
Global and Componentwise Extrapolation for Accelerating Data Mining from
Large Incomplete Data Sets with the EM Algorithm

Chun-Nan Hsu Han-Shen Huang Bo-Hou Yang
Institute of Information Science

Academia Sinica
Nankang, Taipei, Taiwan

{chunnan,hanshen,ericyang}@iis.sinica.edu.tw

Abstract

The Expectation-Maximization (EM) algorithm is one of
the most popular algorithms for data mining from incom-
plete data. However, when applied to large data sets with
a large proportion of missing data, the EM algorithm may
converge slowly. The triple jump extrapolation method can
effectively accelerate the EM algorithm by substantially re-
ducing the number of iterations required for EM to con-
verge. There are two options for the triple jump method,
global extrapolation (TJEM) and componentwise extrapo-
lation (CTJEM). We tried these two methods for a variety
of probabilistic models and found that in general, global
extraplolation yields a better performance, but there are
cases where componentwise extrapolation yields very high
speedup. In this paper, we investigate when componentwise
extrapolation should be preferred. We conclude that, when
the Jacobian of the EM mapping is diagonal or block diag-
onal, CTJEM should be preferred. We show how to deter-
mine whether a Jacobian is diagonal or block diagonal and
experimentally confirm our claim. In particular, we show
that CTJEM is especially effective for the semi-supervised
Bayesian classifier model given a highly sparse data set.

1. Introduction

The Expectation-Maximization (EM) algorithm [4] is
one of the most popular algorithms for data mining from
incomplete data. Given an incomplete data set, the EM al-
gorithm iteratively searches for the best parameter vector
θ∗ that maximizes the log-likelihood of the data. How-
ever, when applied to large data sets with a large number
of parameters to estimate, the EM algorithm may converge
slowly. If the data sets also contain a large proportion of
missing data or there are a large number of hidden variables
in the model, the convergence of EM can be even slower.

Aitken’s acceleration is one of the most commonly used
method to speed up fixed-point iteration methods [2]. Since
the EM algorithm can be considered as a fixed-point itera-
tion method, we can apply Aitken’s acceleration to acceler-
ate the EM algorithm [9, 10].

However, the multivariate version of Aitken’s acceler-
ation requires to compute or approximate the Jacobian of
the EM mapping matrix, which can be intractable. Many
variants of Aitken’s acceleration have been proposed to ap-
proximate Aitken’s acceleration as an extrapolation method.
One of the methods is the triple jump extrapolation method
(TJEM) [7, 5, 15]. The idea is to estimate the extrapola-
tion rate by considering the previous two estimates of the
parameter vectors. The triple jump extrapolation method
can effectively accelerate the EM algorithm by substan-
tially reducing the number of iterations required for the
EM algorithm to converge. Another benefit of the triple
jump method is that it can be easily integrated with exist-
ing EM packages for any probabilistic model. We can even
integrate the triple jump method with other extrapolation-
based acceleration methods, such as the parameterized EM
(pEM) [1] and the adaptive overrelaxed EM (aEM) [14], to
further accelerate the convergence [6].

The triple jump method can extrapolate the parameter
vector with one extrapolation rates for different dimensions.
We refer to the former approach as global extrapolation and
the latter as componentwise extrapolation. The component-
wise extrapolation of the EM algorithm is referred to as the
componentwise triple jump EM algorithm (CTJEM). Hes-
terberg [5] proposed a global extrapolation method, while
Huang et al. [7] described a componentwise extrapolaion
method, though in that method many dimensions can be
extrapolated together as a sub-vector. We tried these two
methods for a variety of probabilistic models with synthe-
sized data and found that in general, global extraplolation
yields a better performance, but there are cases where com-
ponentwise extrapolation yields very high speedup. In some

cases, one triple jump can reach the local maximum.
We investigate when componentwise extrapolation

should be preferred. We conclude that, when the Jacobian
of the EM mapping is diagonal or block diagonal, CTJEM
should be preferred. Previously, Schafer [16] also suggested
the same, but he did not formally justify this claim and how
to determine when the rates are different. In this paper, we
demonstrate how to determine whether a Jacobian is diago-
nal or block diagonal and experimentally confirm our claim.

2. Aitken’s Acceleration for EM

Suppose we want to use the EM algorithm to build a
probabilistic model with a l-dimensional parameter vector θ
from an incomplete data setD = (Dobs,Dmis), whereDobs

denoted the observed values and Dmis denotes the missing
values. Now let d = [y1, y2, · · · , yn]T be the data set with
all missing values in D imputed (i.e., filled in by some esti-
mation method.) and f(d|θ) be the probability density of d
given θ, then

Ld(θ) = log f(D = d|θ) (1)

is the log likelihood of d while

L̃d(θ) = log fdobs
(Dobs = dobs|θ) = (2)

log
∫

f(D = d|θ)dDmis (3)

is the log likelihood of the observed data dobs. The max-
imum likelihood principle states that the best parameter
vector is the one that maximizes the log likelihood of the
observed data. However, it is usually difficult to derive a
closed-form solution for the integral for the observed data
likelihood with complex probabilistic model. The EM algo-
rithm solves this problem by iteratively imputing the miss-
ing data and searching for θ∗ that maximizes the expected
complete data likelihood.

Let θ be in the space Ω and θ(t) ∈ Ω be the result of the t-
th EM iteration, t = 0, 1, 2, Then the EM algorithm de-
fines a mapping M : Ω → Ω such that θ(t+1) = M(θ(t)). If
M is continuous and θ(t) converges to a local optimum θ∗,
then θ∗ = M(θ∗). Therefore, the EM algorithm is equiva-
lent to solving θ∗ by the fixed-point iteration [2]. The mul-
tivariate version of Aitken’s acceleration can be derived as
follows [10]. Suppose that when t → ∞, θt → θ∗. Then
we can express θ∗ as

θ∗ = θ(t) +
∞∑

h=1

(θ(t+h) − θ(t+h−1)). (4)

By applying a linear Taylor expansion of M(θ(t+h−1))
around θ(t+h−2), we have

θ(t+h) − θ(t+h−1)

≈ J(θ∗)(θ(t+h−1) − θ(t+h−2)), (5)

where J is the Jacobian matrix of M . Note that J(θ(t+h−2))
can be approximated by J(θ∗) near the convergence point.
Repeatedly applying (5) in (4) gives

θ∗ ≈ θ(t) +
∞∑

h=1

J(θ∗)h(θ(t) − θ(t−1))

= θ(t) + (I − J(θ∗))−1(θ(t)
EM − θ(t)), (6)

when all eig(J(θ∗)) are between 0 and 1. In Equation 6,
we replace θ(t+1) with θ

(t)
EM to emphasize that θ(t+1) is ob-

tained by applying an EM mapping to θ(t) here.
The multivariate version of Aitken’s acceleration re-

quires to compute or approximate the Jacobian of the EM
mapping matrix. From [4], we know that the Jacobian of
the EM algorithm is given by

J = I − IobsI−1
c , (7)

where I is the l × l identity matrix,

Ic = E

[
−∂2[log f(D|θ)]

∂θ∂θT

∣∣∣∣∣Dobs, θ

]∣∣∣∣∣
θ=θ∗

is the Fisher’s information of the expected complete data,

Iobs = −∂2L̃d(θ)
∂θ∂θT

∣∣∣∣∣
θ=θ∗

is the Fisher’s information of the observed data. Fisher’s in-
formation measures how flat the likelihood surface is. Com-
puting Fisher’s information can be intractable for complex
models with a high dimensional parameter space.

In addition to the complexity of computing the Jacobian
matrix, Aitken’s acceleration also has the drawbacks includ-
ing that it may not always converge and may be numerically
unstable [8].

3. Triple Jump Extrapolation

The triple jump extrapolation method approximates the
largest eigenvalue of the Jacobian matrix. The eigen-
decomposition of J is

J(θ∗) = Qdiag(λ1, . . . , λn)Q−1 = QΛQ−1,

where columns of Q are the eigenvectors. Therefore,

(I − J(θ∗))−1 =
[
Q [I − Λ] Q−1

]−1

= Qdiag(
1

1− λ1
, . . . ,

1
1− λn

)Q−1.

Since

θ∗ ≈ θ(t) + (I − J(θ∗))−1(θ(t)
EM − θ(t))

= Q
{

Q−1θ(t) + [I − Λ]−1
Q−1(θ(t)

EM − θ(t))
}

,

Q−1θ∗ ≈ Q−1θ(t) + [I − Λ]−1
Q−1(θ(t)

EM − θ(t))

θ∗e ≈ θ(t)e + [I − Λ]−1 (θ(t)e
EM − θ(t)e).

The superscript e in θe denotes that it is a transformed
parameter vector in the eigenspace. We can derive the
Aitken’s acceleration along the direction of the i-th dimen-
sion as

θ∗ei ≈ θ
(t)e
i +

1
1− λi

(θ(t)e
EMi − θ

(t)e
i). (8)

Let ϕ(t) = θ(t) − θ∗ denote the difference between cur-
rent estimated parameter vector to the local maximum. The
global rate of convergence of the EM algorithm is defined
as the ratio:

R = lim
t→∞

R(t) ≡ lim
t→∞

‖ϕ(t+1)‖
‖ϕ(t)‖ (9)

Dempster et al. [4] have shown that R = λmax, the largest
eigenvalue of J . Thus, instead of computing the Jacobian,
we can simplify Aitken’s acceleration for EM by replacing
every eigenvalue λi with a single value γ(t) such that γ(t) is
an approximation of λmax at the t-th iteration. That is,

θ(t+1) = θ(t) + (1− γ(t))−1(θ(t)
EM − θ(t)). (10)

We can estimate γ(t) as follows. From Equation (5),

J(θ∗)(θ(t) − θ(t−1)) ≈ θt
EM − θ(t).

Suppose γ(t) is an exact approximation of J(θ∗), then

γ(t)(θ(t) − θ(t−1)) = θt
EM − θ(t).

Since eig(J(θ∗)) is greater than or equal to zero [4], θ(t)e
EMi−

θ
(t)e
i has the same direction as θ

(t)e
i − θ

(t−1)e
i . To ensure

that our extrapolation for each θ
(t+1)e
i is along the same

direction as Aitken’s acceleration, we need γ(t) ≥ 0 and
our estimation of γ(t) is thus defined by:

γ(t) ≡ ‖θt
EM − θ(t)‖

‖θ(t) − θ(t−1)‖ . (11)

To obtain θ(t+1) by (10) and (11), we need to apply the
EM algorithm to obtain θ(t) from θ(t−1) and apply again to
obtain θ

(t)
EM . Because this is similar to the hop, step and

jump phases in triple jump, Huang et al. [7] named this
method the Triple Jump Acceleration.

In the case that the parameter space has only one di-
mension, Equation (11) provides an exact approximation of
J(θ∗) = M ′(θ∗). When the convergence is slow, we will
have M ′ ≈ 1 and γ(t) ≈ 1, too. In that case, 1/(1 − γ(t))
will be very large and provide a large acceleration. In a
multi-dimensional case, the convergence rate is determined
by the largest eig(J(θ∗)). When the eigenvalue is close to
one, the convergence will be slow. Aitken’s acceleration can
provide a large acceleration when we have a good approxi-
mation of λmax but may also cause numerical insatiability

when λmax ≈ 1. Since γ(t) ≤ λmax, the triple jump ex-
trapolation is numerically more stable than directly using
the eigenvalues.

The Aitken’s acceleration does not guarantee to reach
θ∗ directly from θ(t) because it is based on the assumption
that θ(t) is within the neighborhood of θ∗. When θ(t) is
not close enough to θ∗, the extrapolation jumps to a θ(t+1)

that might fail to improve the likelihood. Salakhutdinov
et al. [14] showed that with the extrapolation ratio within
a certain interval, EM with extrapolation is guaranteed to
converge. However, since the ratio in such an interval is
too small, the speedup will not be significant. Therefore,
they proposed another method called adaptive overrelaxed
EM (aEM), which switches back to vanilla EM during the
search if the new data likelihood is not increased. In this
way, the data likelihood will monotonically increase and
aEM is guaranteed to converge. We can apply their idea
to come up with a variant of EM with the triple jump ex-
trapolation that is guaranteed to converge.

4. Experimental Results with TJEM

This section reports the experimental evaluation of the
triple jump accelerated EM algorithm (TJEM) to demon-
strate the effectiveness of TJEM. The results reported here
are different from those in [7], where we reported the re-
sults of applying triple jump to sub-vectors, while here we
report the results of applying global triple jump. Previ-
ously, Hesterberg [5] also performed experiments for the
same purpose, but he only used a quite simple probabilistic
model with a two-dimensional parameter vector.

We compared the numbers of iterations required to con-
verge for vanilla EM and TJEM to evaluate their perfor-
mance. More specifically, the number of iterations is the
number of times that an E-step is executed, which is the
most costly operation in EM for the probabilistic models
used in our experiments and is proportional to the CPU time
required to converge.

We synthesized data sets for the following models:

• Hidden Markov Models (HMM): we used five-state,
20-symbol HMMs with randomly initialized parame-
ter vectors to generate training data sets. Each data set
contains 500 sequences of an alphabet of 100 symbols.

• Bayesian networks (BN): we used the ALARM
model [3]. We randomly synthesized 2,000 examples
for each experimental data set.

• Mixture of Gaussians (MoG): we used MoG with
Gaussian components that overlapped with one an-
other. We sampled 2,000 cases for each data set
using five equal-weight Gaussians with means at
{(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)} and variances
0.8.

• Semisupervised Bayesian classifier (SB): We used a
Bayesian classifier that classifies instances with 100
10-valued discrete features into 5 categories. 3,000
training cases were generated with 90% labels un-
known and skewed missing features.

Figure 1 illustrates that TJEM almost always converges
faster than EM. For the data sets of each model, we use
one scattered plot to show the required convergence itera-
tions. The coordination of each data point is the iterations
of TJEM (the X-axis) and EM (the Y-axis) for the same data
set. Thus, there are 100 data points in each plot. A data
point lays in the upper triangle if TJEM converges faster,
and in the lower triangle if EM is faster. We can see that
in the 400 learning tasks of all the four models, TJEM con-
verges faster for 392 times, and slower only for eight times.

We also compared the likelihood of the convergent pa-
rameter vectors by EM and TJEM. In Figure 1, a circle
means that TJEM (the X-axis algorithm) converges at a pa-
rameter vector with a higher likelihood, while a box indi-
cates that EM (the Y-axis algorithm) yields a higher likeli-
hood. The size of a data point shows the difference between
their likelihoods. A small point means that the difference
is less than 10−5, a medium one between 10−3 and 10−5,
and a large one more than 10−3. We found that TJEM con-
verges with a higher likelihood 60 times for HMM, 90 times
for BN, 83 times for MoG, and 60 times in SB. All figures
are out of 100 trials for each model. Therefore, TJEM not
only accelerates the EM algorithm but also often improves
the data likelihood of the learned models.

5. Global and Componentwise Extrapolation

It is also possible to approximate λi in each dimension,
or divide the parameter space into subspaces and use Equa-
tion (11) to obtain an approximation for each subspace, as
reported in [7]. In this section, we investigate the conditions
when componentwise extrapolation is preferred.

Componentwise extrapolation may accelerate the con-
vergence more effectively than global extrapolation when
components of the parameter vector converge at different
rates with the EM algorithm [16]. Recall that the global rate
of convergence R of EM is defined in Equation (9). Now let
ϕ

(t)
i = θ

(t)
i − θ∗i denote the componentwise difference. The

i-th componentwise rate of convergence is defined as

Ri = lim
t→∞

R
(t)
i ≡ lim

t→∞
ϕ

(t+1)
i

ϕ
(t)
i

. (12)

When Ri = R for all component i, global extrapolation
is more appropriate than componentwise extrapolation, and
vice versa. The global rate of convergence R is known to be
the largest eigenvalue of the Jacobian [4]. Ri is also one of

the eigenvalues but due to eigen transformation, Ri is not
necessarily the i-th eigenvalue. The following Lemma is
helpful for us to understand why R and Ri are eigenvalues
and which eigenvalue corresponds to Ri.

Lemma 1 The l× l Jacobian matrix J can be decomposed
into a linear combination of its eigenvalues

J =
k∑

j=1

λjujv
T
j = λ1u1v

T
1 + λ2u2v

T
2 + · · ·+ λkukvT

k ,

where 1 > λ1 > · · · > λk > 0 are k(≤ l) distinct eigen-
values of J , uj , vj (j = 1, · · · , k) form the bases of the j-th
eigenvector spaces for J and JT , respectively. Moreover,

J t =
k∑

j=1

λt
jujv

T
j . (13)

Proof Since J is a real-valued square matrix and can be
decomposed as J = QΛQ−1. Let Q = [u1 , · · · , ul] and

Q−1 = [vT
1 , vT

2 , · · · , vT
l]T

Equation (13) follows immediately from [16], page 293.

With this Lemma, Meng and Rubin [11] showed that the
global rate of convergence R for EM is the largest eigen-
value and gave the sufficient and necessary condition of
when the componentwise rate Ri = R. We restate the proof
of their findings less formally here.

A Taylor expansion of ϕ(t) and from Lemma 1, we have

ϕ(t) =
k∑

j=1

λt
jujv

T
j ϕ(0). (14)

That is, the difference between the t-th estimate θ(t) to the
local maximum θ∗ is a linear combination of the eigenval-
ues of J . Now, consider the i-th component θi of the pa-
rameter vector and the j-th largest eigenvalue λj of J . The
contribution of λj to θi is

λt
j · [ujv

T
j] ·ϕ(0) = λt

j · [ujv
T
j] ·




...
ϕ

(0)
i
...


 = λt

j




...
wij

...


 .

(15)
Note that ujv

T
j is a matrix defining the eigen transformation

of the j-th eigenvalue. ujv
T
j maps the difference of the i-th

component ϕ
(0)
i to wij . If wij 6= 0, then λj contributes to

the convergence of θi and the convergence rate for the i-th
component is at least as slow as λj .

If for any component i, we have wi1 6= 0, that is, the
mapping result of the largest eigenvalue λ1 is nonzero, then

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000
HMM

 # of TJEM Iteration

 #
 o

f E
M

 It
er

at
io

n

(a) Training HMM with TJEM and EM

0 50 100 150 200 250 300
0

50

100

150

200

250

300
Alarm

 # of TJEM Iteration

 #
 o

f E
M

 It
er

at
io

n

(b) Training ALARM with TJEM and EM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
GMM

 # of TJEM Iteration

 #
 o

f E
M

 It
er

at
io

n

(c) Training MoG with TJEM and EM

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Semisupervised

 # of TJEM Iteration

 #
 o

f E
M

 It
er

at
io

n

(d) Training SB with TJEM and EM

Figure 1. Scattered plots that compare the TJEM and EM algorithms. TJEM converges faster and
achieves a better likelihood in almost all trials.

the global rate of convergence is at least as slow as the
largest eigenvalue λ1. That is, R = λ1. If for a given
component i, we have wi1 6= 0, then the componentwise
rate of convergence for the i-th component is as slow as the
global rate of convergence. That is, Ri = R. Otherwise,
the componentwise rate of convergence is different from the
global rate. Meng and Rubin [11] proved this by following
the definitions of the componentwise rate and global rate of
convergence with Lemma 1.

Corollary 2 Ri 6= R if wi1 = eT
i u1v

T
1 ϕ(0) = 0, where ei

is the i-th column of the identity matrix Id.

An obvious case that makes wi1 = 0 is when ϕ(0) is a
zero vector. That is, our initial value is exactly the local
maximum, which is unlikely to happen. Since wi1 is the

inner product of the i-th row of the matrix u1v
T
1 and ϕ(0),

wi1 = 0 if they are orthogonal. This is unlikely, too. A
more possible case is that the i-th row of u1v

T
1 is a zero

vector.

When J = QΛQ−1 is a diagonal matrix, Q and Q−1

will be diagonal, too. As a result, ujv
T
j will be singular.

That is, some of their rows will be zero vectors and thus
makes Ri 6= R. Therefore, we can conclude that when J is
a diagonal matrix, we have Ri 6= R, and we should apply
componentwise triple jump extrapolation. More precisely,
we should also require that J is not only diagonal but also
not proportional to the identity matrix so that all eigenvalues
are distinct. Similarly, if J is block diagonal, ujv

T
j will

also be singular and lead to the same consequences. We
summarize our conclusion with the following claim:

Claim 3 When the Jacobian J of an EM algorithm appli-
cation is diagonal, or block diagonal, componentwise triple
jump extrapolation may accelerate the convergence faster
than global triple jump extrapolation and vice versa.

6. Case Studies

In this section, we review two simple mixture of Gaus-
sian models whose Jacobians were derived in previous
work. One of them is diagonal and the other is not. Then
we consider the Bayesian Network models and investigate
when their Jacobians are (block) diagonal. We also present
experimental results that verify our claims.

6.1. Mixtures of Gaussians

Our first example is from Meng and Rubin [11]. We have
a set of one-dimension data Dobs = X = {xi|i = 1, 2, . . .}
from the following distribution:

fex1(X|µ, σ2) = (1− π)N(µ, σ2) + πN(µ, σ2/λ).

That is, the data set comes from a mixture of two Gaussians
with the same mean but different variances. Assuming that
we know the mixture ratio π and constant λ, then our pa-
rameter vector is θ = (µ, σ2). We can estimate the parame-
ter vector from data by the EM algorithm by creating a miss-
ing, unobservable variable Q ∈ {1, λ} that assigns member-
ship of an observed variable X . Therefore, our complete,
augmented data set is D = {(xi, qi)|i = 1, 2, . . .}.

We can use Equation (7) to compute the Fisher’s infor-
mation of the observed and missing data by differentiating
the log-likelihood of the data twice to determine whether
the Jacobian of this model is diagonal. If both information
matrices, Ic and Iobs, are diagonal, then the Jacobian will
be diagonal, too. Though this model is simple, its Jacobian
is still quite complex. Nevertheless, Meng and Rubin [11]
showed that in this case, the Jacobian is a 2 × 2 diagonal
matrix and empirically show that the componentwise rate
of convergence is different.

Interestingly, with a different parameter vector, another
one-dimensional Mixtures of Gaussian model from [9] has
a Jacobian that is not diagonal. In this case, the parameter
vector is θ = (µ0, µ1, π) with the variance known to be
σ2 = 1. The distribution for the observed data is

fex2(X|µ0, µ1, π) = (1− π)N(µ0, 1) + πN(µ1, 1) .

We introduce an additional unobserved membership assign-
ment variable Q ∈ {0, 1} for the augmented complete data
set. In this case, Louis [9] showed that Ic is diagonal, while
Iobs is not, though it is symmetric. Thus J is not diagonal.

We then applied the global and componentwise triple
jump extrapolation to these simple models. We synthesized

a data set with 10,000 data points for both models and ran
different EM variants to compare their rate of convergence.
We found that for the first model, componentwise triple
jump can accelerate the convergence more than global triple
jump, while for the second model, global triple jump con-
verges faster. For both models, both triple jump methods
converge faster than vanilla EM. Figure 2 plot the curves
of convergence of this experiment. The result is consistent
with our prediction.

6.2. Bayesian Networks

We now consider a more practical model, the Bayesian
Networks, to determine when its Jacobian is diagonal. The
EM algorithm is applied to train a Bayesian Network model
when we have latent variables whose values are not observ-
able or when some of the values of variables in the training
data are missing. The Jacobian of the EM algorithm for
the Bayesian network can be obtained from Equation (7).
Since our purpose is only to determine if the Jacobian is
diagonal, there is no need to obtain the entire Jacobian ma-
trix. In fact, if we can show that the Fisher’s information
Iobs and Ic are (block) diagonal, then the Jacobian must
be (block) diagonal as well. Therefore, our plan here is to
determine if the off-diagonal elements of Iobs and Ic are
zero. For Iobs, these off-diagonal elements are the second
partial derivatives of the log-likelihood of data with respect
to two different parameters. For Ic, these elements are the
expectation of the second partial derivatives of the complete
data log-likelihood. Since if the second partial derivatives
are zero, their expected values must be zero, too, there is no
need to obtain the expectation. Thus, it suffices to show just
the second partial derivatives with respect to two different
parameters to determine if the Jacobian is diagonal.

A Bayesian network consists of a set of variables X =
{Xi|i = 1, 2, . . .}, the graph structure of the variables, and
their conditional probability tables. Suppose we have a vari-
able Xi whose parent nodes include a set of variables de-
noted by Ui. The conditional probability table for a variable
Xi consists of entries of the form

wijk ≡ Pr(Xi = xik|Ui = uij)

to denote the probability that Xi has its k-th possible value
xik under the condition that its parent Ui has the j-th com-
bination of values, uij . Since wijk denotes the probability,
to ensure that wijk is in [0, 1] during the training process,
a common technique usually used in practice is applying
softmax reparameterization:

wijk =
eθijk

∑
k′ e

θijk′

Therefore, the parameters that we want to estimate from
data using the EM algorithm are the set θ = {θijk|i, j, k =
1, 2, . . .}.

2 3 4 5 6 7 8 9 10 11

−1.7923

−1.7923

−1.7923

−1.7923

−1.7923

−1.7923
x 10

4

Iteration

Lo
g−

lik
el

ih
oo

d
GMM

EM

TJEM

CTJEM

0 50 100 150 200 250 300 350 400 450
−1.4185

−1.4185

−1.4185

−1.4185

−1.4185

−1.4185

−1.4185

−1.4185

−1.4185

−1.4185

−1.4185
x 10

4

Iteration

Lo
g−

lik
el

ih
oo

d

GMM

EM
TJEM
CTJEM

Figure 2. (Left) Convergence rate comparison of EM,TJEM,CTJEM for the example model given in
[11], (right) Convergence rate comparison of EM,TJEM,CTJEM for the example model given in [9].

The training data for the Bayesian network is a set D =
{. . . , y, . . .} where y = {. . . , Xi = xik, . . .} is a set of
variable-value pairs. Some of the variable’s value may be
missing either because in that particular case, its value is
not available, or because the variable is a latent variable.
Many algorithms available for the Bayesian network allow
us to efficiently compute the conditional probability

Pθ(y) = Pθ(ymis|yobs)Pθ(yobs) ,

the probability of unknown variable values given known
variable values and the set of parameters. The Bayesian
network allows us to factorize any conditional probability
given the values of a subset of variables into an expression
of wijk, the entries in the conditional probability table [13].

To discuss Iobs and Ic, we start by considering the sec-
ond order partial derivatives of the log-likelihood L(θ). We
suppose that each training example is drawn independently
so that ∂

∂θijk
L(θ) =

∑
y

∂
∂θijk

log Pθ(y).

We start from Lemma 4 which summarizes ∂
∂θijk

wijk

that will be frequently used:

Lemma 4 For Bayesian networks with softmax reparame-
terization, the derivative of wi′j′k′ with respect to θijk is:

∂wi′j′k′

∂θijk
=





0 : i 6= i′ or j 6= j′

−wijkwijk′ : (i, j) = (i′, j′) and k 6= k′

wijk(1− wijk): (i, j, k) = (i′, j′, k′)
(16)

Then, Lemma 5 describes the first order derivative of
P (y), and when the derivative is zero.

Lemma 5 For Bayesian networks with softmax reparame-
terization, the derivative of P (y) with respect to θijk is:

∂

∂θijk
P (y) = P (xik, uij , y)− wijkP (uij , y), (17)

and the derivative must be 0 if uij d-separates [12] the
observations in y − {Ui = uij} and Xi, that is, if
P (Xi|uij , y) = P (Xi|uij).

Lemma 5 implies that Xi must not be initiated in y to satisfy
the d-separation condition. Intuitively, if Xi is initiated as
xik in y, y and Xi will never be conditionally independent
given uij because P (Xi|uij , y) is equal to 1 if Xi = xik

and equal to 0 otherwise. Based on Lemma 5, Theorem 6
shows the conditions in which ∂2 log P (y)

∂θi′j′k′∂θijk
= 0.

Theorem 6 ∂2 log P (y)
∂θi′j′k′∂θijk

is 0 if any of the following holds:

1. Lemma 5 holds, or

2. ui′j′ d-separates the observations in y∪{uij , xik} and
Xi′ .

The first condition is straightforward because the derivative
of zero is still zero. We can obtain the second condition
by expanding y to y ∪ {uij , xik} and applying Lemma 5 to
θi′j′k′ again.

As for other non-zero second order derivatives, we dis-
cuss the situation that {uij , xik} ⊂ y, and (i, j) = (i′, j′)
in Theorem 7.

Theorem 7 If uij and xik are observed in y, ∂2 log P (y)
∂θijk′∂θijk

,
the second order derivative of two parameters with the same
i, j, is:

∂2 log P (y)
∂θijk′∂θijk

=
{ −wijk(1− wijk):if k′ = k

wijkwijk′ :if k′ 6= k.

Moreover, the derivatives with other (i′, j′, k′)’s are zero.

Now we consider Ic, the Fisher information of a com-
plete data set. From Theorem 7, we can arrange θijk so
that ∂2 log P (y)

∂θ2 is a block diagonal matrix, implying that

Ic = E(∂2 log P (D)
∂θ2) is also a block diagonal matrix.

Theorem 8 Ic is a block diagonal matrix in which each
element in each block Bij is:

E

(
∂2 log P (D)
∂θijk∂θijl

)

If Iobs is also block diagonal with the same block layout,
J will also be a block diagonal matrix. Then, we can apply
componentwise triple jump to each block and estimate the
maximal eigenvalues for each block.

6.3. Semi-Supervised Bayesian Classifier

We verify our theoretical analysis with experiments on
semi-supervised Bayesian classifiers. A Bayesian classifier
consists of a cluster random variable C and a set of feature
random variables F1, . . . , FN . There are N links from C
to each Fn. The model assumes that the feature random
variables are conditionally independent given C.

Now we discuss Iobs of the model, which is simpler than
general Bayesian networks in that every feature nodes share
the same parent node. C and Fn might contain missing
values. Theorem 9 describes some properties of Iobs.

Theorem 9 ∂2

∂θi′j′k′∂θijk
log P (y) for Iobs of Bayesian

classifiers is zero if any of the following is satisfied:

1. Xi is a feature variable and is not observed, or

2. Xi′ is a feature variable and is not observed.

Corollary 10 ∂2

∂θi′j′k′∂θijk
log P (y) for Iobs of Bayesian

classifiers can be nonzero if any of the following is satis-
fied:

1. i = i′ and Xi is a class variable,

2. Xi and Xi′ are feature and class variables and the
feature variable is observed, or

3. Xi and Xi′ are feature variables or the same feature
variable and are observed.

From Corollary 10, whether Iobs is block diagonal ma-
trix or not is related to the missing rates. First, we consider
the case that the missing rate is low. For example, we sup-
pose that the features are all observed. From Theorem 9,
no element is guaranteed to be zero in ∂2 log P (y)

∂θ2 so that∑
y′

∂2 log P (y′)
∂θ2 is unlikely to be a block diagonal matrix.

However, if the missing rate is high, Iobs is much more
close to a block diagonal matrix. An extreme example is
that only one feature is observed in every training example.
From Theorem 9, most values outside the block diagonal
area is zero. Thus, componentwise TJEM is more likely to
outperform global TJEM under such circumstances.

We performed experiments to verify the influence of
missing rates of training data on the convergence rate of
CTJEM and TJEM. We use Bayesian classifiers with 20 fea-
ture variables. All the features and class variables have five
possible values. We randomly initialized the parameters of
Bayesian classifiers and synthesized 10,000 examples with
50% and 90% missing rates. Then, we ran EM, TJEM, and
CTJEM to train new classifiers.

Figure 3 and shows an example of the learning task with
50% and 90% missing values in data sets. The EM algo-
rithm took 40 iterations to converge in the less sparse data
set, and 837 in highly sparse. The TJEM algorithm accel-
erated vanilla EM by reducing the number of elapsed iter-
ations to 28 and 351. The CTJEM algorithm took advan-
tage of the block diagonal property described in the previ-
ous section, and further accelerated the highly sparse case
by converging in only 114 iterations. However, when the
missing rate is 50%, Iobs is less close to a block diagonal
matrix and CTJEM fails to outperform the TJEM algorithm.
Therefore, for a semi-supervised Bayesian classifier model
with a large number of missing data, componentwise ex-
trapolation should be preferred.

7. Conclusion

In this paper, we claim that, when the componentwise
rate of convergence is different from the global rate of
convergence, componentwise extrapolation should be
preferred. We show that the componentwise rate and the
global rate of convergence are different if the Jacobian
of the EM mapping is diagonal or block diagonal. Our
results suggest that when considering accelerating the
EM algorithm with the triple jump method, we should try
TJEM first. If TJEM does not provide satisfactory speedup,
we can check the off-diagonal elements of the Jacobian to
determine whether CTJEM may produce a better speedup.

Acknowledgements

We thank Dr. Chen-Hsin Chen for his comments. This
research is supported in part by the National Science Coun-
cil, Taiwan, under Grant No. NSC95-3112-B-001-017.

References

[1] E. Bauer, D. Koller, and Y. Singer. Update rules for param-
eter estimation in Bayesian networks. In Proc. of the 13th

0 5 10 15 20 25 30 35 40
−1.7

−1.65

−1.6

−1.55
x 10

5

Iteration

Lo
g−

lik
el

ih
oo

d

Bayesian Classifier, Missing rate= 50%

EM
TJEM
CTJEM

0 100 200 300 400 500 600 700 800 900
−3.24

−3.238

−3.236

−3.234

−3.232

−3.23

−3.228

−3.226

−3.224

−3.222

−3.22
x 10

4

Iteration

Lo
g−

lik
el

ih
oo

d

Bayesian Classifier, Missing rate= 90%

EM
TJEM
CTJEM

Figure 3. Training Bayesian classifiers with data sets containing 50% (left) and 90% (right) missing
values. The data sets reflect our consideration whether Iobs is close to block diagonal (right) or not
(left). CTJEM outperformed TJEM when Iobs is close to block diagonal.

Conference on Uncertainty in Artificial Intelligence, pages
3–13, 1997.

[2] R. L. Burden and D. Faires. Numerical Analysis. PWS-
KENT Pub Co., 1988.

[3] G. F. Cooper and E. Herskovits. A Bayesian method for
the induction of probabilistic networks from data. Machine
Learning, 9:309–347, 1992.

[4] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society, Series B, 39(1):1–38, 1977.

[5] T. Hesterberg. Staggered aitken acceleration for EM. In Pro-
ceedings of the Statistical Computing Section of the Ameri-
can Statistical Association, Minneapolis, Minnesota, USA,
August 2005.

[6] H.-S. Huang, B.-H. Yang, and C.-N. Hsu. Triple jump aiken
accceleration for EM algorithm and its extrapolation-based
variants. In preparation.

[7] H.-S. Huang, B.-H. Yang, and C.-N. Hsu. Triple-jump ac-
celeration for the EM algorithm. In Proceedings of the Fifth
IEEE International Conference on Data Mining, pages 649–
652, 2005.

[8] M. Jamshidian and R. I. Jennrich. Acceleration of the EM
algorithm by using quasi-newton methods. Journal of the
Royal Statistical Society, , Series B, 59(3):569–587, 1997.

[9] T. A. Louis. Finding the observed information matrix when
using the EM algorithm. Journal of the Royal Statistical
Society, Series B, 44:226–233, 1982.

[10] G. J. McLachlan and T. Krishnan. The EM Algorithm
and Extensions. Wiley Series in Probability and Statistics.
Wiley-Interscience, 1997.

[11] X.-L. Meng and D. B. Rubin. On the global and compo-
nentwise rates of convergence of the EM algorithm. Linear
Algebra and Its Applications, 199:413–425, 1994.

[12] J. Pearl. Probabilistic Reasoning in Intelligent Systems :
Networks of Plausible Inference. Morgan Kaufmann, 1988.

[13] S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local
learning in probabilistic networks with hidden variables. In
In Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, pages 1146–1152, 1995.

[14] R. Salakhutdinov and S. Roweis. Adaptive overrelaxed
bound optimization methods. In Proceedings of the Twen-
tieth International Conference on Machine Learning, pages
664–671, 2003.

[15] J. L. Schafer. Analysis of Incomplete Multivariate Data.
Chapman and Hall, New York, 1997.

[16] S. R. Searle. Matrix Algebra Useful For Statistics. Wiley,
New York, 1982.

Appendix

Proof of Lemma 4:

∂wijk

∂θijk′
= − eθijkeθijk′

(
∑

k′′ e
θijk′′)2

= −wijkwijk′

∂wijk

∂θijk
=

eθijk

∑
k′′ e

θijk′′
−

(
eθijk′

∑
k′′ e

θijk′′

)2

= wijk(1− wijk).

Proof of Lemma 5:
Russell et. al [13] derived

∂

∂θijk
P (y) =

∑

k′
P (uij)P (y|uij , xik′)

∂

∂θijk
wijk′ .

(18)

Based on Lemma 4, Equation (18) can be further simplified:

∂

∂θijk
P (y) = P (uij)P (y|uij , xik)

∂

∂θijk
wijk +

∑

k′ 6=k

P (uij)P (y|uij , xik′)
∂

∂θijk
wijk′

= P (uij)P (y|uij , xik)wijk(1− wijk)−∑

k′ 6=k

P (uij)P (y|uij , xik′)wijkwijk′

= P (uij)P (y|uij , xik)wijk −
wijk

∑

k′
P (uij)P (y|uij , xik′)wijk′

= P (uij , xik, y)− wijk

∑

k′
P (uij , xik′ , y)

= P (uij , xik, y)− wijkP (uij , y). (19)

When uij d-separates the observations in y−{uij} and Xi,
Equation (19) can be rewritten as:

P (uij , xik, y)− wijkP (uij , y)
= P (xik|uij , y)P (uij , y)− wijkP (uij , y)
= wijkP (uij , y)− wijkP (uij , y) = 0.

Proof of Theorem 6:
The first condition is straightforward. The second condi-

tion can also be proved by Lemma 5. From Equation (17),
we have

∂2

∂θi′j′k′∂θijk
log P (y)

=
1

P (y)
∂

∂θi′j′k′
(P (uij , xik, y)− wijkP (uij , y))

=
1

P (y)
∂

∂θi′j′k′
P (uij , xik, y)− P (uij , y)

∂

∂θi′j′k′
wijk

−wijk
∂

∂θi′j′k′
P (uij , y). (20)

We can consider y′ = y ∪ {uij , xik} as another ob-
served training example, and ui′j′ d-separates y′ and
xi′k′ . By Lemma 5, we obtain that ∂

∂θi′j′k′
P (uij , xik, y),

the first term of the above equation, is 0. Similarly,
∂

∂θi′j′k′
P (uij , y) = 0. Besides, Lemma 4 describes that

∂
∂θi′j′k′

wijk = 0 here. Therefore, Equation (20) is also 0
under the second condition.

Proof of Theorem 7:
We start from

∂2 log P (y)
∂θijk′∂θijk

=
∂

∂θijk′
(P (uij , xik|y)− wijkP (uij |y)) .

If uij and xik are exactly the observed values in y,
P (uij , xik|y) and P (uij |y) are 1 and the above equation
becomes:

∂2 log P (y)
∂θijk′∂θijk

=
∂

∂θijk′
(1− wijk) .

From Lemma 4, the second order partial derivative is
−wijk(1 − wijk) if k′ = k, is wijkwijk′ if k′ 6= k, and
is 0 otherwise.

Proof of Theorem 8:
Let p̃(w) denote the number of times that the predicate

in w occurs in the data set D. For example, suppose wijk =
Pr(Xi = xik|Ui = uij), then p̃(wijk) is the number of
times that Xi = xik|Ui = uij occurs in D.

log f(D|θ) =
∑

ijk

p̃(wijk)(log
eθijk

∑
k′ e

θijk′
)

=
∑

ijk

p̃(wijk)θijk −
∑

ij

p̃(wij) log
∑

k′
eθijk′ .

Therefore,

∂ log f(D|θ)
∂θijk

= p̃(wijk)− ∂
∑

ij P̃ (wij) log
∑

k′ e
θijk

∂θijk

= p̃(wijk)−
∑

ij

p̃(wij) · eθijk

∑
k′ e

θijk′
.

For θi′j′k′ , i′ = i, j′ = j, k′ = k or k′ 6= k, we have
∂2 log f(y|θ)
∂θi′j′k′∂θijk

= eθijk · θijk∑
k′ e

θ
ijk′ ; for θi′j′k′ , i′j′k′ 6= ijk,

∂2 log f(y|θ)
∂θi′j′k′∂θijk

= 0.

Proof of Theorem 9:
In the first condition, if Xi is not observed, Xi is d-

separated with y by the cluster node. Based on the first
condition in Theorem 6, ∂2

∂θi′j′k′∂θijk
log P (y) = 0.

In the second condition, if Xi′ is not observed, Xi′ is d-
separated with {y, xik} by the cluster node. Based on the
second condition in Theorem 6, ∂2

∂θi′j′k′∂θijk
log P (y) = 0.

Proof of Corollary 10:
The three conditions are the complement of Theorem 9.

The class variable and feature variables are probabilistically
dependent because there are direct links between the class
and feature variables. Therefore, we know from Lemma 5
that the derivative of log P (y) with respect to the param-
eters of the class variable is not guaranteed to be zero be-
cause y cannot be d-separated from the class variable. Ac-
cordingly, the first is true and the second conditions can be
easily verified. The third condition is true because Xi and
Xi′ are not independent of y.

