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Abstract

The nearest-neighbor (NN) classifier has long been used
in pattern recognition, exploratory data analysis, and data
mining problems. A vital consideration in obtaining good
results with this technique is the choice of distance func-
tion, and correspondingly which features to consider when
computing distances between samples. In this paper, a new
ensemble technique is proposed to improve the performance
of NN classifier. The proposed approach combines mul-
tiple NN classifiers, where each classifier uses a different
distance function and potentially a different set of features
(feature vector). These feature vectors are determined for
each distance metric using Simple Voting Scheme incorpo-
rated in Tabu Search (TS). The proposed ensemble clas-
sifier with different distance metrics and different feature
vectors (TS-DF/NN) is evaluated using various benchmark
data sets from UCI Machine Learning Repository. Results
have indicated a significant increase in the performance
when compared with various well-known classifiers. Fur-
thermore, the proposed ensemble method is also compared
with ensemble classifier using different distance metrics but
with same feature vector (with or without Feature Selection
(FS)).

1 Introduction

The nearest-neighbor (NN) classifier has long been used
in pattern recognition, exploratory data analysis, and data
mining problems. Typically, the k nearest neighbors of a
unknown sample in the training set are computed in order
to predict the class label as the most frequent one occurring
in the k nearest-neighbors. The 1NN classifier is well ex-
plored in the literature and has been proved to have good
classification performance on a wide range of real-world

data sets [1, 2, 3].
Feature selection is useful technique for improving the

classification accuracy of NN rule [7, 8]. The term feature
selection refers to algorithms that select the best subset of
the input feature set. These algorithms are used in the de-
sign of pattern classifiers that have three goals [9, 11]:

1. to reduce the cost of extracting features

2. to improve the classification accuracy

3. to improve the reliability of the estimation of perfor-
mance

Tabu search (TS) has been applied to the problem of fea-
ture selection by Zhang and Sun [12]. In their work, the
tabu search performs the feature selection in combination
with an objective function based on Mahalanobis distance.
This objective function is used to evaluate the classification
performance of each subset of the features selected by the
TS. Feature selection vector in TS is represented by a 0/1
bit string where 0 indicates the feature is not included in
the solution while 1 indicates the feature is included. Their
experimental results on synthetic data have shown that the
tabu search not only has a high possibility to obtain the op-
timal or near-optimal solution, but also requires less com-
putational effort than the other suboptimal and genetic algo-
rithm based methods. Later, Tabu Search has been success-
fully applied in other feature selection problems [8, 13, 14].

Recently, Bao et al. [10] have proposed an ensemble
technique to improve the accuracy of NN classifier. Mul-
tiple NN classifiers are combined using different distance
functions. The premise is that ensemble classifiers will be
more accurate than their consistent members provided that
the errors of the individual classifiers are not correlated. Al-
though Bao’s et al. [10] ensemble approach does use differ-
ent distance metrics, they use the same set of features, so it
is possible that some errors will be common, arising from



features containing noise which have high values in certain
samples. An alternative approach is proposed by Bay [15]
that uses a single distance metric, but instead builds an en-
semble where each member sees a different randomly se-
lected subset of the features, and a simple voting scheme.

In this paper, a new algorithm is proposed that combines
and extends these ideas. Following building on Bay’s and
Bao’s work [10, 15], we explore the hypothesis that the
overall ensemble accuracy can be improved if those choices
of subsets arise from

• tabu search rather than random sampling and

• different distance metrics rather than single distance
metric

Furthermore we hypothesise that these choices are best co-
adapted, rather than learnt separately, as co-adaptation may
permit implicit tackling of the problem of achieving ensem-
ble diversity. In order to do this, and to distinguish the ef-
fects of different sources of benefits, a novel ensemble clas-
sifier is proposed in this paper that consists of multiple NN
classifiers each using different feature subsets derived us-
ing tabu search. To increase the diversity, simple voting
scheme is introduced in the cost function of Tabu Search.
The proposed ensemble NN classifier (TS-DF/1NN) is then
compared with various well-known classifiers.

The rest of the paper is organized as follows. Sec-
tion 2 describes proposed multiple distance function ensem-
ble classifier followed by experiments in section 3. Sec-
tion 4 concludes the paper.

2 Proposed Ensemble Multiple Distance
Function TS/1NN classifier (TS-DF/1NN)

In this section, we will discuss about the proposed en-
semble multiple distance function TS/1NN classifier (TS-
DF/1NN). Figure 1 shows the training phase of the proposed
classifier. During each iteration, N random neighbors with
HammingDistance1 are generated for each distance met-
ric using nearest neighbor (NN) classifier as cost function.
M 1 best neighbors are selected from N neighbors during
each iteration. Mn solutions are then evaluated using sim-
ple voting scheme (SVS) to find feature vectors for various
distance measure in which errors are not correlated. Thus,
the feedback from the SVS allows tabu search to iteratively
search for feature vectors that improves the classification
accuracy. By using n distance functions, n feature vectors
are obtained using TS in the training phase. The use of dif-
ferent distance functions, each with a potentially different
set of features along with SVS has increased the likelihood

1In this study M = 2, n = 5, and N =
√

F , where F = Total Number
of Features

that the errors of the individual classifiers are not correlated.
In the testing phase, multiple NN classifiers are combined
using n distance functions and n different feature vectors as
shown in Figure 2.

In the following subsections, Feature selection using TS
and various distance metrics used in this paper are discussed
as they are the heart of the proposed algorithm.

2.1 Distance Metrics

The following five distance metrics are used for NN clas-
sifier. All metrics are widely used in the literature.

• Squared Euclidean Distance: E =
∑m

i=1(xi − yi)2

• Manhattan Distance: M =
∑m

i=1(xi − yi)

• Canberra Distance: C =
∑m

i=1(xi − yi)/(xi + yi)

• Squared chord distance: Sc =
∑m

i=1(
√

xi −√yi)2

• Squared Chi-squared distance: Cs =
∑m

i=1(xi −
yi)2/(xi + yi)

where x and y are the two input vectors and m is the num-
ber of features.

2.2 Feature Selection and Diversity using
Tabu Search

Tabu Search (TS) was introduced by Glover [5, 6] as
a general iterative metaheuristic for solving combinatorial
optimization problems. TS is conceptually simple and ele-
gant. It is a form of local neighborhood search. TS starts
from initial solution, and then examine feasible neighbor-
ing solutions. It moves from a solution to its best admis-
sible neighbor, even if this causes the objective function to
deteriorate. To avoid cycling, solutions that were recently
explored are declared forbidden or tabu for a number of it-
erations. The tabu list stores characterization of the moves
with lead to those solutions. The tabu status of a solution is
overridden when certain criteria (aspiration criteria) are sat-
isfied. Sometimes intensification and diversification strate-
gies are used to improve the search. In the first case, the
search is accentuated in promising regions of the feasible
domain. In the second case, an attempt is made to consider
solutions in a broad area of the search space. The flow chart
of TS algorithm is given in Figure 3.

The size of tabu list can be determined by experimental
runs, watching for the occurrence of cycling when the size is
too small, and the deterioration of solution quality when the
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size is too large [16]. Suggested values of tabu list include
Y,
√

Y (where Y is related to problem size, e.g. number of
modules to be assigned in the quadratic assignment problem
(QAP), or the number of cities to be visited in the travel
salesman problem (TSP), and so on) [17].

Algorithm Short-Term-TS

Ω : Set of feasible solutions

S : Current Solution
S∗ : Best admissible solution
Cost : Objective function
N(S) : Neighborhood of solution S
V ∗ : Sample of neighborhood solutions
T : Tabu list
AL : Aspiration Level

Begin

1. Start with an initial feasible solution S ∈ Ω.
2. Initialize tabu list and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V ∗

⊂ N(S).
5. Find best S∗

∈ V ∗.
6. If move S to S∗ is not in T Then
7. Accept move and update best solution.
8. Update tabu list and aspiration level.
9. Increment iteration number.
10. Else
11. If Cost(S∗) < AL Then
12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14. Increment iteration number.
15. End If
16. End If
17. End For

End

1

Figure 3. Algorithmic description of Tabu
Search(TS) [17]

2.2.1 Objective Function:

Simple Voting Scheme is used in each instance of n clas-
sifiers. The objective function is the number of instances
incorrectly classified using Simple Voting Scheme. The ob-
jective is to minimize Equation 1.

Cost =
S∑

i=1

Ci (1)

where S is the number of samples, Ci = 1 if instance is
classified incorrectly after simple voting in n classifiers else
Ci = 0.

2.2.2 Initial Solution

The feature selection vector is represented by a 0/1 bit string
where 0 indicates that the feature is not included in the so-
lution while 1 indicates that it is. All features are included
in the initial solution.

2.2.3 Neighborhood solutions

During each iteration, N random neighbors with
HammingDistance1(HD1) are generated for each
distance metric using nearest neighbor (NN) classifier as
cost function. Neighbors are generated by randomly adding
or deleting a feature from the feature vector of size n.
Among the neighbors, M best solutions are selected. Mn

solutions are then evaluated using Equation 1 and the one
with the best cost (i.e. the solution which results in the
minimum value of Equation 1) is selected and considered as
a new current solution for the next iteration. Figure 4 shows
an example showing neighborhood solutions during one
iteration. Lets assume that the cost of initial solution is 50,
48, and 47 using Distance Metrics 1, 2, and 3 respectively.
N = 4 neighbors are then randomly generated for each
distance metric using HD1. M = 2 best solutions are
selected and Mn = 23 = 8 solutions are evaluated using
ensemble cost function. The best solution is then selected
for the next iteration.

2.2.4 Tabu moves

A tabu list is maintained to avoid returning to previously
visited solutions. In our approach, if an ensemble solution
(move) is selected at iteration i, then selecting the same en-
semble solution (move) for T subsequent iterations (tabu
list size) is Tabu.

2.2.5 Aspiration criterion

Aspiration criterion is a mechanism used to override the
tabu status of moves. It temporarily overrides the tabu sta-
tus if the move is sufficiently good. In our approach, if an
ensemble solution is selected at iteration i and this move
results in a best cost for all previous iterations, then that
solution is selected even if that feature is in the tabu list.

2.2.6 Termination rule

The most commonly used stopping criteria in TS are

• after a fixed number of iterations.

• after some number of iterations when there has been
no increase in the objective function value.

• when the objective function reaches a pre-specified
value.

In this work, the termination condition is the fixed num-
ber of iterations.
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Figure 4. An example showing neighborhood solutions during one iteration in proposed tabu search
method. n = 3, N = 4, and M = 2.

3 Experiments

To evaluate the effectiveness of our method, extensive
experiments were carried out. Comparisons with several
methods were also performed as will be shown in the fol-
lowing section.

3.1 Methods

The proposed (TS-DF/1NN) algorithm is compared with
the following methods. All methods are implemented using
WEKA library [26].

• Decision Tree Method (C4.5): Decision tree is a clas-
sifier in the form of a tree structure, where each node
is either a leaf node or a decision node [20, 3].

• Decision Table (DT): It uses a simple decision table
majority classifier [21].

• Random Forest (RF): Classifier for constructing a for-
est of random trees [22].

• Naive Bayes Algorithm (NBayes): The Naive Bayes
Classifier technique is based on Bayesian theorem.
Despite its simplicity, Naive Bayes can often outper-
form numerous sophisticated classification methods
[23].

• Bagging: A method for generating multiple versions
of a predictor and using these to get an aggregated pre-
dictor [24]. C4.5 is used as base classifier.

• AdaBoost1: A meta-algorithm, and can be used in con-
junction with many other learning algorithms to im-
prove their performance [25]. C4.5 is used as base
classifier.

In addition, we compare with the following variations of
the proposed ensemble algorithms



1. DF/1NN: Ensemble Classifier using various distance
metrics and without Feature Selection.

2. TS-DF/1NN1: Ensemble classifier but with a common
feature subset for various distance metrics derived us-
ing tabu search.

3.2 Data sets Descriptions and Experi-
mental Setup:

We have performed a number of experiments and com-
parisons on several benchmarks from the UCI [4] in order
to demonstrate the performance of the proposed classifica-
tion system. A short description of the used benchmarks
along with Tabu Search run-time parameters are mentioned
in Table 1.

Table 1. Data sets Description. P = Proto-
types, F = Features, C= Classes, T = Tabu List
Size, N = Number of Neighborhood Solutions.

Name P F C T N
Statlog Diabetes 768 8 2 3 3

Glass 214 9 6 3 3
Statlog Heart 270 13 2 4 4

Statlog Australian 690 14 2 4 4
Statlog Vehicle 846 18 4 5 5
Statlog German 1000 20 2 5 5

WDBC 569 32 2 6 6
Ionosphere 351 34 2 6 6

Sonar 208 60 2 8 8
Musk 476 166 2 13 13

The tabu list size and Number of Neighborhood Solu-
tions are determined using the following equation:

T = N = ceil(
√

F ) (2)

where T is the Tabu List Size, N is the number of neigh-
borhood solutions and F is the number of features.

In all data sets, B fold cross validation has been used to
estimate error rates [18]. For B-fold CV, each data set is
divided into B blocks using (B-1) blocks as a training set
and the remaining block as a test set. Therefore, each block
is used exactly once as a test set. Each experiment was run
100 times using different random 10-CV partitions and the
results were averaged over the 100 runs [19].

The number of iterations for FS using TS is 200 for all
data sets which is chosen after preliminary experimentation.

3.3 Results and Discussion

Table 3.3 shows the comparison of classification accu-
racy (in %) between proposed TS-DF/1NN classifier and

others for different data sets. The proposed ensemble fea-
ture selection (FS) technique using TS/NN has achieved
higher accuracy in all data sets except Diabetes. For Aus-
tralian, German and Ionosphere data sets there is improve-
ment of 1.98%, 5.06% and 0.4% respectively when com-
pared with Random Forest Classifier. For Heart, there is
an improvement of 3.3% when compared with Naive Bayes
Classifier. For Vehicle, WDBC and Musk data sets, there
is improvement of 0.5%, 0.76%, and 4.55% respectively
when compared with AdaBoost. For Sonar, there is an im-
provement of 7.8% when compared with 1NN. Since Di-
abetes has only 8 features, the proposed algorithm unable
to combine the benefits of Feature Selection and Ensemble
Classifiers using different distance metrics. Figure 5 shows
the standard deviation obtained over the 100 runs of ran-
dom 10-fold cross validation of each data set for different
algorithms. From the graph, it is clear that the standard de-
viation of the proposed classifier compares favorably with
other algorithms.

Tables 3 shows the classification accuracy comparison
when compared with the various variations of the proposed
method. In all data sets, the proposed ensemble classifier
has outperformed other methods. The performance of an
ensemble improves when all of its classifiers use a com-
mon feature subset derived using tabu search and the cost
function is the simple voting scheme. However, the perfor-
mance of an ensemble is further increased when different
feature subsets are used for different classifiers.

Figures 6 and 7 show the classification accuracy (%) vs
number of iterations for Australian data set using one run of
the solution search space using TS. The figure clearly indi-
cates that TS focuses a good solution space. The proposed
TS algorithm progressively zooms towards a better solution
subspace as time elapses; a desirable characteristics of ap-
proximation iterative heuristics.

4 Conclusion

A new ensemble technique is proposed in this paper to
improve the performance of nearest neighbor (NN) classi-
fier. The proposed approach combines multiple NN clas-
sifiers, where each classifier uses a different distance func-
tion and potentially a different set of features (feature vec-
tor). These feature vectors are determined independently for
each distance metric using Tabu Search (TS). To increase
the diversity, simple voting scheme is introduced in the cost
function of Tabu Search. The proposed ensemble distance
TS/NN classifier is evaluated using various benchmark data
sets from UCI Machine Learning Repository. Results have
indicated a significant increase in the performance when
compared with different well-known classifiers. Further-
more, the proposed TS based ensemble classifier progres-
sively zoomed towards a better solution subspace as time



Table 2. Average Classification Accuracy (%) using different classifiers. DT = Decision Table. RF =
Random Forest.

Data Set C4.5 DT RF NBayes Bagging AdaBoost 1NN TS-DF/1NN
Australian 84.34 84.71 86.09 77.14 86.04 84.94 79.62 88.07

Heart 78.24 82.32 80.17 83.98 80.47 79.15 75.68 87.28
Ionosphere 89.8 94.2 95.4 92.8 92.2 90.3 87.5 95.80

Vehicle 72.74 66.43 74.71 45.36 74.49 76.44 69.72 76.90
WDBC 93.59 93.32 95.88 93.31 95.35 96.06 95.38 96.82
Diabetes 74.29 74.11 74.73 75.62 76.0 72.39 70.31 74.5

Musk 82.72 80.82 87.81 73.88 88.21 89.98 85.58 94.53
Sonar 72.98 72.61 80.27 67.89 78.46 80.08 86.51 94.29

German 71.55 72.45 74.74 74.47 74.61 72.50 70.88 79.80

0
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Proposed 

C4.5

Bagging

AdaBoost

Nbayes
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Figure 5. Standard deviation for different algorithms on various data sets.

Table 3. Classification Accuracy (%) using individual classifiers and various variations of the pro-
posed classifier. M=Manhattan, E=Euclidean, C=Canberra, Cs = Chi-Squared, Sc = Squared-Chord.

Data Set E M C Cs Sc DF/NN1 TS-DF/NN2 TS-DF/NN
Australian 80.9 80.1 82.4 83.5 81.9 82.1 85.1 88.1

Heart 80.3 77.1 73.8 81.6 78.7 76.6 83.8 86.3
Vehicle 74.0 72.8 74.8 74.1 74.5 70.8 74.0 76.9
German 72.2 72.8 72.9 73.5 73.0 72.4 74.2 79.8
Diabetes 71.0 70.3 70.5 72.0 70.3 69.3 72.5 74.5

Breast Cancer 91.7 92.6 96.9 95.2 95.5 94.7 96.1 96.8
Ionosphere 93.6 92.1 93.2 92.8 93.0 90.3 95.1 96.3

Sonar 88.8 85.9 91.3 87.8 89.1 87.7 92.1 94.3
Musk 85.7 82.3 80.5 83.9 83.6 86.2 92.3 94.5
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elapsed, a desirable characteristic of approximation itera-
tive heuristics.
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