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Abstract

Support vector clustering transforms the data into a high
dimensional feature space, where a decision function is
computed. In the original space, the function outlines the
boundaries of higher density regions, naturally splitting the
data into individual clusters. The method, however, though
theoretically sound, has certain drawbacks which make it
not so appealing to the practitioner. Namely, it is unsta-
ble in the presence of outliers and it is hard to control the
number of clusters that it identifies. Parametrizing the algo-
rithm incorrectly in noisy settings, can either disguise some
objectively present clusters in the data, or can identify a
large number of small and nonintuitive clusters.

Here, we explore the properties of the data in small re-
gions building a mixture of factor analyzers. The obtained
information is used to regularize the complexity of the out-
lined cluster boundaries, by assigning suitable weighting to
each example. The approach is demonstrated to be less sus-
ceptible to noise and to outline better interpretable clusters
than support vector clustering alone.

1 Introduction
One-class support vector machine (SVM) is an efficient

approach for estimating the density of a population [15, 17].
It works by applying a transformation Φ : X → Φ(X)
from the input space to a high dimensional feature space,
such that points within denser neighborhoods are projected
further from the origin of the coordinate system. The sup-
port vectors in the feature space are then used to outline
closed contours around the dense regions in the input space,
defining a binary decision function which is positive inside
the contours and negative elsewhere. The method has been
demonstrated to be applicable for tasks, such as novelty and
fault detection, context change detection, learning in image
retrieval, etc.

One can easily extend one-class classification to a clus-
tering scheme, by labeling each closed contour as a different
cluster. Elements, not enclosed by any contour, correspond

to regions that are estimated to have lower density support
in the high dimensional feature space. Such elements can
be assigned the label of their closest contour in the origi-
nal space. This extension, called support vector clustering
(SVC), was initially proposed in [3].

Despite its theoretical soundness the SVC method has re-
mained relatively unpopular among the practitioners. There
are several specific characteristics of SVC that diminish its
appeal. For instance, the map Φ requires a parametrized
kernel to be provided as an input from the user. The ra-
dial basis function k(xi, xj) = e−γ‖xi−xj‖2

has been rec-
ognized as a preferred kernel function because of its abil-
ity to form closed contours [3, 18]. This means that the
user needs to provide a suitable kernel width γ. However,
small values of γ (i.e. large kernel widths) may disguise or
merge some of the clusters, while very large γ may create
multiple closed contours which outline some rather nonin-
tuitive clusters. The effect of multiple emerging clusters is
especially strong in the presence of noise. This becomes
an issue, in many practical application where the examples
lie near the surface of a lower dimensional nonlinear man-
ifold. For example, such noisy manifolds may be defined
by a sample of facial images [13, 14, 19], or by the walking
motions of a human [10]. Though a soft margin can be in-
troduced to alleviate the impact of the outliers, there is again
the issue of how to specify the correct parameter ν, that con-
trols the tradeoff between the generalization performance of
the learner and its tolerance to the noisy examples.

To improve the performance of SVC in the case of Gaus-
sian distributed noise and to obtain better control over the
number of detected clusters, we explore the density vari-
ability of the data in very small regions. For the purpose, a
Mixture of Factor Analyzers (MFA) [9] is used. The mix-
ture model, when learned with a large number of analyzers,
implicitly detects points that deviate from the main trajec-
tory of the data. The information about those locally de-
viating points is used to determine the soft margin trade-
off between the outliers and the accuracy of the one-class
SVM learner, as well as, to regularize the complexity of
the induced decision boundary. The regularization results



in smoother contours, which are shrunk towards the dense
regions in the data, rather than trying to accommodate all
outliers. The subsequent clustering often allows for easier
interpretation too. Because of the local dimensionality re-
duction performed by MFA and the nonlinear feature map
Φ, the “locally constrained” SVC method is further demon-
strated to correctly identify the topological structure of the
data, when the clusters reside on a lower dimensional non-
linear manifold.

2 Related Work
A number of clustering algorithms have been demon-

strated to be particularly suitable for learning of non-convex
formations, e.g. spectral clustering [12], spectral graph
partitioning [8], or kernel K-means [16]. A close relation
between all of these approaches has been pointed out be-
fore [4]. We focus on one of these algorithms - spectral
clustering. Interestingly, the algorithm shares a lot of com-
monalities with SVC. They both start by computing a Gaus-
sian kernel matrix, emulating the high dimensional nonlin-
ear feature map Φ. From here on, however, spectral clus-
tering performs an eigen decomposition of the data in the
feature space. The projected examples are then clustered,
again in the feature space, using K-means clustering. In-
stead, SVC computes the optimal plane that separates the
projected data from the origin in the feature space. In this
way a simpler problem is solved by only isolating the higher
density regions. This comes at the price of not knowing the
actual clusters in the data, so a subsequent labeling and as-
signment step is carried out by SVC.

A different set of unsupervised learning approaches try
to infer the nonlinear structure of the data by considering
small regions around each example. Some popular meth-
ods following this paradigm are, for example, the Laplacian
eigenmaps [2] and Isomap [19]. The general idea behind
these algorithms is to compute a neighborhood graph G,
where each example xi is connected only to examples in its
close proximity. The graph is then augmented to a full affin-
ity matrix, by propagating the neighboring distances, e.g.
by solving an all pairs shortest path problem (Isomap) or by
applying a Laplacian operator (Laplacian eigenmaps). Both
methods proceed by computing an eigen decomposition and
projecting the data using a small subset of the eigenvectors.
As they preserve the convexity of the data, the algorithms
can easily be extended for clustering by using a partition-
ing scheme as K-means or Expectation Maximization (EM)
for a mixture of Gaussians. While local reduction methods
have been demonstrated to be unstable in the presence of
noise [1], they remain to be the preferred tool for unsuper-
vised learning from nonlinear manifolds.

In the proposed approach we combine the best features
that can be obtained from global methods, such as SVC and
local approximations as the ones discussed above. The un-

derlying idea is that a global view of the data can be inferred
by looking at the overall density distribution. The density
estimate alone, however, provides for a very coarse recon-
struction of the underlying sample space. Local methods,
on the other hand, can smoothen this estimate by looking
at the data statistics in some small regions. This is espe-
cially important if density fluctuations are observed in the
data and yet an obvious clustering is available. In this sense,
the proposed method is closest in spirit to the manifold re-
construction method proposed by Roweis et al. [14]. They
use a mixture of factor analyzers to infer the local structure
of the underlying manifold, but then a global constraint is
imposed, so that all local models are aligned to follow a
consistent trajectory.

3 Support Vector Density Estimation
3.1 One-Class Classification

Let us have a set of n independent and identically dis-
tributed observations: X = {xi}n

i=1. The problem ad-
dressed by one-class classification is to find a minimal re-
gion R, which encloses the data (Figure 1). Assuming that
the data are generated from the same distribution p, an ad-
ditional to the minimization of R is the requirement that fu-
ture test examples generated by p should also fall with high
probability within R. Therefore, apart of being minimal, R
should also generalize well on unseen data, which implies
that it should have a non-complex boundary.

Following similar reasoning as in support vector classi-
fication, rather than exploring the nonlinear boundary in the
original space, one could describe it as a hyper plane in the
high dimensional feature space defined by Φ(X). All exam-
ples, which in the original space are enclosed within R, are
going to be projected in the same half-space with respect to
the hyper plane. If w ·Φ(x) = b is the equation of the plane,
this is equivalent to the requirement that for all examples xi,
the inequality w · Φ(xi) ≥ b should hold. The two param-
eters that define the plane uniquely, w and b, are its normal
vector and its displacement from the origin respectively. Fi-
nally, the plane that corresponds to the smoothest boundary
in the original space is the one with smallest norm of the
normal vector w [16]. The equation of this plane is given
by the solution of the optimization problem:

minw
1
2‖w‖2 (1)

subject to w · Φ(xi) ≥ b, i = 1..n

It may be useful to restrict R to enclose only a subre-
gion of X that has higher support for the probability density
function. This will be the case, for example, if we are not
interested in the noisy points on the periphery of the distri-
bution (see Figure 1). In the feature space, the points that



Figure 1: One-class SVMs detect a region R in the data with
higher density support. Points inside the region are projected in
the same half-space defined by the separation hyper plane (w, b).

fall outside of R will satisfy w · Φ(xi) < b. To account
for such points the constraints for them in (1) should be
changed to w · Φ(xi) ≥ b− ξi, where we have additionally
introduced the slack variables ξi ≥ 0. The regularization
term that guarantees the smoothness of the boundary also
changes, yielding the new formulation:

min
w,b,ξ

q(w, b, ξ) = 1
2‖w‖2 + 1

nν

∑n
i=1 ξi − b (2)

subject to w · Φ(xi) ≥ b− ξi, ξi ≥ 0, i = 1..n

Formulations (1) and (2) produce the so called hard and
soft margin decision planes respectively. The penalty pa-
rameter ν in (2) controls the tradeoff between the allowed
slack for some of the examples and the complexity of the
region boundary. It takes values in the interval (0, 1] with
ν → 1 allowing for a lot of examples to lie outside the
region R, and ν → 0 penalizing significantly the slack vari-
ables, converting the problem effectively into a hard margin
decision problem. The latter case leads to a very tight and
complex boundary for the density region R.

Minimizing the quadratic function q(w, b, ξ) in prob-
lem (2) is hard, because of the available constraints. In-
stead, if we write all constraints in the form qi(w, b, ξ) ≤
0, the solution is obtained by minimizing the Lagrangian
L(w, b, ξ, α) = q(w, b, ξ) +

∑
i αiqi(w, b, ξ). To mini-

mize L, one sets the derivatives of L with respect of w,
b and ξ to zero, which allows for expressing them as a
function solely of the introduced Lagrangian multipliers αi

(αi ≥ 0,
∑

i αi = 1) and the data in the feature space
Φ(xi). Substituting the values back in the Lagrangian, we
obtain the dual optimization problem of problem (2):

min
α

1
2

∑
ij αiαjΦ(xi) · Φ(xj) (3)

subject to
∑n

i=1 αi = 1, 0 ≤ αi ≤ 1
nν

The class of feature mappings Φ(X) that linearly sepa-
rate the data from the origin is not available in parametric
form, yet it is selected so that the dot products in the fea-
ture space correspond to a computable kernel function in
the input space, i.e. k(xi, xj) = Φ(xi) · Φ(xj). In SVC the
Gaussian kernel k(xi, xj) = e−γ‖xi−xj‖2

is used, as it de-
fines smooth closed contours [3, 18]. All multipliers αi > 0
in the solution of (3) correspond to the support vectors, i.e.
the examples which in the feature space lie on the separat-
ing hyper-plane (see Figure 1). For the rest of the points xi

the corresponding αi is equal to zero. To test on which side
of the hyper plane such examples are projected, one needs
to substitute them in the equation of the plane as defined by
the computed support vectors:

f(x) = sgn[
∑

xi∈SV s

αik(xi, x)− b] (4)

Positive f(x) implies that x falls within the dense sub-
space R, whereas negative values of the decision function
imply a sparsely populated region. Observations xi ∈ X
for which f(xi) < 0 are called bounded support vectors.
The value of the displacement b can be computed using
the fact that any support vector xs lies on the separation
plane, and thus it satisfies the equality w ·Φ(xs) = b, which
can also be expressed in terms of the kernel function as∑

xi∈SV s αik(xi, xs) = b.
The formalization defined so far is not the only way for

computing high dimensional density support. For instance,
instead of looking for the optimal separation plane, Ben-
Hur et al. [3] study the class of spheres in the feature space
that enclose the projected examples. They derive an alter-
native formulation of problem (3), which instead minimizes
the volume of the enclosing hyper sphere. An equivalence
of the two formulations has been demonstrated in [16]. In
the current work, the density estimation step is carried out
as in the original one-class SVM formulation.

3.2 Support Vector Clustering

The one-class density estimation method can easily be
extended to a clustering scheme by computing a matrix A
for the data, where Aij = 1 if xi and xj are enclosed within
the same contour and 0 otherwise. Whether xi and xj lie
within the same contour can be determined by computing
the SVM decision function (4) for all points on the line that
connects them. In the original SVC formulation (and also
in our implementation) 20 regularly spaced points between
xi and xj are tested. An always positive decision function
guarantees that xi and xj are part of the same dense re-
gion. The opposite, however, is not necessarily true. For
some points, on the line between two examples, f may be
negative, but the examples may still be within the same con-
tour. This is often the case if the contours are too complex.



Figure 2: One-class SVMs can be extended to a clustering
scheme, by assigning the same label to all points enclosed within
the same contour. For example, xi and xj are within the same
contour if for any point x on the line between them the decision
function f(x) is non-negative.

Therefore, one needs to detect the connected components
in the graph induced by A. This determines the number of
clusters in the data as well as the labels for each example
that is enclosed by a contour. Finally, the bounded support
vectors (i.e. the examples outside the contours) are assigned
to their closest cluster (see Figure 2).

While precise parametrization is not so essential when
only density estimation is required, it becomes of crucial
importance in the case of clustering. Consider, for example,
Figure 2. Selecting a large kernel width (i.e. small γ) would
disguise the fact that there is large fluctuation between the
density of the inner and the outer circles. Large values of
γ or too small tradeoff terms ν, on the other hand, can pro-
duce decision boundary of a very high capacity, which leads
to multiple tight contours in the original space. Apart of
obtaining too many small and nondescriptive clusters, the
complex decision function impedes the proper labeling even
of elements that are within the same contour. For some ex-
amples xp all lines connecting them to other examples xq

within the same contour, would pass through regions where
the decision function has negative value. Such examples
will be assumed to belong to a different cluster.

The lack of control over the number of clusters produced
by different parametrizations is a significant drawback of
the scheme. A common requirement in clustering is that the
users provide the number of clusters that they want to be
detected in their data. Such a requirement is easily handled
by partition clustering (e.g. K-means), agglomerative clus-
tering and even kernel based algorithms as spectral cluster-
ing. Unfortunately there is no clear unsupervised strategy
of how such user imposed constraint can be incorporated in
SVC. One reasonable way to emulate such behavior, would
be to start exploring kernels with monotonically decreasing

widths until at least as many clusters as the users require
emerge from the data. Such iterative approach is followed
for example in [11]. As will be shown in the experimental
evaluation, this strategy, though pretty robust in the case of
well separated and dense clusters, can cause the occurrence
of some rather uninformative formations when the clusters
are sparse and noise is present in the data.

Next, we introduce a modification of the SVC approach,
which improves on its stability in the presence of noise. The
method is further demonstrated to be less sensitive to slight
changes in the parametrization.

4 Locally Constrained SVC
The intuition followed in the current work is that both

global density estimation methods as SVC, and local recon-
struction methods as Isomap [19] or LLE [13] introduce in-
formation about the data, which is somewhat complemen-
tary. For example, support vector clustering provides some
very important information about the overall structure of the
data. Namely, an estimate of its density. A local method can
complement this with additional region boundary smooth-
ing and can evaluate locally which points are likely to de-
viate from the unknown distribution that has generated the
data. The method that we utilize here to obtain such local
statistics is based on the Mixture of Factor Analyzers frame-
work introduced by Ghahramani et al. in [9]. We term the
algorithm derived in this section Locally constraint Support
Vector Clustering (LSVC).

4.1 Mixture of Factor Analyzers
Factor analysis (FA) is a technique for linearly projecting

the data X ⊂ RD into a lower dimensional space Rd [7].
Ghahramani et al. [9] derive an EM procedure for learn-
ing the projecting dimensions z. They make the simplifying
assumption that the dimensions z are normally distributed
with zero means and variance one, i.e. z ∈ N (0, I) (I here
marks the identity matrix). Furthermore, each example is
allowed to have some residual noise u, which is also as-
sumed to be normally distributed with covariance Ψ, i.e.
u ∈ N (0,Ψ). The following relation is now enforced:
x = Λz + u, where Λ is the so called factor loading ma-
trix, and the noise covariance matrix Ψ is required to be
diagonal. The common factors z are used as latent variables
to iteratively obtain an improved likelihood estimate for the
observed data x (E-step of the algorithm), recomputing on
each iterations more optimal values for the matrices Ψ and
Λ (M-step of the algorithm).

Ghahramani et al. [9] also suggest that one could have a
mixture of factor analyzers, rather than a single one, where
every component in the mixture can have different mean
µj and loading matrix Λj . The noise term in the mix-
ture is preserved the same across all factor analyzers, i.e.
zj ∈ N (µj ,Ψ). The goal now becomes to find a maximum
likelihood estimate for the observed data x, using the latent



Figure 3: The topology of the data is closely approximated with
a mixture of 20 analyzers. The ellipses outline two standard devi-
ations from the center of the analyzers. The mixture can be used
to detect “local” outliers (e.g. P2) that bridge the existing clusters.

variables zj , and the probability that it has been projected
using the j-th factor analyzer (E-step of the mixture model).
On every iteration the MFA algorithm, apart of computing
some more optimal estimates of the matrices Ψ and Λj , also
improves on the estimate for the mean of the analyzers µj

too (M-step of the mixture model).
Figure 3 illustrates the MFA algorithm when applied

with twenty components. Apart of clustering the data, MFA
also estimates the optimal lower dimensional representation
for the examples in each cluster. This is an essential charac-
teristic when the data follow the structure of a lower dimen-
sional manifold embedded in the original space RD. The lo-
cally constrained SVC method suggested here exploits this
property.

4.2 Regularizing the One-Class SVMs

In the proposed approach we are going to use the fact
that MFA can single out the majority of the outliers, which
fall outside the main trajectory followed by the data. In
Figure 3 the ellipses outline a two standard deviations re-
gion around the mean of the corresponding local clusters.
Points, such as P1 and P2, that are too distant from their
cluster centers, are indeed among the noisy points bridg-
ing the two global concentric clusters. Cleaning the data
set from these points can significantly improve the perfor-
mance of the SVC method. Note also, that using only the
MFA method for reconstructing the underlying distribution
will not provide a good enough solution either. Applied as a
local method, similarly to Isomap and LLE, MFA can be in-
stable because of the noise [1]. For instance, the two analyz-
ers that bridge the two clusters on Figure 3 will impede the
proper identification of the present formations. This comes
to illustrate the importance of having an additional input
from the global density method too.

Before we show how the information obtained through

MFA can improve the one-class SVMs, it would be use-
ful to understand how the outliers impact the detected con-
tours. In the soft margin formulation (2), every example is
allowed to cross the decision boundary with a penalty con-
trolled by the slack variables ξ. This makes the decision
function less complex, at the price of some misclassified
examples xi, which in this case means that the function
underestimates the density around these examples. Mis-
classification of all such xi is penalized proportionally to
their distance to the separation plane (ξi), but with the same
weighting factor 1

nν . Assuming that there is an additional,
possibly uncertain, knowledge about which examples are
actually outliers, the procedure might instead be changed to
use different weighting factors. The idea is similar to the
weighted SVM classification, that has been demonstrated
to be suitable in the case of imbalanced classes [6], with the
difference being that the weights now should be determined
based on the confidence that a certain example is an outlier.

A confidence estimate of the importance of each exam-
ple can be obtained by measuring the example’s deviation
from the mean of the factor analyzer that it belongs to. If
zj = (zj

1, z
j
2, . . . , z

j
rj

)′ are the projections of the examples
that are assigned to the j-th mixture component, then the
deviation of each example projection zj

i can be expressed
through the Mahalanobis distance:

dj = [(zj − µj)′Cj(zj − µj)]1/2 (5)

In the above, the covariance of the j-th factor analyzer
is estimated as Cj = ΛjΛ′

j + Ψ (see [9]). Now we adjust
the penalty for misclassifying examples that are believed to
be outliers (i.e. examples with large distance dij to their
corresponding center µj) to be small, so that the decision
function is not so influenced by them. This will smooth
the separation boundary inferred by function (4), and hence
will decrease the chance of having multiple small contours
around sparser neighborhoods. To achieve that, each indi-
vidual penalty term is modified to be inversely proportional
to its Mahalanobis distance di. Now (2) is written as fol-
lows:

min
w,b,ξ

1
2‖w‖2 + 1

nν

∑n
i=1

1
di

ξi − b (6)

subject to w · Φ(xi) ≥ b− ξi, ξi ≥ 0, i = 1..n

For brevity of notation in (6), we have omitted the in-
dicator showing which factor analyzer the projection of an
example xi belongs to, yet it should be kept in mind that the
distances di are computed based on the individual mixture
components. Note, that the feature map Φ is applied on the
original variables xi rather than the projections zi. The lat-



ter is done because the projecting dimensions for every fac-
tor analyzer are different. As density estimation in higher
dimensional spaces has degrading effectiveness, it may still
be necessary to perform a dimensionality reduction of the
space X before solving the optimization problem (6). For
that purpose, one could detect a global coordination for all
factor analyzers [14], or just use a linear reduction as PCA
as suggested by Ben-Hur et al. [3]. Here we use the second
approach, which does not diminish the importance of MFA
in the overall scheme, as the example weights have been
computed based on the intrinsic dimensionality inferred by
the method.

The Lagrangian now has the form:

L =
1
2
‖w‖2 +

1
nν

n∑
i=1

1
di

ξi − b

−
n∑

i=1

αi(Φ(xi)− b + ξi)−
n∑

i=1

βiξi (7)

Taking the derivatives with respect to the primal vari-
ables w, b, and ξi and substituting in (7) we obtain the dual
optimization problem which we now try to maximize with
respect to the dual variables αi. This yields the constraint
optimization problem:

min
α

1
2

∑
ij αiαjΦ(zi) · Φ(zj) (8)

subject to
∑n

i=1 αi = 1, 0 ≤ αi ≤ 1
dinν

In [16] the one-class SVM optimization problem is
demonstrated to be solvable with a fast iterative tech-
nique called sequential minimal optimization (SMO). What
makes the method applicable is the special form of
the objective function and the linear equality constraints∑n

i=1 αi = 1. Both, the function and the equality con-
straints in (8), are similar to the ones in problem (3), which
means that we can perform the optimization using SMO
again. Formulations (3) and (8) differ only the constraints
imposed on αi, which are now allowed to be upper-bounded
by different values. That upper-bound is determined based
on the confidence for the corresponding examples to be out-
liers.

It may be argued that the described process will also
identify as noisy points that are not necessarily outliers. For
instance, the points P3 and P4 in Figure 3. They are part
of denser regions, yet they deviate from their component
centers too. In this sense we say that the feedback obtained
from MFA is uncertain, yet this will not necessarily have
a detrimental effect, as the collaboration with the density
estimation procedure again comes into play. The decision

function evaluated for the denser region where P3 resides
will be positive for a large set of kernel widths, and the op-
timal slack variable for this point will most likely be zero,
regardless of what constraint is imposed on its weight.

The number of mixture components that we use in the
evaluation procedure is set to be larger than the number of
clusters that we would like to be detected in the data. In gen-
eral, we find it as a good practice to use at least several ana-
lyzers for each cluster that we want to detect. This ensures
that if there are non-convex clusters present, each cluster
may be covered with more than one component on aver-
age, which would better outline the cluster’s topology. This
may seem like very loose specification, yet we observe that
even providing a relatively large number of components, the
LSVC algorithm still correctly detects as bounded support
vectors points that are indeed outliers. We could also spec-
ify the number of analyzers as a fraction of the total number
of examples. In this mode MFA would roughly approxi-
mate methods, such as Isomap or LLE which use neighbor-
hoods of certain size to reconstruct the underlying structure.
For example, if we set the number of analyzers to be equal
to n

10 , then most components in the mixture will on aver-
age have ten elements and will resemble the neighborhoods
constructed by the local methods.

Before we conclude this section, we note another inter-
esting estimate that can be obtained through the MFA algo-
rithm, namely, that of the tradeoff parameter ν. [15] demon-
strates that the optimal ν to be specified in the one-class
optimization problem (2) should be an upper bound on the
fraction of outliers that are assumed to be present in the
data. This fact by itself is not very helpful, as the number
of outliers is unknown in advance. Using the factor ana-
lyzers, however, such an estimate can be obtained for ex-
ample by counting the elements which deviate significantly
from the mean of their mixture component. For the pur-
pose, we compute the empirical standard deviation of the
Mahalanobis distances dij within each analyzer. Then we
set ν =

∑
j sj/n, where sj is the number of examples that

are more than two standard deviations away from the mean
of the j-th analyzer.

5 Discussion
Using an example, we will elaborate on the effect that

the introduced weighting scheme has on the detected con-
tours. We run the two algorithms, SVC and the LSVC, on
the synthetic “target data set” from Figure 4 (see Section 6
for details about its generation). The parameters used for
both algorithms are γ = 8 and ν = 0.1. Ten factor analyz-
ers were used in the weight computing step for LSVC.

The black diamonds on the graphs represent bounded
support vectors or support vectors which were found to
form no connected components with any of the other ex-
amples (i.e. they form a one point cluster). As Figure 4 left



Figure 4: γ = 8 and ν = 0.1. Left: SVC tries to accom-
modate all examples building complex contours and incorrectly
bridging the two concentric clusters. Right: LSVC, the proposed
here method, detects most outliers. The contours shrink towards
the dense regions and the two main clusters are separated correctly.

shows, SVC tries to learn a decision boundary that accounts
for almost all of the examples. This results in bridging the
two concentric clusters present in the data. For the same
parameters, LSVC (see Figure 5 right) forms contours that
are shrunk towards the means of the data distribution. Mul-
tiple points, with lower density around them, are identified
as bounded support vectors. Such points are identified as
noise during the MFA step, and their weights in building the
decision function have been decreased. The central circle is
now detected as a separate cluster, while the outer circle has
approximately as many clusters as in the SVC case.

It could be argued that we give an advantage to the LSVC
algorithm by allowing the penalty to vary due to the dif-
ferent weights, while for SVC it is fixed with the constant
ν. It is true, that if we relax the penalty for all examples
(i.e. increase ν), some of the noisy points will be identified
as bounded support vectors by SVC too. Yet, there is the
problem of how exactly ν should be determined to improve
the performance of SVC. In this case the value ν = 0.1
was automatically computed using the previously described
procedure of counting the deviating points for the ten factor
analyzers. Furthermore, a suitable value for ν may not exist
for the currently selected γ. For example, increasing ν twice
produces almost identical results as ν = 0.1. Increasing it
four times leads to the graph on Figure 5 left.

SVC detects the internal circle as a separate cluster now,
but the outer circle is split into multiple nonintuitive clus-
ters. Another alternative to isolating the noisy points would
be to keep ν unchanged and decrease the kernel width in-
stead. However, there is again the issue of what kernel
width would be more accurate. Furthermore, decreasing the
width increases the complexity of the boundary, forming
some very tight contours (see Figure 5 right) that at some
point may also split into multiple clusters.

6 Experimental Evaluation
To demonstrate the performance of the proposed method

we employ the following unsupervised procedure, which

Figure 5: Left: SVC for γ = 8 and ν = 0.4. Many outliers
are now correctly identified, but the rest of the points are split
into multiple uninformative clusters. Right: SVC for γ = 9 and
ν = 0.1. Increasing γ also cannot achieve the LSVC effect. The
contours become very tight and complex and start splitting into
multiple clusters.

we run with both algorithms SVC and LSVC. For every
data set we specify the number of clusters k that we would
like the algorithm to detect. For all experiments the num-
ber of factor analyzers in LSVC is set to 10. The value of
ν is determined as the fraction of outliers detected in the
MFA step. The same value of ν is used in parameterizing
SVC too. We vary log γ within the interval [−16, 16] start-
ing with -16 and incrementing it with step 1 at a time. This
gradually increases γ (i.e. decreases the kernel width) and
causes for more clusters to emerge. We stop the procedure
when the number of clusters k̂ detected by the algorithm
surpasses k (i.e. k̂ ≥ k). The procedure is suitable for com-
paring the robustness of the two algorithms, as the rate with
which the clusters emerge when slowly decreasing the ker-
nel width is highly correlated to the stability of the density
estimation procedure in the presence of noise.

Though SVC and LSVC are primarily density estimation
methods, rather than clustering algorithms for detection of
fixed number of classes, we also check which would be the
k clusters that the algorithms will return to the users. For
the purpose, if k̂ is larger than k, we start appending smaller
clusters to the k largest clusters. The merging is done based
on the minimal pairwise distance between the different clus-
ters. Though not formal enough, and prone to certain errors,
this merging step is suitable for detecting whether the clus-
ters identified by the algorithms are well separated or there
are dense regions that bridge them. The bounded support
vectors are also assigned to their closest cluster.

6.1 Synthetic Data Sets

We first study the performance of SVC and LSVC on the
synthetic data set used throughout this exposition. The data
represents two concentric circles (see Figure 6), and is gen-
erated similarly to one of the data sets used by Ben-Hur et
al. in [3]. The inner concentric circle contains 150 points
from a Gaussian distribution. The outer circle is composed
of 300 points from a radial Gaussian distribution and a uni-
form angular distribution.



Figure 6: Top: the proposed LSVC algorithm; left: the contours
and the clusters identified by the automatic procedure (the black
diamonds indicate the bounded support vectors detected as noise);
right: merging to obtain only two clusters. Bottom: the SVC al-
gorithm; left: identified contours and clusters; right: merging to
obtain only two clusters.

We set k = 2 and run the described automatic procedure.
The ν value is computed to be 0.1. For log γ < 2 both
SVC and LSVC detect only one cluster. For log γ = 2
LSVC and SVC detect four clusters (see Figure 6 left) and
as k̂ > k the procedure terminates. LSVC identifies 62
bounded support vectors (the black diamonds on the graph)
against only 2 for SVC. The merging of the detected clusters
results in 99% accuracy for LSVC and only 54% for SVC
(see Figure 6 right). Manually probing among a larger set
of (γ, ν)-pairs we managed to identify values for SVC that
also produced high accuracy after the merging procedure,
but for those values there were multiple nonintuitive clusters
detected by the algorithm and some rather complex contour
boundaries.

The Swiss roll data set is a standard benchmark data for
evaluating local unsupervised techniques for clustering and
dimensionality reduction [13, 19]. We have removed some
of the examples from the original data set to obtain two dis-
connected non-convex clusters (see Figure 7). The data is
three dimensional and contains 900 examples to which we
have additionally added some Gaussian noise.

For this experiment, the MFA step of the LSVC algo-
rithm is set to use a two dimensional projection z. The
number of required clusters is set to k = 2. The tradeoff
term is computed as ν = 0.07. log γ = −1 is the first value
for which the LSVC method detects more than one cluster
(k̂ = 9). The number of bounded support vectors is 65 (see
Figure 7 left top). Note that the bounded support vectors are
positioned on the periphery of the two clusters, detecting

Figure 7: Top: the proposed LSVC algorithm; left: clusters iden-
tified by the automatic procedure; right: merging to obtain only
two clusters. Bottom: the SVC algorithm; left: 5 small nonrep-
resentative clusters are identified with the automatic procedure;
right: using supervision we detect parameters that lead to better
clustering, which still fails to isolate the noise.

much of the bridging noise that could degrade the cluster-
ing approach. Applying the merging procedure yields the
clustering presented on Figure 7 top right. The accuracy is
again approximately 99%.

The SVC algorithm detects k̂ = 5 clusters for log γ =
−2, and thus the automatic procedure terminates. Four
of the clusters, however, correspond to some small dense
neighborhoods and do not detect the two large point for-
mations in the data (see Figure 7 bottom left). Only one
bounded support vector was found, underestimating signif-
icantly the amount of noise present. The accuracy after
merging is 78% with most points from the smaller clus-
ter being assigned to the larger one. We again manu-
ally probe for other possible parameters that can produce
a more accurate merging step for SVC. We find that the
pair (log γ = −1, ν = 0.07) identifies 14 clusters and 16
bounded support vectors (see Figure 7 bottom right), which
after merging do lead to high accuracy as in the LSVC algo-
rithm. Again, in this case, the detection of the suitable val-
ues required additional supervision and still produced larger
number of not very representative small clusters.

6.2 Face Data Set
The Frey face images have been demonstrated by Roweis

et al. [14] to reside on a smooth two dimensional manifold.
Several examples of the images are presented in Figure 8,
top right. The position of the examples on the manifold is
determined by the expression of the face and the rotation of
the head. Those are the features that separate the data into
the two dense clouds seen in the figure. Every example is



Figure 8: Top: the proposed LSVC algorithm; left: clusters iden-
tified by the automatic procedure; right: merging to obtain only
two clusters. Bottom: the SVC algorithm; left: 1 large and 1 small
nonrepresentative cluster are identified with the automatic proce-
dure; right: using supervision we detect parameters that lead to
better separation, but still with some nonrepresentative clusters.

recorded as a 560 dimensional vector (the images are 20x28
pixels), where the dimensions correspond to the greyscale
intensities of each pixel. In the evaluation here we randomly
select 1000 examples from the original data set.

The data are very high dimensional and, as previously
mentioned, the density estimation approach in this case may
not lead directly to reasonable results. Therefore, we first
reduce the dimensionality using PCA and we work instead
with the three dimensional projection along the top three
eigenvectors. We further require that k = 2, aiming to de-
tect the two dense formations that can be observed on the
PCA projection in Figure 8.

The MFA step is again set to use two dimensional pro-
jections z. The tradeoff ν is computed to be 0.07 and
log γ = −14 is the first γ for which LSVC detects more
than one cluster. The algorithm identifies exactly k̂ = 2
clusters and 129 bounded support vectors which again out-
line correctly the bridging noise between the two distribu-
tions (see Figure 8 top left). Assigning the bounded support
vectors to the closest dense region results in the clustering
demonstrated in Figure 8 top right.

For the SVC algorithm log γ = −13 yields the kernel
width that first detects more than one cluster (k̂ = 2). One
of the clusters, however, is a small region of just a few ele-
ments (see Figure 8 bottom left). The merging step does
not change this result either. Increasing log γ twice did
lead us to better cluster assignment (see Figure 8 bottom
right), which after merging the multiple clusters produced

Figure 9: Arrowheads data set. 2D MDS projection with repre-
sentative examples for the six classes present in the data.

two clusters similar to the ones identified with LSVC. How-
ever, the value required additional supervision and also de-
tected multiple non-representative clusters. Moreover, very
few of the scattered examples between the two dense forma-
tions were detected as noise (i.e. bounded support vectors).

6.3 Arrowheads Data Set

The Arrowheads data set contains time series extracted
from the shape contours of 600 projectile images. There are
six classes of projectiles labeled in the collection. The time
series were formed by computing the distance from every
point of the shape’s contour to its centroid [5]. To allow for
rotation and scale invariance, we have further aligned and
resampled all time series in the data set, representing them
with 340 dimensional vectors. The data is then projected
using the two largest eigenvectors (see Figure 9).

The data set is rather difficult to discriminate, with many
bridging elements between the available classes, and with
some classes (leaf and lanceolate) significantly overlap-
ping. We run SVC and LSVC with k = 6. The MFA pro-
jection z is again two dimensional. The value for ν is com-
puted to be 0.09. The contours detected by the two methods
and the clusters after the merging procedure are presented
in Figure 10.

Both methods detect less than six clusters for log γ <
1. For log γ = 1, LSVC finds 19 clusters and isolates 60
bounded support vectors (see Figure 10 top left). After the
merging procedure, we map the six clusters that we identify
to the original labels that yield highest accuracy. The result
is presented in Figure 10 top right. The accuracy of the
method is∼ 73%. In summary, the LSVC method performs
well and succeeds in capturing the objectively dense regions
in the data.

The SVC approach fails to separate the stemmed class,
and hence the worse accuracy of the clustering ∼ 60% (see
Figure 10 bottom right). The number of clusters detected by



Figure 10: Top: the proposed LSVC algorithm; left: contours
and clusters identified by the automatic procedure (colors are as-
signed agnostically); right: merging to obtain six clusters. Bottom:
SVC algorithm; left: identified contours and clusters (colors are
assigned agnostically). The method tries to accommodate much
of the noise building more complex boundaries; right: merging to
obtain six clusters. The accuracy is significantly lower compared
to the LSVC algorithm: 60% vs 73%.

the method is 18 and the number of bounded support vectors
is six (see Figure 10 bottom left). SVC also identifies some
objectively dense regions in the data, but the contours are
again more complex and tend to accommodate most of the
bridging elements between the different classes.

7 Conclusions and Future Work
We presented a method for improving the stability of the

support vector clustering (SVC) algorithm in the presence
of noise and bridging elements between the available clus-
ters. The introduced algorithm uses a mixture of factor an-
alyzers (MFA) to learn a weighting, representing the confi-
dence that a certain example is an outlier. The weights are
later used to regularize the complexity of the decision func-
tion computed for the clustering. On synthetic and real data
sets, we demonstrated that our method produces superior
results than SVC alone. The results also indicate that com-
plementing the best features from local and global cluster-
ing approaches can provide for a powerful tool for learning
of clusters sampled from nonlinear manifolds.

Though the algorithm is fairly robust to a not very pre-
cise specification of the number of factor analyzers, it would
be useful to have an automatic procedure that removes the
need of specifying this parameter. The Dirichlet processes
have been demonstrated as suitable means for inferring the
number of components in mixture models. We are currently
exploring their applicability in the settings of the LSVC al-
gorithm.
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