper is organized as follows: Section

2 introduces the PrefixGraph representation. Section 3

describes the PGMiner algorithm. Section 4 presents the

experimental results while Section 5 concludes the paper.

2. PrefixGraph Representation

 In this section, we describe the PrefixGraph

representation and show in detail its construction.

2.1 Preliminaries

 Let I = {i1, i2, …,im} be a set of m distinct items. An

itemset X is a non-empty subset of items; i.e. X ⊆ I. An

itemset with k items is called a k-itemset. Items in a given

itemset are assumed to be sorted according to some total

order, p . We use the notation x p y to indicate x

precedes y according to the total order. The support of an

itemset X, denoted as σ(X), is defined as the fraction of

total transactions that contain X. An itemset is called

frequent if its support is greater than or equal to a

minimum support threshold ξ. An itemset X is closed if

none of its proper supersets has exactly the same support

count as X. Given a database D and a support threshold

ξ, the problem of mining closed itemsets is to find all

closed itemsets that pass the support threshold.

 A PrefixGraph consists of a set of nodes and a set of

directed edges connecting pairs of nodes. Any item in the

database that satisfies the support threshold is

represented as a node in the PrefixGraph. Each node is

also associated with a projected bit vector database (see

Figure 2). Before illustrating the PrefixGraph structure

further, we give some useful definitions.

Definition 1 (Prefix 2-Item) At a node k, an item i is

called its prefix 2-item if ip k and {i, k} is a frequent 2-

itemset.

Definition 2 (Prefix Itemset) Consider an itemset X =

{i1, i2, …,ij-1, ij, ij+1,…,in}. A prefix itemset of X with

respect to node ij is defined as all the items {i1, i2, …ij-1}.

Definition 3 (Suffix Node) Let S be a set of nodes sorted

based on frequency descending order. A suffix node with

respect to node j is any node k∈S such that jp k.

Definition 4 (Suffix Link) A directed edge between

node i and its suffix node k is called a suffix link.

Definition 5 (Farthest-Node) Let S be a set of nodes

sorted based on frequency descending order and T(j) be

a set of suffix nodes for node j. Let W(j) ⊆ T(j) be a

subset of the suffix nodes such that ∀n ∈ W(j), jn is a

suffix link in the PrefixGraph and {j, n} is a frequent 2-

itemset. The Farthest-Node of node j is defined as the

suffix node k, such that ∀n ∈ W(j), np k.

Example 1: Consider the PrefixGraph shown in Figure 2

for the sample database in Table 2. The total order of the

nodes are ap b p d p e p c. The prefix 2-item for

node b is a, while the prefix 2-items for node c are a and

b. The nodes d, e, and c are suffix nodes of b because b

precedes these nodes. The edges bd, be and bc are

examples of suffix links associated with node b. Finally,

c is the Farthest-Node of b.

Table 2. Sample database

Transaction ID Items Frequent Items

1 a, b, c, d, a, b, d, c

2 b, d, a, e, f, g a, b, d, e

3 d, a, e a, d, e

4 i, a, c, b a, b, c

5 b, c, e b, e, c

6 d, e, h d, e

2.2 PrefixGraph Construction

 We now illustrate the construction of the PrefixGraph

using the transaction database given in Table 2 with

support threshold ξ = 2.

 First, we scan the database to identify the set of

frequent items and their corresponding support counts.

These frequent items form the nodes of the PrefixGraph.

For the sample database, the list of frequent items are

<(a:4), (b:4), (c:3), (d:4), (e:4)>, where (m:n) denotes an

item m with support count n.

 Once the nodes are identified, we order them based

on the descending order of support count as shown in

Figure 1(a). Next, we scan the database again to identify

the prefix 2-items for each node. For example, the

frequent 2-itemsets for nodes a, b, d, e, and c are (ab, ad,

ac, ae), (ba, bd, be, bc), (da, db, de), (ea, eb, ed), and (ca,

cb), respectively. The prefix 2-items and their

corresponding support counts for these nodes are {},

{a:3}, {a:3, b:2}, {a:2, b:2, d:3}, and {a:2, b:3}

respectively. For each node, we store its set of prefix 2-

items in a header table as shown in Figure 1(b).

Figure 1. PrefixGraph construction-a running

example

 The next stage of the graph construction is to store

the transactions as bits in the projected bit vector

database of the nodes. We scan the database, and for

each transaction, infrequent items are removed and the

remaining items are sorted based on the frequency

descending order. Let T be the resulting itemset. Now for

each item k in T, we select the corresponding node k and

compare its prefix 2-items against the prefix itemset of T.

If there is a match then these matching items are stored

as bits in the projected bit vector database of node k.

 For example, consider the first transaction of the

sample database. After removing the infrequent items,

the remaining items are: T= {a, b, d, c}. Since the

transaction has 4 frequent items we need to consider the

nodes a, b, d, and c. Node a has no prefix 2-items and

therefore nothing is stored. For node b, item a of the

transaction matches with its prefix 2-item (i.e. a) and

therefore bit <1> is stored in its projected bit vector DB.

For node d, items {a, b} of T match with its prefix 2-

items and therefore bits <11> are stored in the projected

bit vector DB. Similarly for node c, the bits for items {a,

b} of the transaction are stored in the projected bit vector

DB. Figures 1(c) and 1(d) show the PrefixGraph after

storing the first two transactions. When storing a

transaction such as {d, e} at node e, we need to store bits

<001> in node e, since only item d of the transaction

matches with the prefix 2-items of node e.

(a)

(b)

(c)

(d)

a db e c

a db e c

ab abd aba

a db e c

ab abd aba

1 11 11

a db e c

ab abd aba

1

1

11

11

111 11

Bit Vector Databases

Header

Tables

Nodes

<a, b, d, c>

<a, b, d, c>

<a, b, d, e>

 In the PrefixGraph structure, suffix links are created

based on the transactions. For each item k in the

transaction T, a suffix node m is selected such that m ∈ T

and ∀n ∈ suffix nodes of k, m p n. A suffix link is then

created from node k to node m. For example, consider

the transaction {a, b, d, c}. For node b we select the

suffix node d (out of d and c) and add a suffix link from

b to d. Figure 2 shows the complete PrefixGraph

structure after storing all the transactions in the sample

database.

 Instead of explicitly creating links, the links are

incorporated directly into the projected bit vector

database. More specifically, we can group the bit vectors

of the transactions that have the same suffix link together

and store them contiguously in the projected bit vector

database of the node. For this purpose, the projected bit

vector database of each node is partitioned into bins, and

the set of bit vectors in each bin corresponds to a suffix

link. For example, transactions {a, b, d, e} and {a, d, e}

both have the same suffix link (de) at node d, and thus,

can be stored together in a bin. If a transaction has no

suffix link beyond a given node, these transactions are

stored in an additional bin called the terminating bin. For

example, the transaction {a, d, e} is stored in the

terminating bin of node e. All bins must be arranged

contiguously, so that the intersection of bit vectors (item

wise) can be done fast as a one large chunk of words.

Also, we need to keep track of the starting location of

each bin in order to identify the suffix links.

 A summary of the PrefixGraph construction

procedure is given in Algorithm 1.

Algorithm 1 (PrefixGraph Construction)

Input: A transaction database D and support threshold ξ

Output: PrefixGraph structure

Method:

1. Scan the database D and find the frequent 1-

itemsets (nodes) and their supports.

2. Sort the nodes in descending order of support.

3. Find the frequent 2-itemsets for each node and

create the header tables.

4. For each transaction T:

a. Sort the frequent items in T in descending

order of their support.

b. For each item k in T, select node k and

match the prefix 2-items of node k with the

items in T and if there is a match, store the

matching items as a bit vector in the bit

vector database of node k.

2.3 Analysis of PrefixGraph Structure

 The PrefixGraph construction algorithm requires

three scans of the database. The first two scans are

necessary to find frequent 1-itemset and 2-itemset, while

the third scan is needed to construct the projected bit

vector databases.

Proposition 1 The size of the projected bit vector

database of a node is bounded by the support count of

the node times the number of prefix 2-items of that node.

 Due to space limitations, readers may refer to [6] for

the proof of this proposition.

3. Frequent Closed Itemset Mining

 In this section, we will study how to efficiently mine

frequent closed itemsets from the PrefixGraph structure.

The algorithm proceeds in two phases: first, we find the

frequent closed itemsets for each node (these are known

as local closed itemsets). We then check whether the

local closed itemsets are also globally closed using

various inter-node pruning techniques. Here we give the

formal definitions of local and global closed itemsets.

Definition 6 (Local Closed itemset) An itemset X,

derived under node n is defined as locally closed, if there

is no itemset Y (⊃ X) derived under the same node n with

σ(Y) = σ(X).

Definition 7 (Global Closed itemset) An itemset X,

derived under node n is defined as globally closed, if

there is no itemset Y (⊃ X) derived under any node k, (k∈

set of all nodes) with σ(Y) = σ(X).

3.1 Intra-Node Closed Itemset Mining

 In intra-node closed itemset mining we mine the

locally closed itemsets from the projected bit vector

database for each node. As shown in the next

proposition, itemsets that are not locally closed are

guaranteed to be non-globally closed. Such itemsets can

therefore be excluded from further consideration.

Figure 2. PrefixGraph representation

a db e c

ab abd aba

1

1
1

11

11
10

111
101

010

001

11

11
01

Bit Vector Databases

Nodes

Header

(Prefix 2-items)

Suffix Links

Proposition 2: For any given itemset X, derived under

node n, if X is not locally closed then it is not globally

closed.

Proof. Since X is not locally closed, ∃ Y derived under

node n, s. t. X ⊂ Y and σ(Y) = σ(X). Therefore, by the

Definition 7, X cannot be globally closed. ■

 In general, to generate frequent itemsets of a node, bit

vectors of all distinct pairs of the itemsets are intersected

and the cardinality of the resulting bit vector is checked.

This is carried out recursively in a depth first manner

until all the itemsets are enumerated. For example, in the

itemset enumeration tree given in Figure-3, for itemset

{a}, we generate all its combinations ({ab},{ac},{ad}).

Then starting from {ab}, ({abc},{abd}) are generated.

Similarly, itemsets {abcd}, {acd}, ({bc},{bd}), {bcd}

and {cd} are enumerated in depth first manner. Note that

any itemset {i1, i2, …,ik} generated under a node n must

have its node label appended as {i1, i2, …,ik, n}. We have

omitted item n from the set enumeration tree in Figure 3

for brevity. Similar to several past algorithms [1, 5, 8,

12], we use two additional pruning techniques to rapidly

identify the local closedness of the frequent itemset once

it is generated.

Proposition 3: (sub-itemset pruning) For a frequent

itemset X and an already found closed itemset Y, if X ⊂ Y

and σ(X)=σ(Y), then X and all X’s descendent itemsets in

the set enumeration tree are not closed.

Proposition 4: (item merging) For a frequent itemset X

and an already found frequent itemset Y, if the tid-

set(X)⊆ tid-set(Y) and Y⊄ X, then X and all X’s

descendent itemsets in the set enumeration tree are not

closed.

 A direct implementation of sub–itemset pruning

requires storing possibly a large set of closed itemsets

and performing subset checking to determine whether an

itemset is set-included in a superset. To reduce these

overheads, we limit the applicability of this pruning

strategy to itemsets between two successive levels of the

depth first search space. For example, itemset {ab} at

level-2 generates its level-3 itemsets ({abc}, {abd}).

Based on Proposition 3, if {abc} and {ac} have identical

support counts, we can prune {ac} and its sub-tree.

 The applicability of the item merging proposition to

an itemset X requires that we perform subset checking of

X’s bitmap with the bitmaps of all the processed (i.e.

already mined) local itemsets of level-1 down to the

parent level of itemset X. For example, if the itemset is

{b, c, d} we need to check whether its bitmap is a subset

of the bitmap of a. If it is a subset of bitmap(a), then {b,

c, d} is not closed according to Proposition 4. In our

vertical bit vector representation, such bitmap subset

checking can be performed very fast.

 The main advantage of local closed itemset mining is

that itemset generation and support counting are very

fast, since the projected database contains short bit

vectors. Unlike FPclose and CLOSET+, the information

needed for support counting is locally available and there

is no need to traverse any other nodes.

Figure 3. Itemset enumeration tree of a node

 Application of both propositions ensures that we

generate only the complete set of local closed itemsets

for that node. In the next section, we develop an efficient

flow based pruning strategy to verify whether the local

closed itemsets are also globally closed.

3.2 Inter-Node Pruning

 In order to develop inter-node closed itemset pruning,

we consider PrefixGraph structure as a network with

transactions flowing through the nodes. Therefore, the

problem of discovering a global closed itemset can be

mapped to a network flow problem.

 Let us first analyze the suffix links of the

PrefixGraph structure. For a node n in the PrefixGraph

G, we define the out-neighborhood and in-neighborhood

of n by N
+
(n) = {m ∈ V(G) | (n, m) ∈ E(G)} and N

-
(n) =

{m ∈ V(G) | (m, n) ∈ E(G)}, respectively (here V(G)

and E(G) are the set of nodes and edges respectively).

 For an edge (n, m) of the PrefixGraph G,),(mnf is

the flow along the edge and is considered as the set of

transactions that flows through the edge (n, m). Further

more we have, 0≤),(mnf ≤σ({nm}), where),(mnf

denotes the number of transactions.

 Based on this, for any node n, its outgoing flow can

be defined as OutF(n) =),(
)(

mnf
nNm +∈

U and incoming

flow can be defined as InF(n) =),(
)(

nmf
nNm −∈

U . More

specifically, we denote),(mnf X
 as all the transactions

containing itemset X that flow from node n to m. Then,

for a given itemset X derived under node n, the outgoing

m n o

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd Depth First Traversal

Level -1

Level -2

Level -3

Level -4

flow of X can be defined as OutFX(n) =),(
)(

mnf X
nNm +

∈

U .

Similarly, the incoming flow of itemset X derived under

node n can be defined as InFX(n) =),(
)(

nmf X
nNm

−
∈

U .

Here we give some properties of this flow based

representation.

Postulate 1: Given an itemset X derived under node n,

where |X| ≥ 2, the following properties hold:

I. σ(X) = |InFX(n)|

II. InFX(n) ⊇ OutFX(n)

III. ∀m: OutFX(n) ⊇ InFXm(m), where npm and Xm

= X ∪{m}.

Example 2: Consider the PrefixGraph shown in Figure

4, for the database given in Table 2. The out-

neighborhood of node b, N
+
(b) = {d, e, c} and the in-

neighborhood of node d, N
-
(d) = {b, a}. Transaction

flow along edges (b,d) and (d,e) are),(dbf ={t1, t2} and

),(edf ={t2, t3} respectively, where ti is the transaction

ID. The flows can also be defined with respect to a given

itemset. For example,),(},{ edf ba
= {t2}. The incoming

flow for itemset {a, d, e} at node e, InF{a,d,e}(e) = {t2, t3}

and |InF{a,d,e}(e)| =2 = σ(ade).

 Under the network flow representation, a closed

itemset can be defined as follows.

Theorem 1: An itemset X derived under node n is

globally closed if ∀m: InFX(n) ≠ InFXm(m), where npm

and Xm = X ∪{m}.

Proof. This theorem is simply a re-statement of the

definition of closed itemset that no supersets of X have

the same support as X. Note that each immediate superset

Xm must be generated at some node m in the

PrefixGraph structure and σ(Xm) = |InFXm(m)|. ■

Corollary 1: The following conditions hold if X is not

globally closed.

I. ∃m: InFX(n) = InFXm(m), where np m.

II. ∃m: InFX(n) ⊆ InF(m), where np m.

Proof. Condition I follows directly from the contra

positive of Theorem 1. Condition II holds because

InFXm(m) ⊆ InF(m) (from the definition of incoming

flow). ■

 Based on this flow based representation, we develop

several theorems that will assist us in identifying whether

a given local closed itemset is globally closed.

Theorem 2: For any itemset X derived under node n if,

I. X is locally closed and

II. ∃ X' s. t. X ⊂ X' and X' is known to be a globally

closed itemset under the same node n

then X must also be globally closed.

Proof. To construct the proof, by contradiction, assume

that X is not globally closed even though X’ is globally

closed. By Corollary 1, ∃m: InFX(n) ⊆ InF(m). Since X

⊂ X', InFX’(n) ⊆ InFX(n). Due to the transitive property

of subset relation, InFX’(n) ⊆ InF(m), which contradicts

the previous statement that X’ is a globally closed

itemset. Thus, X must be globally closed. ■

 This theorem states that if we have a globally closed

itemset derived under some node, then all locally closed

subsets of the itemset are also globally closed (upward

closure property). For example, in the search space given

in Figure 3, suppose we found itemset {a, c, d} is

globally closed; then all of the locally closed subsets of

{a, c, d} derived under node n are guaranteed to be

globally closed.

 Efficient implementation of this theorem requires

keeping all of the globally closed itemsets of a particular

node in memory for subset checking. To avoid this, we

devise two optimization methods: First, when checking

the global closedness of local closed itemsets, we start

from the maximal closed itemset (leaf) of the

enumeration tree. That way, if we determine the leaf

itemset as globally closed (using other techniques

described later), then all the local closed itemsets in its

path (to the root) become globally closed. Second, based

on our analysis, we found that there is temporal locality

which can be exploited during the search, i.e., most local

closed itemsets are subsets of the most recently found

globally closed itemset. Therefore, each time we

discovered a new globally closed itemset, we keep a

copy of this itemset in memory. Then, when a new local

closed itemset is found we compare it against this copy.

Theorem 3: For any itemset X derived under node n if,

I. X is locally closed and

II. |InFX(n)| - |OutFX(n)| > 0

then X is a globally closed itemset.

Proof. To construct the proof, by contradiction, assume

that X is not globally closed but |InFX(n)| > |OutFX(n)|.

By Corollary 1, ∃m: InFX(n) = InFXm(m). From the third

property of Proposition 1, |OutFX(n)| ≥ |InFXm(m)|.

Putting them together, it follows that |InFX(n)| ≤

a db e c

f(b,c)

f(b,d) f(d,e)f(a,b) f(e,c)

f(b,e)

f(d,c)
f(a,d)

Figure 4. Transaction flow network

|OutFX(n)|, which contradicts our initial assumption.

Thus, X must be globally closed. ■

According to this theorem if the bitmap of a local

closed itemset X, derived under node n, has at least one

transaction that terminates at node n (i.e. those

transactions do not flow to other nodes), then X is

globally closed. In our PrefixGraph structure, all we

need to do is to examine the bits in the terminating bin of

the corresponding itemset’s bitmap. If at least one bit is

‘1’ in the terminating bin of the itemset, then that itemset

is globally closed. This is a very fast operation that

requires checking the itemset’s own bit vector to

determine the global closedness.

Theorem 4: For any itemset X derived under node n if,

I. X is locally closed and

II. InFX(n) = OutFX(n) and

III. X has exactly one suffix link to node m

then X is not a globally closed itemset.

Proof. Let InFX(n) = OutFX(n). Since X has exactly one

suffix link to a node m, OutFX(n) = InFXm(m). Putting

them together, we obtain InFX(n) = InFXm(m), which

according to Corollary 1 means that X is not globally

closed. ■

 Theorem 4 suggests that if all of the transactions that

belong to itemset X flow to exactly one other node, then

X is not closed. In the PrefixGraph representation, once

an itemset is generated its links can be analyzed by

checking the bins of the bit vector. Based on the number

of links, we can decide whether the itemset is not closed.

 For the remaining local closed itemsets in which the

previous theorems are inapplicable, we need to test

whether they are globally closed. In order to determine

the global closedness of a local closed itemset, we need

to visit every suffix node and compare the support of its

corresponding superset, which is a very expensive

operation. The following theorem reduces the number of

such nodes that need to be visited.

Theorem 5: Let X be any itemset derived under node n

and let t be the Farthest-Node of n w. r .t. itemset X.

Then for any itemset X' s. t. X' ⊃ X derived under node

m, np mp t, σ(X') ≠ σ(X).

 The proof is given in [6]. For a given itemset, this

theorem identifies the first possible node that can

generate a superset itemset with identical support. So all

of the nodes between the current node, where the itemset

is generated, and the farthest node w.r.t. the itemset

(excluding the farthest node itself) can be ignored. Using

this theorem, we can identify the set of nodes that can

possibly generate a superset itemset with an identical

support for a given itemset X, derived under node n, as:

GENX(n)= {m ∈ set of nodes | Farthest-NodeX(n) p m

and ∀ items j of X, j ∈ prefix 2-items(m)}.

 To identify the global closedness of an itemset X,

generated under node n, we visit each node in GENX(n)

until we determine its global closedness. Once we visit a

node k ∈ GENX(n), we can generate the itemset Xk using

its bit vector database and compare the support count

with X. There are several optimization strategies that can

be employed here. We found temporal locality property

that can be exploited during the subsequent generation of

itemsets in a node. In order to facilitate fast subsequent

itemset generation, we keep the bit vectors of the most

common subsets of the itemset, once they have been

generated under a node for reuse. Due to space limitation

more details are given in [6].

 This itemset regeneration based closedness check is

efficient because of the following reasons: first our bit

vectors are shorter in length, so that intersection is fast.

Second, we keep track of the bit vectors of most common

itemsets in memory, which avoids complete regeneration.

Third and more importantly, after applying Theorems 2-

4, the remaining percentage of itemsets that needs global

closedness is much smaller. We have analyzed this in

Section 4.

3.3 Mining Algorithm

 Based on the above discussion, we have the following

algorithm for frequent closed itemset mining.

Algorithm 2 (PGMiner)

Input: PrefixGraph structure G and support threshold ξ

Output: The complete set of frequent closed itemsets

Method:

1. Starting from the node with highest support

count call MineNode(n) for each node n∈V(G).

Procedure MineNode (n)

1. With the depth first search paradigm, mine the

local closed itemsets at node n in a top down

manner by intersecting its bit vectors. Use

Propositions 3 and 4 to prune non-closed local

itemsets.

2. Once at a leaf itemset X of the search path, use

Theorems 2, 3 and 4 to detect global closedness

for the local closed itemset found. If not

detected, search the nodes in GENX(n)

(Theorem 5) using the regeneration method.

3. If an itemset is globally closed, mark all the

local closed itemsets in the search path to the

root as globally closed (by Theorem 2). Output

any global closed itemset found.

4. Stop when all prefix 2-items in the node have

been processed, and reclaim memory of the bit

vector DB of that node.

4. Experimental Evaluation

4.1 Evaluating Environment

 We compared the performance of PGMiner against

three state of the art algorithms: FPclose [2], DCI-Close

[5], and CHARM [12], which uses the DiffSet [11]. We

experimented with variety of databases as shown in

Table 3. Most of the real-world databases were obtained

from the FIMI repository†. Synthetic databases were

generated using the IBM data generator [4]. Our machine

consists of a 2.8 GHz Intel Pentium 4 processor with 1

GB of memory running Linux. All recorded execution

times refer to real time (that includes CPU and I/O time).

Table 3. Characteristics of the databases

Dataset No. of Transactions No. of Items

Medical 5,939,734 5,912

WebView2 77,513 3,340

Chess 3,196 75

WebDocs 1,692,082 5,267,656

Pumsb 49,046 2,113

Kosarak 990,002 41,270

T40I10D100K 100,000 1,000

T100I20D100K 100,000 997

T20I8D500K 500,000 8,612

T50I10DxK 25,000-50,000,000 25,000

4.2 Experimental Results

4.2.1 Performance Comparisons. Execution time

comparison of PGMiner against other algorithms is

shown in Figure 5. When an algorithm took considerably

longer time compared to the rest, it was eventually

terminated. Our analysis shows that in seven out of nine

databases tested, PGMiner shows the best runtime when

compared to all other algorithms at low support

thresholds. For the remaining two databases (Chess, and

Pumsb), although PGMiner outperforms both FPclose

and CHARM, DCI-Close shows better runtime. This is

because their search space enumeration method seems

better suited for these smaller databases. We found that

in some cases all other algorithms fail to mine databases

at low support thresholds, while PGMiner can still run

for even smaller levels of support thresholds.

 In summary, PGMiner shows better run time

performance because it has very low overhead due to the

effectiveness of its flow based pruning strategies. Unlike

other algorithms, PGMiner does not need to store the

entire result set in memory. The PrefixGraph structure

also has shorter bit vectors and this significantly reduces

† http://fimi.cs.helsinki.fi

the bit vector intersection cost for large databases. Thus,

PGMiner has better runtime and can scale to very lower

levels of support thresholds.

4.2.2 Memory Usage. The memory usage for all the

algorithms on several databases is shown in Figure 6. We

found that PGMiner mines all of the databases with low

memory usage when compared with the other algorithms.

In all these cases, FPclose shows higher memory

consumption because of its storage based pruning

strategy and the large FP-Tree structure it has to build for

larger databases. However, DCI-Close shows better

memory usage when compared with FPclose and

CHARM. But in some cases (e.g. T40I10D100K), its

memory consumption gets suddenly high when the

threshold is gradually lowered. Note that the memory

usage of PGMiner does not grow quite as rapidly as

other algorithms during the mining process.

4.2.3 Scalability. We have also measured the execution

time of all the algorithms by increasing the number of

transactions gradually. We use the T50I10DxK data set,

where x is varied from 25,000 transactions (DB size

6.9MB) to 50 million transactions (DB size 13.9GB),

with minimum support threshold 0.1%. For this

experiment we used a server (2 GHz) with 4 GB of

memory, since these databases are of gigabyte size. The

experimental results (see Figure 7) revealed that

CHARM, FPclose, and DCI-Close could not reach more

than 1 million transactions (1000K) of this database set.

FPclose and DCI-Close crashed for the 5000K dataset.

Analysis of memory usage for these algorithms revealed

that they consume high memory space. See Figure 8. In

the 5000K dataset, the FPclose algorithm fails because it

has consumed all the available memory. Memory usage

of DCI-Close is high even for the 1000K dataset. Note

that PGMiner was able to reach 50 million transactions

easily showing remarkably low memory usage.

4.2.4 Effectiveness of the Flow Based Pruning. In our

algorithm, when a local closed itemset is discovered, we

first apply Theorem 2 and then if it cannot discover the

closedness of the itemset, we apply Theorem 3. In Table

4 we have shown the percentage of itemsets discovered

by both these theorems.

Table 4. Evaluation of global closedness check

Data Set (min. sup.) Theorem 2 Theorem 3

Chess (30%) 91.6% 8.0%

WebDocs (10%) 94.1% 85.4%

Pumsb (45%) 91.9% 30.5%

Kosarak (0.08%) 65.5% 68.1%

T20I8D500K (0.01%) 91.7% 26.4%

T40I10D100K (0.1%) 67.6% 40.3%

Figure 5. Execution time (in seconds) for CHARM, FPclose, DCI-Close and PGMiner

Figure 6. Amount of memory (in MB) required at various support levels

Medical

0

50

100

150

200

250

0.0012 0.0010 0.0008 0.0006 0.0004 0.0002
Support %

T
im

e
 (

s
e

c
.)

CHARM
FPclose
DCI-Close
PGMiner

WebView2

0

5

10

15

20

25

30

35

40

45

50

0.050 0.040 0.030 0.020 0.010 0.008 0.005
Support %

T
im

e
 (

s
e

c
.)

CHARM
FPclose
DCI-Close
PGMiner

Kosarak

0

500

1000

1500

2000

2500

0.20 0.16 0.12 0.08 0.078 0.076
Support %

T
im

e
 (

s
e

c
.)

FPclose
DCI-Close
PGMiner

Chess

0

200

400

600

800

1000

1200

40 35 30 25 20 15
Support %

T
im

e
 (

s
e

c
.)

CHARM
FPclose
DCI-Close
PGMiner

WebDocs

0

100

200

300

400

500

600

700

800

900

1000

20 18 16 14 12 10 8
Support %

T
im

e
 (

s
e

c
.)

FPclose

DCI-Close

PGMiner

T20I8D500K

0

100

200

300

400

500

600

700

1.00 0.50 0.10 0.05 0.01 0.005 0.0025
Support %

T
im

e
 (

s
e

c
.)

CHARM
FPclose
DCI-Close
PGMiner

Pumsb

0

100

200

300

400

500

600

700

800

900

65 60 55 50 45 42
Support %

T
im

e
 (

s
e

c
.)

CHARM
FPclose
DCI-Close
PGMiner

T40I10D100K

0

200

400

600

800

1000

1200

1400

1.00 0.50 0.25 0.10

Support %

T
im

e
 (

s
e

c
.)

CHARM
FPclose
DCI-Close
PGMiner

T100I20D100K

0

200

400

600

800

1000

1200

1400

1600

1800

5 4 3 2 1
Support %

T
im

e
 (

s
e

c
.)

CHARM
FPclose
DCI-Close
PGMiner

T40I10D100K

1

10

100

1000

1.00 0.50 0.25 0.10 0.05

Support %

M
e

m
o

ry
 S

iz
e

 (
M

B
)

CHARM FPclose DCI-Close PGMiner

Pumsb

1

10

100

1000

65 60 55 50 45 42

Support %

M
e

m
o

ry
 S

iz
e

 (
M

B
)

CHARM FPclose DCI-Close PGMiner

Kosarak

1

10

100

1000

0.20 0.16 0.12 0.08 0.078

Support %

M
e

m
o

ry
 S

iz
e

 (
M

B
)

FPclose DCI-Close PGMiner

 For example, In WebDocs dataset we were able to

discover 94.1% of the total local closed itemsets as either

globally closed or not by using Theorem 2. From the

remaining percentage (i.e. 5.9%), 85.4% of itemsets were

discovered by Theorem 3. Table 4 clearly shows that

both Theorem 2 and Theorem 3 are capable of detecting

global closedness of many local closed itemsets of the

database. Moreover, these two techniques can be easily

implemented and it is one of the key factors to achieve

faster performance in our algorithm.

5. Conclusions

 This paper introduces a PrefixGraph representation

for mining frequent closed itemsets. The key advantage

of our representation is that it leverages the positive

aspects from both FP-tree and vertical bit vector

representations. The size of the PrefixGraph structure is

quite moderate and its memory requirements do not grow

as rapidly as other algorithms. Our proposed algorithm

called PGMiner employs several effective itemset

pruning strategies derived from network flow analysis.

These strategies can be adapted to other existing

algorithms (such as CLOSET [8]) that use projected

databases to prune their non-closed itemsets.

For future work, we plan to extend our current work

to mine even larger databases measured in billions of

transactions using the secondary memory.

Acknowledgements

 We would like to thank Dr. Mohammed J. Zaki for

providing the source code of the CHARM algorithm.

Thanks also go to the authors of the FPclose and the

DCI-Close algorithms for sharing their source codes with

us. We are grateful to Michael Zaroukian and Henry

Barry from the college of Human Medicine at MSU for

providing us anonymized medical database.

References

[1] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A

Maximal Frequent Itemset Algorithm for Transactional

Databases. In Proc. of ICDE, 2001.

[2] G. Grahne, J. Zhu. Efficiently Using Prefix-trees in

Mining Frequent Itemsets. In Proc. of FIMI'03, 2003.

[3] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns

without Candidate Generation. In proc. of ACM

SIGMOD, 2000.

[4] IBM Almaden. Synthetic Data Generation Code for

Associations and Sequential Patterns.

http://www.almaden.ibm.com/cs/quest/syndata.html.

[5] C. Lucchese, S. Orlando, and R. Perego. Fast and

Memory Efficient Mining of Frequent Closed Itemsets.

TKDE, 2006.

[6] H. D. K. Moonesinghe, S. Fodeh and P.-N. Tan.

Frequent Closed Itemset Mining Using Prefix Graphs.

Michigan State University, Technical Report, 2006.

[7] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.

Discovering frequent closed itemsets for association

rules. In ICDT'99, 1999.

[8] J. Pei, J. Han, and R. Mao. CLOSET: An Efficient

Algorithm for Mining Frequent Closed Itemsets. In

Proc. of DMKD'00, 2000.

[9] N. G. Singh, S. R. Singh, and A. K. Mahanta.

CloseMiner: Discovering Frequent Closed Itemsets

Using Frequent Closed Tidsets. In Proc. of ICDM, 2005.

[10] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for

the Best Strategies for Mining Frequent Closed Itemsets.

In Proc of ACM SIGKDD, 2003.

[11] M. J. Zaki, K. Gouda. Fast vertical mining using

diffsets. In Proc. of ACM SIGKDD, 2003.

[12] M. J. Zaki, C. J. Hsiao. CHARM: An Efficient

Algorithm for Closed Itemset Mining. In Proc of

SDM’02, 2002.

1

10

100

1000

10000

25K 50K 100K 500K 1000K 5000K 50000K

No. of Transactions

T
im

e
 (

s
e
c
.)

CHARM
FPclose
DCI-Close
PGMiner

Figure 7. Execution time versus number of

transactions (K=1000)

0

512

1024

1536

2048

2560

3072

3584

4096

100K 500K 1000K 5000K 50000K

No. of Transactions

M
e
m

o
ry

 S
iz

e
 (

M
B

)

FPclose

DCI-Close
PGMiner

Figure 8. Memory usage of algorithms for

large databases

