
Local Correlation Tracking in Time Series

Spiros Papadimitriou§ Jimeng Sun‡ Philip S. Yu§

§ IBM T.J. Watson Research Center
Hawthorne, NY, USA

‡Carnegie Mellon University
Pittsburgh, PA, USA

Abstract

We address the problem of capturing and tracking lo-
cal correlations among time evolving time series. Our ap-
proach is based on comparing the local auto-covariance
matrices (via their spectral decompositions) of each series
and generalizes the notion of linear cross-correlation. In
this way, it is possible to concisely capture a wide variety
of local patterns or trends. Our method produces a gen-
eral similarity score, which evolves over time, and accu-
rately reflects the changing relationships. Finally, it can
also be estimated incrementally, in a streaming setting. We
demonstrate its usefulness, robustness and efficiency on a
wide range of real datasets.

1 Introduction

The notion of correlation (or, similarity) is important,
since it allows us to discover groups of objects with sim-
ilar behavior and, consequently, discover potential anoma-
lies which may be revealed by a change in correlation. In
this paper we consider correlation among time series which
often exhibit two important properties.

First, their characteristics may change over time. In fact,
this is a key property of semi-infinite streams, where data
arrive continuously. The term time-evolving is often used in
this context to imply the presence of non-stationarity. In this
case, a single, static correlation score for the entire time se-
ries is less useful. Instead, it is desirable to have a notion of
correlation that also evolves with time and tracks the chang-
ing relationships. On the other hand, a time-evolving cor-
relation score should not be overly sensitive to transients; if
the score changes wildly, then its usefulness is limited.

The second property is that many time series exhibit
strong but fairly complex, non-linear correlations. Tradi-
tional measures, such as the widely used cross-correlation
coefficient (or, Pearson coefficient), are less effective in cap-
turing these complex relationships. From a general point
of view, the estimation of a correlation score relies on an
assumed joint model of the two sequences. For example,
the cross-correlation coefficient assumes that pairs of values
from each series follow a simple linear relationship. Con-
sequently, we seek a concise but powerful model that can

capture various trend or pattern types.
Data with such features arise in several application do-

mains, such as:
• Monitoring of network traffic flows or of system per-

formance metrics (e.g., CPU and memory utilization,
I/O throughput, etc), where changing workload char-
acteristics may introduce non-stationarity.

• Financial applications, where prices may exhibit linear
or seasonal trends, as well as time-varying volatility.

• Medical applications, such as EEGs (electroen-
cephalograms) [4].

Figure 1 shows the exchange rates for the French Franc
(blue) and the Spanish Peseta (red) versus the US Dollar,
over a period of about 10 years. An approximate timeline
of major events in the European Monetary Union (EMU)
is also included, which may help explain the behavior of
each currency. The global cross-correlation coefficient of
the two series is 0.30, which is statistically significant (ex-
ceeding the 95% confidence interval of ±0.04). The next
local extremum of the cross-correlation function is 0.34, at
a lag of 323 working days, meaning that the overall behav-
ior of the Franc is similar to that of the Peseta 15 months
ago, when compared over the entire decade of daily data.

0 500 1000 1500 2000 2500

Franc / Peseta

0 500 1000 1500 2000 2500
0.6

0.8

1
LoCo

Time

J
u

l
9

0

J
a

n
 9

4

J
u

l
9

3

M
a

y
 9

3
J
a

n
 9

3

O
c
t

9
2

F
e

b
 9

2

A
p

r
8

9

J
u

n
 8

9J
u

n
 8

8

Delors report req.
Delors report publ.

Peseta joins ERM
EMU Stage 1

Maastricht treaty Peseta devalued, Franc under siege
"Single Market" begins
Peseta devalued

Bundesbank buys Francs
EMU Stage 2

Figure 1. Illustration of tracking time-evolving
local correlations (see also Figure 6).

1

This information makes sense and is useful in its own
right. However, it is not particularly enlightening about the
relationship of the two currencies as they evolve over time.
Similar techniques can be employed to characterize corre-
lations or similarities over a period of, say, a few years.
But what if we wish to track the evolving relationships over
shorter periods, say a few weeks? The bottom part of Fig-
ure 1 shows our local correlation score computed over a
window of four weeks (or 20 values). It is worth noting
that most major EMU events are closely accompanied by
a correlation drop, and vice versa. Also, events related to
anticipated regulatory changes are typically preceded, but
not followed, by correlation breaks. Overall, our correla-
tion score smoothly tracks the evolving correlations among
the two currencies (cf. Figure 6).

To summarize, our goal is to define a powerful and con-
cise model that can capture complex correlations between
time series. Furthermore, the model should allow tracking
the time-evolving nature of these correlations in a robust
way, which is not susceptible to transients. In other words,
the score should accurately reflect the time-varying relation-
ships among the series.

Contributions. Our main contributions are the following:

• We introduce LoCo (LOcal COrrelation), a time-
evolving, local similarity score for time series, by gen-
eralizing the notion of cross-correlation coefficient.

• The model upon which our score is based can capture
fairly complex relationships and track their evolution.
The linear cross-correlation coefficient is included as a
special case.

• Our approach is also amenable to robust streaming es-
timation.

We illustrate our proposed method or real data, discussing
its qualitative interpretation, comparing it against natural al-
ternatives and demonstrating its robustness and efficiency.

The rest of the paper is organized as follows: In Sec-
tion 2 we briefly describe some of the necessary background
and notation. In Section 3 we define some basic notions.
Section 4 describes our proposed approach and Section 5
presents our experimental evaluation on real data. Finally,
in Section 6 we describe some of the related work and Sec-
tion 7 concludes.

2 Background

In the following, we use lowercase bold letters for col-
umn vectors (u,v, . . .) and uppercase bold for matrices
(U,V, . . .). The inner product of two vectors is denoted
by xTy and the outer product by x⊗ y ≡ xyT. The Eu-
clidean norm of x is ‖x‖. We denote a time series process

as an indexed collection X of random variables Xt, t ∈ N,
i.e., X = {X1, X2, . . . , Xt, . . .} ≡ {Xt}t∈N. Without loss
of generality, we will assume zero-mean time series, i.e.,
E[Xt] = 0 for all t ∈ N. The values of a particular realiza-
tion of X are denoted by lower-case letters, xt ∈ R, at time
t ∈ N.

Covariance and autocovariance. The covariance of two
random variables X , Y is defined as Cov[X, Y] = E[(X −
E[X])(Y − E[Y])]. If X1, X2, . . . , Xm is a group of m
random variables, their covariance matrix C ∈ Rm×m is
the symmetric matrix defined by cij := Cov[Xi, Xj], for
1 ≤ i, j ≤ m. If x1,x2, . . . ,xn is a collection of n obser-
vations xi ≡ [xi,1, xi,2, . . . , xi,m]T of all m variables, the
sample covariance estimate1 is defined as

Ĉ :=
1
n

n∑

i=1

xi⊗ xi.

In the context of a time series process {Xt}t∈N, we
are interested in the relationship between values at differ-
ent times. To that end, the autocovariance is defined as
γt,t′ := Cov[Xt, Xt′] = E[XtXt′], where the last equal-
ity follows from the zero-mean assumption. By definition,
γt,t′ = γt′,t.

Spectral decomposition. Any real symmetric matrix is
always equivalent to a diagonal matrix, in the following
sense.

Theorem 1. If A ∈ Rn×n is a symmetric, real matrix, then
it is always possible to find a column-orthonormal matrix
U ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n, such that
A = UΛUT.

Thus, given any vector x, we can write UT(Ax) =
Λ(UTx), where pre-multiplication by UT amounts to a
change of coordinates. Intuitively, if we use the coordinate
system defined by U, then Ax can be calculated by simply
scaling each coordinate independently of all the rest (i.e.,
multiplying by the diagonal matrix Λ).

Given any symmetric matrix A ∈ Rn×n, we will de-
note its eigenvectors by ui(A) and the corresponding eigen-
values by λi(A), in order of decreasing magnitude, where
1 ≤ i ≤ n. The matrix Uk(A) has the first k eigenvectors
as its columns, where 1 ≤ k ≤ n.

The covariance matrix C of m variables is symmetric
by definition. Its spectral decomposition provides the di-
rections in Rm that “explain” the most of the variance. If
we project [X1, X2, . . . , Xm]T onto the subspace spanned
by Uk(C), we retain the largest fraction of variance among
any other k-dimensional subspace [11]. Finally, the auto-
covariance matrix of a finite-length time series is also sym-
metric and its eigenvectors typically capture both the key

1The unbiased estimator uses n−1 instead of n, but this constant factor
does not affect the eigen-decomposition.

2

oscillatory (e.g., sinusoidal) as well as aperiodic (e.g., in-
creasing or decreasing) trends that are present [6, 7].

3 Localizing correlation estimates

Our goal is to derive a time-evolving correlation scores
that tracks the similarity of time-evolving time series. Thus,
our method should have the following properties:
(P1) Adapt to the time-varying nature of the data,

(P2) Employ a simple, yet powerful and expressive joint
model to capture correlations,

(P3) The derived score should be robust, reflecting the
evolving correlations accurately, and

(P4) It should be possible to estimate it efficiently.
We will address most of these issues in Section 4, which de-
scribes our proposed method. In this section, we introduce
some basic definitions to facilitate our discussion. We also
introduce localized versions of popular similarity measures
for time series.

As a first step to deal with (P1), any correlation score
at time instant t ∈ N should be based on observations in
the “neighborhood” of that instant. Therefore, we introduce
the notation xt,w ∈ Rw for the subsequence of the series,
starting at t and having length w,

xt,w := [xt, xt+1, . . . , xt+w−1]T.

Furthermore, any correlation score should satisfy two ele-
mentary and intuitive properties.

Definition 1 (Local correlation score). Given a pair of time
series X and Y , a local correlation score is a sequence
ct(X, Y) of real numbers that satisfy the following prop-
erties, for all t ∈ N:

0 ≤ ct(X,Y) ≤ 1 and ct(X, Y) = ct(Y, X).

3.1 Local Pearson

Before proceeding to describe our approach, we formally
define a natural extension of a method that has been widely
used for global correlation or similarity among “static” time
series.
Pearson coefficient. A natural local adaptation of cross-
correlation is the following:

Definition 2 (Local Pearson correlation). The local Pearson
correlation is the linear cross-correlation coefficient

ρt(X, Y) :=

∣∣Cov[xt,w,yt,w]
∣∣

Var[xt,w] Var[yt,w]
=

|xT
t,wyt,w|

‖xt,w‖·‖yt,w‖ ,

where the last equality follows from E[Xt] = E[Yt] = 0.

It follows directly from the definition that ρt satisfies the
two requirements, 0 ≤ ρt(X, Y) ≤ 1 and ρt(X,Y) =
ρt(Y,X).

Symbol Description
U,V Matrix (uppercase bold).
u,v Column vector (lowercase bold).
xt Time series, t ∈ N.
w Window size.
xt,w Window starting at t, xt,w ∈ Rw.
m Number of windows (typically, m = w).
β Exponential decay weight, 0 ≤ β ≤ 1.
Γ̂t Local autocorrelation matrix estimate.
ui(A), Eigenvectors and corresponding
λi(A) eigenvalues of A.
Uk(A) Matrix of k largest eigenvectors of A.
`t LoCo score.
ρt Pearson local correlation score.

Table 1. Description of main symbols.

4 Correlation tracking through local autoco-
variance

In this section we develop our proposed approach, the
Local Correlation (LoCo) score. Returning to properties
(P1)–(P4) listed in the beginning of Section 3, the next sec-
tion addresses primarily (P1) and Section 4.2 continues to
address (P2) and (P3). Next, Section 4.3 shows how (P4)
can also be satisfied and, finally, Section 4.4 discusses the
time and space complexity of the various alternatives.

4.1 Local autocovariance

The first step towards tracking local correlations at time
t ∈ N is restricting, in some way, the comparison to the
“neighborhood” of t, which is the reason for introducing
the notion of a window xt,w.

If we stop there, we can compare the two windows xt,w

and yt,w directly. If, in addition, the comparison involves
capturing any linear relationships between localized values
of X and Y , this leads to the local Pearson correlation score
ρt. However, this joint model of the series it is too simple,
leading to two problems: (i) it cannot capture more complex
relationships, and (ii) it is too sensitive to transient changes,
often leading to widely fluctuating scores.

Intuitively, we address the first issue by estimating the
full autocovariance matrix of values “near” t, and avoid
making any assumptions about stationarity (as will be ex-
plained later). Any estimate of the local autocovariance at
time t needs to be based on a “localized” sample set of win-
dows with length w. We will consider two possibilities:
• Sliding (a.k.a. boxcar) window (see Figure 2a): We

use a exactly m windows around t, specifically xτ,w

for t−m+1 ≤ τ ≤ t, and we weigh them equally. This
takes into account w + m − 1 values in total, around
time t.

3

t t+w−1t t+w−1t−m+1

(a) Sliding window (b) Exponential window

Figure 2. Local auto-covariance; shading cor-
responds to weight.

• Exponential window (see Figure 2b): We use all win-
dows xτ,w for 1 ≤ τ ≤ t, but we weigh those close
to t more, by multiplying each window by a factor of
βt−τ .

These two alternatives are illustrated in Figure 2, where the
shading corresponds to the weight. We will explain how to
“compare” the local autocovariance matrices of two series
in Section 4.2. Next, we formally define these estimators.

Definition 3 (Local autocovariance, sliding window).
Given a time series X , the local autocovariance matrix es-
timator Γ̂t using a sliding window is defined at time t ∈ N
as

Γ̂t(X, w,m) :=
t∑

τ=t−m+1

xτ,w⊗ xτ,w.

The sample set of m windows is “centered” around time t.
We typically fix the number of windows to m = w, so that
Γ̂t(X,w, m) =

∑t
τ=t−w+1 xτ,w⊗ xτ,w. A normalization

factor of 1/m is ignored, since it is irrelevant for the eigen-
vectors of Γ̂t.

Definition 4 (Local autocovariance, exponential window).
Given a time series X , the local autocovariance matrix es-
timator Γ̂t at time t ∈ N using an exponential window is

Γ̂t(X,w, β) :=
t∑

τ=1

βt−τxτ,w⊗ xτ,w.

Similar to the previous definition, we ignore the normaliza-
tion factor (1− β)/(1− βt+1). In both cases, we may omit
some or all of the arguments X , w, m, β, when they are
clear from the context.

Under certain assumptions, the equivalent window cor-
responding to an exponential decay factor β is given by
m = (1 − β)−1 [22]. However, one of the main benefits
of the exponential window is based on the following simple
observation.

Property 1. The sliding window local autocovariance fol-
lows the equation

Γ̂t = Γ̂t−1 − xt−w,w⊗ xt−w,w + xt,w⊗ xt,w,

whereas for the exponential window it follows the equation

Γ̂t = βΓ̂t−1 + xt,w⊗ xt,w.

An incremental update to the sliding window estimator has
rank 2, whereas an update to the exponential window es-
timator has rank 1, which can be handled more efficiently.
Also, updating the sliding window estimator requires sub-
traction of xt−w+1,w⊗ xt−w+1,w, which means that by ne-
cessity, the past w values of X need to be stored (or, in
general, the past m values), in addition to the “future” w
values of xt,w that need to be buffered. Since, as we will
see, the local correlation scores derived from these estima-
tors are very close, using an exponential window is more
desirable.

The next simple lemma will be useful later, to show that
ρt is included as a special case of the LoCo score. Intu-
itively, if we use an instantaneous estimate of the local au-
tocovariance Γ̂t, which is based on just the latest sample
window xt,w, its eigenvector is the window itself.

Lemma 1. If m = 1 or, equivalently, β = 0, then

u1(Γ̂t) =
xt,w

‖xt,w‖ and λ1(Γ̂t) = ‖xt,w‖2.

Proof. In this case, Γ̂t = xt,w⊗ xt,w with rank 1. Its row
and column space are spanxt,w, whose orthonormal basis
is, trivially, xt,w/‖xt,w‖ ≡ u1(Γ̂t). The fact that λ1(Γ̂t) =
‖xt,w‖2 then follows by straightforward computation, since
u1⊗ u1 = xt,w⊗ xt,w/‖xt,w‖2, thus (xt,w⊗ xt,w)u1 =
‖xt,w‖2u1.

4.2 Pattern similarity

Given the estimates Γ̂t(X) and Γ̂t(Y) for the two series,
the next step is how to “compare” them and extract a corre-
lation score. Intuitively, we want to extract the “key infor-
mation” contained in the autocovariance matrices and mea-
sure how close they are. This is precisely where the spectral
decomposition helps. The eigenvectors capture the key ape-
riodic and oscillatory trends, even in short, non-stationary
series [6, 7]. These trends explain the largest fraction of the
variance. Thus, we will use the subspaces spanned by the
first few (k) eigenvectors of each local autocovariance ma-
trix to locally characterize the behavior of each series. The
following definition formalizes this notion.

Definition 5 (LoCo score). Given two series X and Y , their
LoCo score is defined by

`t(X, Y) := 1
2

(‖UT
XuY ‖+ ‖UT

Y uX‖
)
,

where UX ≡ Uk(Γ̂t(X)) and UY ≡ Uk(Γ̂t(Y)) are
the eigenvector matrices of the local autocovariance ma-
trices of X and Y , respectively, and uX ≡ u1(Γ̂t(X)) and
uY ≡ u1(Γ̂t(Y)) are the corresponding eigenvectors with
the largest eigenvalue.

4

X
T

u
Y

θcos =

U
X
T

u
Y

projection:

u
Y

θ

U
X

span

U

Figure 3. Illustration of LoCo definition.

In the above equation, UT
XuY is the projection of uY

onto the subspace spanned by the columns of the or-
thonormal matrix UX . The absolute cosine of the angle
θ ≡ ∠(uY , spanUX) = ∠(uY ,UT

XuY) is | cos θ| =
‖UT

XuY ‖/‖uY ‖ = ‖UT
XuY ‖, since ‖uY ‖ = 1 (see

Figure 3). Thus, `t is the average of the cosines
| cos ∠(uY , spanUX)| and | cos∠(uX , spanUY)|. From
this definition, it follows that 0 ≤ `t(X, Y) ≤ 1
and `t(X,Y) = `t(Y,X). Furthermore, `t(X, Y) =
`t(−X, Y) = `t(Y,−X) = `t(−X,−Y)—as is also the
case with ρt(X, Y).

Intuitively, if the two series X , Y are locally similar, then
the principal eigenvector of each series should lie within
the subspace spanned by the principal eigenvectors of the
other series. Hence, the angles will be close to zero and the
cosines will be close to one.

The next simple lemma reveals the relationship between
ρt and `t.

Lemma 2. If m = 1 (whence, k = 1 necessarily), then
`t = ρt.

Proof. From Lemma 1 it follows that UX = uX =
xt,w/‖xt,w‖ and UY = uY = yt,w/‖yt,w‖. From the

definitions of `t and ρt, we have `t = 1
2

(|xT
t,wyt,w|

‖xt,w‖·‖yt,w‖ +

|yT
t,wxt,w|

‖yt,w‖·‖xt,w‖
)

= |xT
t,wyt,w|

‖xt,w‖·‖yt,w‖ = ρt.

Choosing k. As we shall see also see in Section 5, the
directions of xt,w and yt,w may vary significantly, even at
neighboring time instants. As a consequence, the Pearson
score ρt (which is essentially based on the instantaneous es-
timate of the local autocovariance) is overly sensitive. How-
ever, if we consider the low-dimensional subspace which is
(mostly) occupied by the windows during a short period of
time (as LoCo does), this is much more stable and less sus-
ceptible to transients, while still able to track changes in
local correlation.

One approach is to set k based on the fraction of variance
to retain (similar to criteria used in PCA [11], as well as in
spectral estimation [19]). A simpler practical choice is to
fix k to a small value; we use k = 4 throughout all experi-
ments. From another point of view, key aperiodic trends are
captured by one eigenvector, whereas key oscillatory trends
manifest themselves in a pair of eigenvectors with similar
eigenvalues [6, 7]. The former (aperiodic trends) are mostly

0 10 20 30 40
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

i

 U
(i
)

0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

i

 U
(i
)

 U
1

 U
2

 U
3

 U
4

(a) Periodic (b) Polynomial trend

Figure 4. First four eigenvectors (w = 40)
for (a) periodic series, xt = 2sin(2πt/40) +
sin(2πt/20) and, (b) polynomial trend, xt = t3.

present during “unstable” periods of time, while the latter
(periodic, or oscillatory trends) are mostly present during
“stable” periods. The eigen-decomposition can capture both
and fixing k amounts to selecting a number of trends for our
comparison. The fraction of variance captured in the real
series of our experiments with k = 4 is typically between
90–95%.

Choosing w. Windows are commonly used in stream and
signal processing applications. The size w of each window
xt,w (and, consequently, the size w × w of the autocovari-
ance matrix Γ̂t) essentially corresponds to the time scale we
are interested in.

As we shall also see in Section 5, the LoCo score `t de-
rived from the local autocovariances changes gradually and
smoothly with respect to w. Thus, if we set the window
size to any of, say, 55, 60 or 65 seconds, we will qualita-
tively get the same results, corresponding approximately to
patterns in the minute scale. Of course, at widely different
time scales, the correlation scores will be different. If desir-
able, it is possible to track the correlation score at multiple
scales, e.g., hour, day, month and year. If buffer space and
processing time are a concern, either a simple decimated
moving average filtering scheme or a more elaborate hier-
archical SVD scheme (such as in [16]) can be employed—
these considerations are beyond the scope of this paper.

Types of patterns. We next consider two characteristic
special cases, which illustrate how the eigenvectors of the
autocovariance matrix capture both aperiodic and oscilla-
tory trends [7].

We first consider the case of a weakly stationary series.
In this case, it follows from the definition of stationarity
that the autocorrelation depends only on the time distance,
i.e., γt,t′ ≡ γ|t−t′|. Consequently, its local autocovariance
matrix is circulant, i.e., it it symmetric with constant diag-
onals. Its estimate Γ̂t will have the same property, provided

5

that the sample size m (i.e., number of windows used by
the estimator) is sufficiently large. However, the eigenvec-
tors of a circulant matrix are the Fourier basis vectors. If we
additionally consider real-valued series, these observations
lead to the following lemma.

Lemma 3 (Stationary series). If X is weakly stationary,
then the eigenvectors of the local autocovariance matrix (as
m → ∞) are sinusoids. The number of non-zero eigenval-
ues is twice the number of frequencies present in X .

Figure 4a illustrates the four eigenvectors of the auto-
covariance matrix for a series consisting of two frequen-
cies. The eigenvectors are pairs of sinusoids with the same
frequencies and phases different by π/2. In practice, the
estimates derived using the singular value decomposition
(SVD) on a finite sample size of m = w windows have
similar properties [19].

Next, we consider simple polynomial trends, xt = tk for
a fixed k ∈ N. In this case, the window vectors are always
polynomials of degree k, xt,w = [tk, (t + 1)k, . . . , (t +
w − 1)k]T. In other words, they belong to the span of
{1, t, t2, . . . , tk}, leading to the next simple lemma.

Lemma 4 (Trends). If X is a polynomial of degree k, then
the eigenvectors of Γ̂t are polynomials of the same degree.
The number of non-zero eigenvalues is k + 1.

Figure 4b illustrates the four eigenvectors of the autoco-
variance matrix for a cubic monomial. The eigenvectors are
polynomials of degrees zero to three, which are similar to
Chebyshev polynomials [3].

In practice, if a series consists locally of a mix of oscil-
latory and aperiodic patterns, then the eigenvectors of the
local autocovariance matrix will be linear combinations of
the above types of functions (sinusoids at a few frequencies
and low-degree polynomials). By construction, these mix-
tures locally capture the maximum variance.

4.3 Online estimation

In this section we show how `t can be incrementally up-
dated in a streaming setting. We also briefly discuss how to
update ρt.

LoCo score. The eigenvector estimates of the exponen-
tial window local autocovariance matrix can be updated in-
crementally, by employing eigenspace tracking algorithms.
For completeness, we show above one such algorithm [22]
which, among several alternatives, has very good accuracy
with limited resource requirements.

This simple procedure will track the k-dimensional
eigenspace of Γ̂t(X,w, β). More specifically, the matrix
Vt ∈ Rw×k will span the same k-dimensional subspace as
Uk(Γ̂t). Its columns may not be orthonormal, but that can

Procedure 1 EIGENUPDATE (Vt−1, Ct−1, xt,w, β)

Vt∈Rw×k: basis for k-dim. principal eigenspace of Γ̂t

Ct∈Rk×k: covariance w.r.t. columns of Vt

xt,w∈Rw: new window with arriving value xt+w

0 < β ≤ 1: exponential decay factor

y := VT
t−1xt,w

h := Ct−1y
g := h/(β + yTh)
ε := xt+1,w −Vt−1y
Vt ← Vt−1 + ε⊗ g
Ct ← (Ct−1 − g⊗ h)/β
return Vt, Ct

be easily addressed by performing an orthonormalization
step. The matrix Ct is the covariance in the coordinate sys-
tem defined by Vt, which is not necessarily diagonal since
the columns of Vt do not have to be the individual eigen-
vectors. The first eigenvector is simply the one-dimensional
eigenspace and can also be estimated using EIGENUPDATE.
The detailed pseudocode is shown below.

Algorithm 1 STREAMLOCO

Eigenvector estimates ũX , ũY ∈ Rw

Eigenvalue estimates λ̃X , λ̃Y ∈ R
Eigenspace estimates Ũx, ŨY ∈ Rw×k

Covariance (eigen-)estimates C̃X , C̃Y ∈ Rk×k

Initialize Ũx, ŨY , C̃X , C̃Y to unit matrices
Initialize ũX , ũY , λ̃X , λ̃Y to unit matrices
for each arriving pair xt+w, yt+w do

xt,w := [xt · · ·xt+w]T

yt,w := [yt · · · yt+w]T

ŨX , C̃X ← EIGENUPDATE(ŨX , C̃X ,xt,w, β)
ŨY , C̃X ← EIGENUPDATE(ŨY , C̃Y ,yt,w, β)
ũX , λ̃X ← EIGENUPDATE(ũX , λ̃X ,xt,w, β)
ũY , λ̃Y ← EIGENUPDATE(ũY , λ̃Y ,yt,w, β)
`t := 1

2

(‖ orth(ŨX)TũY ‖+ ‖ orth(ŨY)TũX‖
)

end for

Local Pearson score. Updating the Pearson score ρt re-
quires an update of the inner product and norms. For
the former, this can be done using the simple relationship
xT

t,wyt,w = xT
t−1,wyt−1,w − xt−1yt−1 + xt+w−1yt+w−1.

Similar simple relationships hold for ‖xt,w‖ and ‖yt,w‖.

4.4 Complexity

The time and space complexity of each method is sum-
marized in Table 2. Updating ρt which requires O(1) time
(adding xt+w−1yt+w−1 and subtracting xt−1yt−1) and also
buffering w values. Estimating the LoCo score `t using a

6

50 100 150 200 250 300 350

−2

0

2

CPU / Memory

0 50 100 150 200 250 300 350
0

0.5

1
Loco (Sliding)

0 50 100 150 200 250 300 350
0

0.5

1
LoCo (Exponential)

0 50 100 150 200 250 300 350
0

0.5

1
Pearson

Time

50 100 150 200 250 300 350
−2

−1

0

1

CPU / Memory

0 50 100 150 200 250 300 350
0

0.5

1
Loco (Sliding)

0 50 100 150 200 250 300 350
0

0.5

1
LoCo (Exponential)

0 50 100 150 200 250 300 350
0

0.5

1
Pearson

Time

(a) MemCPU1 (b) MemCPU2

Figure 5. Local correlation scores, machine cluster.

sliding window requires O(wmk) = O(w2k) time (since
we set m = w) to compute the largest k eigenvectors of the
covariance matrix for m windows of size w. We also need
O(wk) space for these k eigenvectors and O(w + m) space
for the series values, for a total of O(wk + m) = O(wk).
Using an exponential window still requires storing the w×k
matrix V, so the space is again O(wk). However, the
eigenspace estimate V can be updated in O(wk) time (the
most expensive operation in EIGENUPDATE is VT

t−1xt,w),
instead of O(w2k) for sliding window.

Time Space
Method (per point) (total)
Pearson O(1) O(w)

LoCo sliding O(wmk) O(wk + m)
LoCo exponential O(wk) O(wk)

Table 2. Time and space complexity.

5 Experimental evaluation

This section presents our experimental evaluation, with
the following main goals:

1. Illustration of LoCo on real time series.

2. Comparison to local Pearson.

3. Demonstration of LoCo’s robustness.

4. Comparison of exponential and sliding windows for
LoCo score estimation.

5. Evaluation of LoCo’s efficiency in a streaming setting.

Datasets. The first two datasets, MemCPU1 and MemCPU2

were collected from a set of Linux machines. They measure
total free memory and idle CPU percentages, at 16 second
intervals. Each pair comes from different machines, run-
ning different applications, but the series within each pair
are from the same machine. The last dataset, ExRates, was
obtained from the UCR TSDMA [13]. and consists of daily
foreign currency exchange rates, measured on working days
(5 measurements per week) for a total period of about 10
years. Although the order is irrelevant for the scores since
they are symmetric, the first series is always in blue and the
second in red. For LoCo with sliding window we use ex-
act, batch SVD on the sample set of windows—we do not
explicitly construct Γ̂t. For exponential window LoCo, we
use the incremental eigenspace tracking procedure. The raw
scores are shown, without any smoothing, scaling or post-
processing of any kind.

1. Qualitative interpretation. We should first point out
that, although each score has one value per time instant t ∈
N, these values should be interpreted as the similarity of
a “neighborhood” or window around t (Figures 5 and 6).
All scores are plotted so that each neighborhood is centered

7

around t. The window size for MemCPU1 and MemCPU2 is
w = 11 (about 3 minutes) and for ExRates it is w = 20 (4
weeks). Next, we discuss the LoCo scores for each dataset.

Machine data. Figure 5a shows the first set of machine
measurements, MemCPU1. At time t ≈ 20–50 one series
fluctuates (oscillatory patterns for CPU), while the other re-
mains constant after a sharp linear drop (aperiodic patterns
for memory). This discrepancy is captured by `t, which
gradually returns to one as both series approach constant-
valued intervals. The situation at t ≈ 185–195 is similar.
At t ≈ 100–110, both resources exhibit large changes (ape-
riodic trends) that are not perfectly synchronized. This is
reflected by `t, which exhibits three dips, corresponding to
the first drop in CPU, followed by a jump in memory and
then a jump in CPU. Toward the end of the series, both re-
sources are fairly constant (but, at times, CPU utilization
fluctuates slightly, which affects ρt). In summary, `t be-
haves well across a wide range of joint patterns.

The second set of machine measurements, MemCPU2, is
shown in Figure 5b. Unlike MemCPU1, memory and CPU
utilization follow each other, exhibiting a very similar peri-
odic pattern, with a period of about 30 values or 8 minutes.
This is reflected by the LoCo score, which is mostly one.
However, about in the middle of each period, CPU utiliza-
tion drops for about 45 seconds, without a corresponding
change in memory. At precisely those instants, the LoCo
score also drops (in proportion to the discrepancy), clearly
indicating the break of the otherwise strong correlation.

Exchange rate data. Figure 6 shows the exchange rate
(ExRates) data. The blue line is the French Franc and the
red line is the Spanish Peseta. The plot is annotated with
an approximate timeline of major events in the European
Monetary Union (EMU). Even though one should always
be very careful in suggesting any causality, it is still remark-
able that most major EMU events are closely accompanied
by a break in the correlation as measured by LoCo, and vice
versa. Even in the cases when an accompanying break is ab-
sent, it often turns out that at those events both currencies
received similar pressures (thus leading to similar trends,
such as, e.g., in the October 1992 events). It is also interest-
ing to point out that events related to anticipated regulatory
changes are typically preceded by correlation breaks. After
regulations are in effect, `t returns to one. Furthermore, af-
ter the second stage of the EMU, both currencies proceed in
lockstep, with negligible discrepancies.

In summary, the LoCo score successfully and accurately
tracks evolving local correlations, even when the series are
widely different in nature.

2. LoCo versus Pearson. Figures 5 and 6 also show the
local Pearson score (fourth row), along with the LoCo score.
It is clear that it either fails to capture changes in the joint
patterns among the two series, or exhibit high sensitivity

500 1000 1500 2000 2500
−2

0

2

Franc / Peseta

0 500 1000 1500 2000 2500
0

0.5

1
LoCo (Sliding)

0 500 1000 1500 2000 2500
0

0.5

1
LoCo (Exponential)

0 500 1000 1500 2000 2500
0

0.5

1
Pearson

Time

EMU Stage 1

Delors report req.
Delors report publ.

Peseta joins ERM

Maastricht treaty Peseta devalued, Franc under siege
"Single Market" begins
Peseta devalued

EMU Stage 2
Bundesbank buys Francs

M
a

y
 9

3

A
p

r
8

9

J
u

n
 8

9J
u

n
 8

8

J
u

l
9

0

F
e

b
 9

2

O
c
t

9
2 J
a

n
 9

3 J
u

l
9

3

J
a

n
 9

4

Figure 6. Local correlation scores, ExRates.

to small transients. We also tried using a window size of
2w − 1 instead of w for ρt (so as to include the same num-
ber of points as `t in the “comparison” of the two series).
The results thus obtained where slightly different but sim-
ilar, especially in terms of sensitivity and lack of accurate
tracking of the evolving relationships among the series.

3. Robustness. This brings us to the next point in our
discussion, the robustness of LoCo. We measure the “sta-
bility” of any score ct, t ∈ N by its smoothness. We employ
a common measure of smoothness, the (discrete) total vari-
ation V of ct, defined as V (ct) :=

∑
τ |cτ+1−cτ |, which is

the total “vertical length” of the score curve. Table 3 (top)
shows the relative total variation, with respect to the base-
line of the LoCo score, V (ρt)/V (`t). If we scale the total
variations with respect to the range (i.e., use V (ct)/R(ct)
instead of just V (ct)—which reflects how many times the
vertical length “wraps around” its full vertical range), then
Pearson’s variation is consistently about 3 times larger, over
all data sets.

Dataset
Method MemCPU1 MemCPU2 ExRates

Pearson 4.16× 3.36× 6.21×
LoCo 5.71 10.53 6.37

Table 3. Relative stability (total variation).

8

10

15

20

50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

Window

Time

CPU / Memory

1
−

C
o
rr

10

15

20

50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

Window

Time

CPU / Memory

1
−

C
o
rr

(a) LoCo (b) Pearson

Figure 7. Score vs. window size; LoCo is
robust with respect to both time and scale,
accurately tracking correlations at any scale,
while Pearson performs poorly at all scales.

Window size. Figure 7a shows the LoCo scores of
MemCPU2 (see Figure 5b) for various windows w, in the
range of 8–20 values (2–5 minutes). We chose the dataset
with the highest total score variation and, for visual clar-
ity, Figure 7 shows 1 − `t instead of `t. As expected, `t

varies smoothly with respect to w. Furthermore, it is worth
pointing out that at about a 35-value (10-minute) resolu-
tion (or coarser), both series the exhibit clearly the same
behavior (a periodic increase then decrease, with a period
of about 10 minutes—see Figure 5b), hence they are per-
fectly correlated and their LoCo score is almost constantly
one (but not their Pearson score, which gets closer to one
while still fluctuating noticeably). Only at much coarser
resolutions (e.g., an hour or more) do both scores become
one. This convergence to one is not generally the case and
some time series may exhibit interesting relationships at all
time scales. However, the LoCo score is robust and changes
gracefully also with respect to resolution/scale, while ac-
curately capturing any interesting relationship changes that
may be present at any scale.

Dataset MemCPU1 MemCPU2 ExRates

Avg. var. 0.051 0.071 0.013
Rel. var. 5.6% 7.8% 1.6%

Table 4. Sliding vs. exponential score.

4. Exponential vs. sliding window. Figures 5 and 6 show
the LoCo scores based upon both sliding (second row) and
exponential (third row) windows, computed using appro-
priately chosen equivalent window sizes. Upon inspection,
it is clear that both LoCo score estimates are remarkably
close. In order to further quantify this similarity, we show
the average variation V̂ of the two scores, which is defined
as V̂ (`t, `

′
t) := 1

t

∑t
τ=1 |`τ−`′τ |, where `t uses exact, batch

SVD on sliding windows and `′t uses eigenspace tracking on
exponential windows. Table 4 shows the average score vari-
ations for each dataset, which are remarkably small, even

when compared to the mean score ˆ̀ := 1
t

∑t
τ=1 `τ (the

bottom line in the table is V̂/ ˆ̀).

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Stream size

T
im

e
 p

e
r

m
e

a
s
u

re
m

e
n

t
(m

ill
is

e
c
o

n
d

s
)

Processing time

Pearson

LoCo exp.

Figure 8. Processing wall-clock time.

5. Performance. Figure 8 shows wall clock times per in-
coming measurement for our prototype implementations in
Matlab 7, running on a Pentium M 2GHz. Using k = 4
and w = 10, LoCo is in practice slightly less than 4×
slower than the simplest alternative, i.e., the Pearson cor-
relation. The additional processing time spent on updating
the eigenvector estimates using an exponential window is
small, while providing much more meaningful and robust
scores. Finally, it is worth pointing out that, even using an
interpreted language, the processing time required per pair
of incoming measurements is merely 0.33 milliseconds or,
equivalently, about 2× 3000 values per second.

6 Related work

Even though, to the best of our knowledge, the prob-
lem of local correlation tracking has not been explicitly ad-
dressed, time series and streams have received much atten-
tion and more broadly related previous work addresses other
aspects of either “global” similarity among a collection of
streams (e.g., [5]) or mining on time evolving streams (e.g.,
CluStream [1], StreamCube [8], and [2]). Change detection
in discrete-valued streams has also been addressed [10, 23].

BRAID [18] addresses the problem of finding lag corre-
lations on streams, i.e., of finding the first local maximum
of the global cross-correlation (Pearson) coefficient with
respect to an arbitrary lag. StatStream [24] addresses the
problem of efficiently finding the largest cross-correlation
coefficients (at zero lag) among all pairs from a collection of
time series streams. EDS [12] address the problem of sepa-
rating out the noise from the covariance matrix of a stream
collection (or, equivalently, a multidimensional stream), but
does not explicitly consider trends across time. Quantized
representations have also been employed for dimensionality
reduction, indexing and similarity search on static time se-
ries, such as the Multiresolution Vector Quantized (MVQ)

9

representation [15], and the Symbolic Aggregate approXi-
mation (SAX) [14, 17].

The work in [20] addresses the problem of finding
specifically burst correlations, by preprocessing the time
series to extract a list of burst intervals, which are subse-
quently indexed using an interval tree. This is used to find
all intersections of bursty intervals of a given query time
series versus another collection of time series. The work
in [21] proposes a similarity metric for time series that is
based on comparison of the Fourier coefficient magnitudes,
but allows for phase shifts in each frequency independently.

In the field of signal processing, the eigen-
decomposition of the autocovariance matrix is employed in
the widely used MUSIC (MUltiple SIgnal Classification)
algorithm for spectrum estimation [19], as well as in
Singular Spectrum Analysis (SSA) [6, 7]. Applications
and extensions of SSA have recently appeared in the field
of data mining. The work in [9] employs similar ideas
but for a different problem. In particular, it estimates
a changepoint score which can subsequently be used to
visualize relationships with respect to changepoints via
multi-dimensional scaling (MDS). Finally, the work in [16]
proposes a way to efficiently estimate a family of optimal
orthonormal transforms for a single series at multiple
scales (similar to wavelets). These transforms can capture
arbitrary periodic patterns that may be present.

7 Conclusion

Time series correlation or similarity scores are useful in
several applications. Beyond global scores, in the context
of time-evolving time series it is desirable to track a time-
evolving correlation score that captures their changing sim-
ilarity. We propose such a measure, the Local Correlation
(LoCo) score. It is based on a joint model of the series
which, naturally, does not make any assumptions about sta-
tionarity. The model may be viewed as a generalization
of simple linear cross-correlation (which it includes as a
special case), as well as of traditional frequency analysis
[7, 6, 19]. The score is robust to transients, while accu-
rately tracking the time-varying relationships among the se-
ries. Furthermore, it lends itself to efficient estimation in a
streaming setting. We demonstrate its qualitative interpreta-
tion on real datasets, as well as its robustness and efficiency.

References

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework
for clustering evolving data streams. In VLDB, 2003.

[2] E. Bingham, A. Gionis, N. Haiminen, H. Hiisilä, H. Man-
nila, and E. Terzi. Segmentation and dimensionality reduc-
tion. In SDM, 2006.

[3] Y. Cai and R. Ng. Indexing spatio-temporal trajectories with
Chebyshev polynomials. In SIGMOD, 2004.

[4] P. Celka and P. Colditz. A computer-aided detection of eeg
seizures in infants: A singular-spectrum approach and per-
formance comparison. IEEE TBE, 49(5), 2002.

[5] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan.
Comparing data streams using Hamming norms (how to zero
in). In VLDB, 2002.

[6] M. Ghil, M. Allen, M. Dettinger, K. Ide, D. Kondrashov,
M. Mann, A. Robertson, A. Saunders, Y. Tian, F. Varadi,
and P. Yiou. Advanced spectral methods for climatic time
series. Rev. Geophys., 40(1), 2002.

[7] N. Golyandina, V. Nekrutkin, and A. Zhigljavsky. Analysis
of Time Series Structure: SSA and Related Techniques. CRC
Press, 2001.

[8] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang,
and Y. D. Cai. StreamCube: An architecture for multi-
dimensional analysis of data streams. Dist. Par. Databases,
18(2):173–197, 2005.

[9] T. Idé and K. Inoue. Knowledge discovery from heteroge-
neous dynamic systems using change-point correlations. In
SDM, 2005.

[10] D. C. in Data Streams. Daniel kifer and shai ben-david and
johannes gehrke. In VLDB, 2004.

[11] I. T. Jolliffe. Principal Component Analysis. Springer, 2nd
edition, 2002.

[12] H. Kargupta, K. Sivakumar, and S. Ghosh. Dependency de-
tection in MobiMine and random matrices. In PKDD, 2002.

[13] E. Keogh and T. Folias. Ucr time series data mining archive.
http://www.cs.ucr.edu/∼eamonn/TSDMA/.

[14] J. Lin, E. J. Keogh, S. Lonardi, and B. Y.-C. Chiu. A
symbolic representation of time series, with implications for
streaming algorithms. In DMKD, 2003.

[15] V. Megalooikonomou, Q. Wang, G. Li, and C. Faloutsos. A
multiresolution symbolic representation of time series. In
ICDE, 2005.

[16] S. Papadimitriou and P. S. Yu. Optimal multi-scale patterns
in time series streams. In SIGMOD, 2006.

[17] C. A. Ratanamahatana, E. J. Keogh, A. J. Bagnall, and
S. Lonardi. A novel bit level time series representation with
implication of similarity search and clustering. In PAKDD,
2005.

[18] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. BRAID:
Stream mining through group lag correlations. In SIGMOD,
2005.

[19] R. O. Schmidt. Multiple emitter location and signal param-
eter estimation. IEEE Trans. Ant. Prop., 34(3), 1986.

[20] M. Vlachos, K.-L. Wu, S.-K. Chen, and P. S. Yu. Fast burst
correlation of financial data. In PKDD, 2005.

[21] M. Vlachos, P. S. Yu, and V. Castelli. On periodicity detec-
tion and structural periodic similarity. In SDM, 2005.

[22] B. Yang. Projection approximation subspace tracking. IEEE
Trans. Sig. Proc., 43(1), 1995.

[23] J. Yang and W. Wang. AGILE: A general approach to detect
transitions in evolving data streams. In ICDM, 2004.

[24] Y. Zhu and D. Shasha. StatStream: Statistical monitoring of
thousands of data streams in real time. In VLDB, 2002.

10

