Training Conditional Random Fields by Periodic Step Size Adaptation for
Large-Scale Text Mining

Han-Shen Huang

Yu-Ming Chang

Chun-Nan Hsu

Institute of Information Science
Academia Sinica
Taipei, Taiwan
{hanshen,porter,chunnan } @iis.sinica.edu.tw

Abstract

For applications with consecutive incoming training ex-
amples, on-line learning has the potential to achieve a
likelihood as high as off-line learning without scanning
all available training examples and usually has a much
smaller memory footprint. To train CRFs on-line, this paper
presents the Periodic Step size Adaptation (PSA) method to
dynamically adjust the learning rates in stochastic gradient
descent. We applied our method to three large scale text
mining tasks. Experimental results show that PSA outper-
forms the best off-line algorithm, L-BFGS, by many hundred
times, and outperforms the best on-line algorithm, SMD, by
an order of magnitude in terms of the number of passes re-
quired to scan the training data set.

1. Introduction

Many algorithms have been proposed to train Condi-
tional Random Fields (CRF). Among them, the limited-
memory BFGS (L-BFGS) algorithm [12] has become vir-
tually the standard algorithm for training CRF. Though L-
BFGS can significantly reduce the number of iterations re-
quired, it still needs to scan the training set many times,
which is impractical for some large scale applications. On-
Line learning has the potential to obtain a parameter vec-
tor that achieves a likelihood as high as that achieved by
off-line learning even before scanning the entire training
set. Another advantage of on-line learning is that it has a
much smaller memory footprint than its off-line learning
counterparts. Vishwanathan et al. [17] proposed a stochas-
tic meta-descent (SMD) method for CRF training, demon-
strating that on-line learning is feasible for large-scale CRF
training. However, experimental results show that though
SMD can reduce the number of passes required to scan the
training set, it requires careful tunings and may sometimes

converge to a parameter vector that is worse than that which
off-line algorithms can reach.

In this paper, we present the periodic step size adapta-
tion (PSA) method derived by aggregating on-line update
mappings. Though there are already many step size adap-
tation methods available, our method is different in that we
adjust the learning rate periodically. Our adjustment is very
simple but is based on accurate approximation of optimal
adjustment. Periodic adjustment is proved to improve the
accuracy of approximation. We applied our method to three
large scale text mining tasks. Experimental results show
that PSA outperforms the best off-line algorithm, L-BFGS,
by many hundred times, and outperforms the best on-line
algorithm, SMD, by an order of magnitude.

2. Conditional Random Fields

The CRF [9] is one of the most prevailing solutions to
sequential data classification. In a CRF, sequences and their
labels are transformed into features. The probability of a
labeling result is a function of weighted sum of features.
Training of CRFs is to assign proper weights for all features,
trying to minimize the negative log-likelihood or penalized
negative log-likelihood with the training data.

Let D = {(z1,¥1),...,(xr,yr)} denote a set of T
data sequences xj, and the corresponding labels y. A CRF
defines [features to be transformed from a given instance
(z,y): F(z,y) = (fi(z,y), ..., filz, y))T’ where f;(z,y)
is the number of times that feature ¢ occurs in (z,y). A
CREF is parameterized by the weights for all features: 6 =

(61,...,0,)T. Then, the conditional probability of y given

xis: po(ylz) = %W, where Zy(x) is a normaliza-

tion term: Zy(x) = 3, exp(0” F(z,y)). Training of CRFs
is to search for the weight vector that minimizes the negative
log-likelihood function as the objective function, which,
denoted by Lp(f), is: Lp(0) = — >, logpg(yrlrr) =
=22 [0T F(xk, yr) — log Zg ()]

3. Training CRF Off-line

The generalized iterative scaling (GIS) algorithm [2],
originally designed to train maximum entropy models, be-
came well-known because of its use as the training algo-
rithm for CRF [9]. Since GIS is extremely slow to converge,
other approaches to CRF training that applies gradient-
based numerical optimization algorithms have been pro-
posed [10]. Among them, the limited memory variable met-
rics (L-BFGS) method has become the de facto standard
now. L-BFGS is a second-order method that is derived from
the second-order Taylor expansion: Lp(0+A) = Lp(0) +
ATg(0)+1ATH(0)A, where g(0) is VLp(0), and H(6) is
the Hessian matrix of £ (6) givenby H(6) = L +Cov(6),
where Cov () is the covariance of the feature vectors under
model distribution pg(z, y). By applying Newton’s method,
we obtain an update rule as follows:

o0+ — 9 —H=1(0®))g(sM). (1)

The Hessian matrix of the log-likelihood involves the co-
variance matrix, which is usually difficult to compute given
even a small number of features. L-BFGS overcomes the
problem by approximating the [x [Hessian matrix with a
limited memory ¢ x [variable metric, where c is a small
constant, in the range of 3 to 10, while / can be millions. A
huge saving is therefore achieved. Malouf [10] reported that
L-BFGS significantly outperforms GIS and other gradient-
based algorithms in terms of the rate of convergence.

4. Accelerating Generalized Iterative Scaling
4.1. Aitken’s Acceleration

When applied to large training sets for CRF, GIS is ex-
tremely slow to converge. One approach to accelerating
GIS is to consider GIS as a fixed-point iteration mapping
and apply Aitken’s acceleration. Suppose that we apply the
fixed-point iteration method from #(*) in the neighborhood
of #* and the iteration converges at #*. Assuming that the
mapping M is differentiable, we can apply a linear Taylor
expansion of M around 6* so that

pt+1) MY
~ 0 +J0O0 —0),)
where J abbreviates M’(6*), the Jacobian of the mapping

M at 0*. Assuming that eig(J) € (—1, 1), the multivariate
Aitken’s acceleration is given by [11]:

o 4 ZJh(g(tJrl) —0®)
h=0
= 0O+ @-3) 1O —0®), 3)

0 =

4.2. Triple Jump Extrapolation

One of the drawbacks of Aitken’s acceleration is that
it must evaluate the Jacobian, which involves the covari-
ance matrix that may not have a closed form and can be
intractable even for a very simple model with a low dimen-
sional parameter space. Other drawbacks include that it
may not always converge and that it may be numerically
unstable [4]. One may approximate the Jacobian to over-
come these drawbacks. For example, replace (I — J)~! in
Equation (3) with a dynamically adjusted scalar [13].

Here we review another method where the adjustment
can be guided as follows. Let 10* := Q~'0* be the eigen
transformed 6*. Then in the eigenspace of J, we have ¢} ~
%(t) + ﬁ(E\t{)l —1/)10)), where)\; is the i-th eigenvalue of
J. When Q! is not close to I, we can simplify Aitken’s ac-
celeration by replacing \; with v(*) such that v(*) ~ \,q0
at the ¢-th iteration: 9(+1) = () 4 (1 - (1)) ~1 (95\? —6M).
Since J(O®) — (t=1D) ~ glt+1) _ g(t) — 95\? — 01 we
define

0 . 18 —09]

= oo gD @

Because to extrapolate to §(**1), we need to apply M con-
secutively to obtain () and 95\?, Huang et al. [3] named
this method as the Triple Jump Acceleration.

It is also possible to extrapolate with a different rate for
each component or sub-vector of the parameter vector. Let
p be the index of a component or sub-vector in 6. Then with

Lo 103, = 0] s
S |

we can perform extrapolation for each component or sub-
vector by 5 = 0 + (1 =) 1637, — 6”), .

5. Training CRF On-Line

5.1. Stochastic Gradient Descent Methods

Stochastic gradient descent (SGD) methods iteratively
update the parameters of a model with gradients computed
by small batches of b examples. Unlike gradient descent,
in SGD, the global objective function L£p () is not acces-
sible during the stochastic search. Instead, only a local ob-
jective function £(*)(#) based on the batch of examples at
iteration ¢ is used. Let examples be drawn from D with
equal weights. Then, the following relation exists between
£0(9) and Lp(0): ZETOD = L0 here B(£0)(6))
is the expectation with respect to the distribution of ex-
amples in D, and |D| is the number of examples in D.
The above equation describes that the normalized objective

function given D is the expectation of the normalized on-
line objective function given a random batch.

Let g(*) denote %. The parameter vector is up-
dated with the following equation by SGD methods:
o+ = g(t) _ () . o (1) (6)

It has been proved that SGD with a proper fixed small learn-
ing rate 1 can converge to the neighborhood of 6* [8], but
the convergence rate will be extremely slow. SGD can con-
verge faster with a relatively large learning rate, which will
be annealed or discounted gradually to ensure convergence.
For further acceleration, second-order methods are usually
adopted in which estimation of Hessians is required.

5.2. Stochastic Meta Descent

Stochastic meta descent (SMD) [17] is currently the
fastest SGD method for training CRF reported in the litera-
ture. In CRF, most of the elements of the parameter vector
are mutually independent so that the Hessian is close to a
diagonal matrix. Therefore, they approximate the Hessian
by means of a vector storing the diagonal elements. SMD
uses a vector of local learning rates in Equation (6).

Other on-line algorithms that may potentially be applied
to the training of CRF include the Margin Infused Relaxed
Algorithm (MIRA) [1]. On each on-line update, MIRA at-
tempts to keep current and new parameter vectors as close
as possible, subject to correctly classifying the given data
with margins to incorrect classifications larger than some
loss function. MIRA has been included in the latest release
of CRF++ [6].

6. Our Method
6.1. Optimal Step Size Adaptation

In stochastic gradient descent, approximated objective

function is used to compute the gradient. L(6;D) =
1Dl
St (Lp(8)+ Qb‘gf‘ll;), where B is a batch of b exam-

ples C D. In off-line gradient descent, we apply this update

rule: 004+ = () — v L(9"); D), but in on-line situation,

the update rule becomes 6t = 9(t) — v L(H®); BY)),
Using ¥ as the step size in SGD, we have (1) = §() —

n(V%B + |f)(|f;2) = O(t) — ng(t) = Mb(e(t)) We can

consider that the on-line mapping M} is a random variable
with its mean equal to the off-line mapping, where the entire
set of data is used to evaluate the gradient.

From Aitken’s acceleration, to reach 6*, we need
D) = 9 L (T—-J)" (M (6M) _g(t)) ~ 0 — %g(t),
Therefore, we can update n; componentwise by

1
=0t — @)
)

where 'yz(t) can be estimated by Equation (5). However, due

to stochastic nature of the mapping, it is unlikely that we can
obtain an accurate eigenvalue estimation at each iteration.
Moreover, since Aitken’s acceleration does not guarantee
convergence, when the extrapolation does not improve the
log-likelihood, we can throw away that extrapolation and
apply the original mapping to ensure convergence in off-
line applications, but in on-line situations, this is impossi-
ble. Therefore, we need to derive a new method to use the
estimates of the eigenvalues in on-line situations.

6.2. Periodic Step Size Adaptation

We follow the SGD framework in Equation (6) to adjust
the learning rates for on-line text mining with huge models.
Our method uses a vector of local learning rates correspond-
ing to each dimension of the parameter vector. The strategy
is to discount learning rates based on the estimated eigen-
values of each dimension: higher/lower discounts for learn-
ing rates of fast/slow dimensions. This strategy is consistent
with the optimal step size adaptation given in Equation (7).

In our method, we consider Equation (6) as an on-line
mapping M () : R™ — R"™: My(0®)) := 01 —p-g(). We
also assume that H®®) = H(#®) is a diagonal matrix. Tak-
ing the derivative of M; (")) with respect to 6, we can ob-
tain J®, the Jacobian of M;, at #*), which is also a diagonal
matrix: %Mb(é(t)) =J® =1—yH®. Inon-line gradi-
ent descent methods, however, the estimation is usually in-
accurate because only small batches of data are used to up-
date parameter vectors. To reduce the deviation to the true
eigenvalues, we aggregate consecutive mappings to average
n estimations. We use four parameter vectors, #(*), (t+1)
6(+m) and A+ +1D) | to estimate eigenvalues. In an off-
line situation, we apply Taylor expansion at §* and derive
the following relation : *+n+1 —gt+n ~ (J*)n(gi+1 —gt),

From the result, we can estimate the eigenvalues to the n-th
gttnt1) _g(t+n)

power by v;* := W
After running 2n itérations: we aggregate these estimates
by computing their average, weighted by the ratio of com-
ponentwise one step difference and the entire search path
along dimension i after n iterations, that is, 9§t+n) - 91@.
This is equivalent to averaging the numerators and denomi-
nators separately, resulting in efficient estimation of the av-

erage of ", denoted by 7"

n—1 0§t+’!L+k}+1>795t+7L+k>

—n L k=0 n
% T n_1 9£t+k+1)7‘95t+k)

k=0 n

6(t+2n) - 0(t+n)

i

9(t+n) - Q(t) ’ ®)

For computational stability, we introduce a constant x as

the upper bound of |37 |. Let a; denote the constrained 7.:
a; = sgn(3") min(|57, x). ©)

Instead of updating the learning rate at every iteration, we
update the learning rates every 2n iterations based on a;’s:

n£t+2n+1) _ bin£t+2n), (10)
where M
+a;
bj= ———. 11
M+rk+m an

In Equation (11), M and m control the scale of discount
factors b;’s. We can define the maximal value o and min-
imal value 3 of the discount and then obtain M and m by
solving 8 < b; < a. Since —k < a; < K, we have b; = «

when a; = k and b; = 8 when a; = —k. By solving the
equations, M and m are:
2(1 —
M:a+ﬁ/€ and m:wn. (12)
a—pf a—pf

At last, we summarize our SGD method as follows:
Algorithm 1: PSA

Given: V), o, 3, n;
Compute M and m by Equation (12);
repeat
Compute 6(*+1) by Equation (6);
if (¢t + 1) mod 2n = 0 then
Compute a; for all ¢ by Equation (8) and (9);
Compute 7(*+1) by Equation (10) and (11);
else
pt+h) = p®)
end
t=t+1;
until Convergence ;

b}

7. Experiments

We evaluate our proposed method by comparing the per-
formance with SMD. We ran experiments on three data
sets: CoNLL-2000 chunking task [14], BioNLP/NLPBA-
2004 bio-entity recognition task [5], and BioCreative II
gene mention task [18]. We randomly reorder the training
data as the input sequences many times to simulate the on-
line scenario. The performance is measured by the average
F-scores for the hold-out set during the training time. The
F-score is defined as F' = %, where P is the precision
and R the recall.

We applied PSA, SMD, and L-BFGS training methods
in our experiments. PSA was implemented by modifying
CRF++ !. We downloaded the SMD program 2 developed

! Available under LGPL from the
http://crfpp.sourceforge.net/.

2Available under LGPL from the following URL:
http://sml.nicta.com.au/code/crfsmd/.

following ~ URL:

CoNLL 2000

——PSA
---svD | {
i - - L-BFGS

10 20 30 40 50
Passes

Figure 1. Learning curves of our method,
SMD, and L-BFGS on CoNLL-2000 data set.

by Vishwanathan et al. [17], which was also implemented
by revising CRF++. At last, we used CRF++ again for L-
BFGS. Though L-BFGS is an off-line algorithm, we ran it
to obtain the F-scores every time after processing the whole
data set to examine the advantage of on-line methods and to
estimate the final F-score that on-line methods are supposed
to achieve after convergence.
Here are the parameters for SMD and our method:

e SMD: We used the typical setting described in Vish-
wanathan et al. [17] for SMD, that is, p = 0.1, A =
1.0, and n(U) = 0.1. The batch size is fixed to 8 for all
data sets.

e PSA: We used (, 3) = (0.9999,0.99), n = 10, and
7(®) = 0.1. The batch size is 1 for all data sets.

7.1. CoNLL-2000 Chunking Task

Our first experiment used the data set of the CoNLL-
2000 chunking task [14]. The task was to construct a shal-
low parser for base NP chunking, which labels each word as
one of B (beginning of chunk), I (in a chunk), and O (out-
side a chunk). The training data set contains 8,936 labeled
sentences and the test data set contains 2,012 sentences.

We used a CRF model with about 1,000,000 features,
which covers the features used by Sha and Pereira [16].
They achieved an F-score of 94.19% with their own ex-
tended features.

Figure 1 shows the learning curves of our method, SMD,
and L-BFGS for the CoNLL-2000 data set. The learning
curves are defined as the function of the progress of F-scores
given the number of processed examples, measured by the
number of passes through the entire training data sets. We
plotted the learning curves in the first 50 passes because
both on-line methods converged earlier.

NLPBAO4

i ——PSA
- - -svD
- - L-BFGS

20O 1‘0 26 1;0 4b 50

Passes
Figure 2. Learning curves of our method,
SMD, and L-BFGS on BioNLP/NLPBA-2004
data set.

The F-score of L-BFGS can converge to 94% in about
200 passes, while it arrived at 93.5% in 50 passes. Our
method reached an F-score of 93.6% very quickly in about
1.12 passes, and stayed above 93.6% steadily. After 8
passes, the F-score of our method exceeded 94% and finally
converged at 94.05%. SMD, reported as the fastest on-line
method for CREF, arrived at 93.6% asymptotically in about
7.7 passes in our experiment. SMD once reached 93.8% but
finally stayed around 93.6%. The result of SMD is similar
to that described in Vishwanathan et al. [17].

From the experiment, we found that our method is about
6.87 times as fast as SMD in terms of passes in achieving
the F-score that SMD converged at and our method ended
up with a better model than SMD did. The final F-score of
our method is almost the same as that of L-BFGS.

7.2. BioNLP/NLPBA-2004
Recognition Task

Bio-Entity

Our second experiment used the data set of
BioNLP/NLPBA-2004 bio-entity recognition task [5].
The goal of the task is to identify technical terms in
the domain of molecular biology and classify them into
five categories corresponding to concepts of interest to
biologists [5].

We used a CRF model with about 6,000,000 features,
most of which follow the features used by Settles [15]. The
overall F-score of the system of Settles is 69.8%.

Figure 2 shows the learning curves of our method, SMD,
and L-BFGS on the BioNLP/NLPBA-2004 data set. L-
BFGS arrived at an F-score of 67% in 40 passes, 70% in
70 passes, and stayed above 70% until convergence. Our
method reached an F-score of 67% very quickly in about
0.54 passes, then reached and kept above 70% after pro-
cessing 1.01 passes. After 1.68 passes, the F-score of
our method exceeded 71% and finally converged at 71.4%.

BioCreative 2 GM Task

/ ——PSA
, ---swp | |
- - L-BFGS

600 1‘0 26 I;O 4b 50

Passes
Figure 3. Learning curves of our method,
SMD, and L-BFGS on BioCreative Il data set.

SMD arrived at 67% in about 13 passes in our experiment.
Then, the F-score of SMD oscillated between 66% and 68%
until 50 passes. In Vishwanathan et al. [17], they used dif-
ferent feature sets and achieved a remarkable F-score of
more than 85%. However, SMD, with a slightly different
setting (1 = 0.02 and b = 6), still took about 10 passes to
converge.

In this experiment, our method is about 24 times as fast
as SMD in terms of passes in achieving the F-score that
SMD converged at, and again our method ended up with
a better model than SMD did . The quality of our learned
model is the same as that of L-BFGS in terms of the F-score.

7.3. BioCreative IT Gene Mention Task

Our third experiment used the data set of BioCreative II
gene mention task [18]. The goal of the task is to extract
all the genes and gene products mentioned in given MED-
LINE sentences. In the competition, 15,000 sentences were
released as the training data set and 5,000 were left as the
test data set for final evaluation.

We employed a CRF model with about 7,300,000 fea-
tures to label B, I, and O for gene mention extraction. We
used most of the features of Kuo et al. [7], who achieved
an F-score of 86.83% in the competition by training with L-
BFGS, the best result achieved by CRF in that competition.

Figure 3 shows the learning curves of our method, SMD,
and L-BFGS for the BioCreative II data set. L-BFGS
reached an F-score at 84% in 110 passes, 85% in 156
passes, and stayed above 86% after 200 passes. Our method
jumped beyond an F-score of 85% in about 1.66 passes,
then reached and kept above 86% after processing 3 passes.
After processing the data set for 4 passes, the F-score of
our method exceeded 86% and finally converged at 86.46%.
SMD arrived at 84% in about 16.67 passes in our experi-

ment. Then, SMD kept the F-score between 84% and 85%
until 50 passes.

Our method is about an order of magnitude faster than
SMD in terms of passes in achieving the highest F-score
of SMD, and finally our method produced a better model
than SMD did . The models trained by PSA and L-BFGS
achieved competing F-scores.

8. Conclusion

We have proposed PSA, a new step size adaptation
method for stochastic gradient descent for on-line large-
scale text mining with huge CRF models. We compared
the asymptotic behavior of our method with that of SMD,
which is currently reported as the fastest method for training
CRF on-line. Our method adopts an efficient way to esti-
mate the Jacobian of mappings, and adjust learning rates ac-
cording to the estimated Jacobian. The adjustment is more
efficient than that of SMD. Moreover, our experiments show
that training by PSA is 6.87 to 24 times faster than that of
SMD in terms of the passes through the training data set,
and at the same time, achieves competing F-scores with L-
BFGS in all the experiments.

We plan to conduct more large scale experiments on a
wide variety of application domains to further evaluate the
performance of our method and compare with MIRA and
other CRF training algorithms. We also plan to extend our
method to other learning problems, such as the kernel based
methods, to on-line learning.

Acknowledgements

This work was supported in part by the National Re-
search Program in Genomic Medicine (NRPGM), National
Science Council, Taiwan, under Grant No. NSC95-3112-B-
001-017 (Advanced Bioinformatics Core), and in part under
Grant No. NSC95-2221-E-001-038.

References

[1] K. Crammer and Y. Singer. Ultraconservative online algo-
rithms for multiclass problems. Journal of Machine Learn-
ing Research, 3:951-991, January 2003.

[2] J. N. Darroch and D. Ratcliff. Generalized iterative scaling
for log-linear models. The Annals of Mathematical Statis-
tics, 43(5):1470-1480, 1972.

[3] H.-S. Huang, B.-H. Yang, and C.-N. Hsu. Triple-jump ac-
celeration for the EM algorithm. In Proceedings of the Fifth
IEEE International Conference on Data Mining (ICDM’05),
pages 649-652, 2005.

[4] M. Jamshidian and R. I. Jennrich. Acceleration of the EM
algorithm by using quasi-newton methods. Journal of the
Royal Statistical Society, , Series B, 59(3):569-587, 1997.

(5]

(6]
(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

(15]

(16]

(17]

(18]

J.-D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Collier.
Introduction to the bio-entity recognition task at JNLPBA.
In Proceedings of the Joint Workshop on Natural Language
Processing in Biomedicine and its Applications (JNLPBA-
2004), pages 70-75, 2004.

T. Kudo. CRF++: Yet another CRF

(http://crfpp.sourceforge.net/),2006.
C.-J. Kuo, Y.-M. Chang, H.-S. Huang, K.-T. Lin, B.-H.
Yang, Y.-S. Lin, C.-N. Hsu, and L.-F. Chung. Rich feature
set, unification of bidirectional parsing and dictionary filter-
ing for high f-score gene mention tagging. In Proceedings
of the Second BioCreative Challenge Evaluation Workshop,
pages 105-107, 2007.

H. J. Kushner and H. Huang. Asymptotic properties of
stochastic approximations with constant coefficients. SIAM
Journal on Control and Optimization, 19(1):87-105, 1981.

J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and label-
ing sequence data. In Proceedings of 18th International
Conference on Machine Learning (ICML’01), pages 282—
289, 2001.

R. Malouf. A comparison of algorithms for maximum en-
tropy parameter estimation. In Proceedings of the Sixth
Conference on Natural Language Learning (CoNLL-2002),
pages 49-55, 2002.

G. J. McLachlan and T. Krishnan. The EM Algorithm
and Extensions. Wiley Series in Probability and Statistics.
Wiley-Interscience, 1997.

J. Nocedal and S. J. Wright.
Springer, 1999.

R. Salakhutdinov and S. Roweis. Adaptive overrelaxed
bound optimization methods. In Proceedings of the
Twentieth International Conference on Machine Learning
(ICML’03), pages 664-671, 2003.

E. F. T. K. Sang and S. Buchholz. Introduction to the conll-
2000 shared task: Chunking. In Proceedings of Conference
on Computational Natural Language Learning (CoNLL-
2000), pages 127-132, 2000.

B. Settles. Biomedical named entity recognition using con-
ditional random fields and novel feature sets. In Proceed-
ings of the Joint Workshop on Natural Language Processing
in Biomedicine and its Applications (JNLPBA-2004), pages
104-107, 2004.

F. Sha and F. Pereira. Shallow parsing with conditional ran-
dom fields. In Proceedings of Human Language Technology,
the North American Chapter of the Association for Compu-
tational Linguistics (NAACL’03), pages 213-220, 2003.

S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and
K. P. Murphy. Accelerated training of conditional random
fields with stochastic gradient methods. In Proceedings of
the 23rd International Conference on Machine Learning,
Pittsburgh, PA, USA, June 2006.

J. Wilbur, L. Smith, and L. Tanabe. Biocreative 2. gene men-
tion task. In Proceedings of the Second BioCreative Chal-
lenge Evaluation Workshop, pages 7-16, 2007.

toolkit

Numerical Optimization.

