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Abstract

Linear Discriminant Analysis (LDA) has been a popular method for extracting features which pre-
serve class separability. The projection vectors are commonly obtained by maximizing the between
class covariance and simultaneously minimizing the within class covariance. LDA can be performed
either in the original input space or in the reproducing kernel Hilbert space (RKHS) into which data
points are mapped, which leads to Kernel Discriminant Analysis (KDA). When the data are highly
nonlinear distributed, KDA can achieve better performance than LDA. However, computing the pro-
jective functions in KDA involves eigen-decomposition of kernel matrix, which is very expensive when
a large number of training samples exist. In this paper, we present a new algorithm for kernel discrim-
inant analysis, called Spectral Regression Kernel Discriminant Analysis (SRKDA). By using spectral
graph analysis, SRKDA casts discriminant analysis into a regression framework which facilitates both
efficient computation and the use of regularization techniques. Specifically, SRKDA only needs to
solve a set of regularized regression problems and there is no eigenvector computation involved, which
is a huge save of computational cost. Moreover, the new formulation makes it very easy to develop
incremental version of the algorithm which can fully utilize the computational results of the existing
training samples. Extensive experiments on spoken letter, handwritten digit image and face image
data demonstrate the effectiveness and efficiency of the proposed algorithm.

1 Introduction

Linear discriminant analysis (LDA) is a traditional statistical method that has proved successful on
classification problems [7]. The projection vectors are commonly obtained by maximizing the between
class covariance and simultaneously minimizing the within class covariance. The classical LDA is a linear
method and fails for nonlinear problems.
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To deal with this limitation, nonlinear extensions of LDA through “kernel trick” have been proposed.
The main idea of kernel-based methods is to map the input data to a feature space through a nonlinear
mapping, where the inner products in the feature space can be computed by a kernel function without
knowing the nonlinear mapping explicitly [14]. Kernel Fisher Discriminant Analysis (KFD) in [12] and
Generalized Discriminant Analysis (GDA) in [1] are two independently developed approaches for kernel-
based nonlinear extensions of LDA. They are essentially equivalent. To avoid confusion, we will refer
this approach as Kernel Discrimiant Analysis (KDA) hereafter.

When solving the optimization problem of KDA, we need to handle the possible singularity problem
of total scatter matrix. There are two approaches try to address this issue either by using regular-
ization techniques [12] or by applying singular value decomposition [1]. Both of these two approaches
for solving optimization problem of KDA involve the eigen-decomposition of the kernel matrix which
is computationally expensive. Moreover, due to the difficulty of designing an incremental solution for
the eigen-decomposition on the kernel matrix, there has been little work on designing incremental KDA
algorithms that can efficiently incorporate new data examples as they become available.

In [11, 13], S. Mika et al. made a first attempt to speed up KDA through a greedy approximation
technique. However, their algorithm was developed to handle the binary classification problem. For a
multi-class problem, the authors suggested the one against the rest scheme by considering all two-class
problems. Recently, Xiong et al . [18] proposed a new algorithm called KDR/QR, a KDA variation in
which QR decomposition is applied rather than eigen-decomposition. However, there is no theoretical
relation between the optimization problem solved by KDA/QR and that of KDA. It is not clear under
what situation KDA/QR can achieve similar performance as KDA.

In this paper, we propose a new algorithm for kernel discriminant analysis, called Spectral Regression
Kernel Discriminant Analysis (SRKDA). By using spectral graph analysis, SRKDA casts discriminant
analysis into a regression framework which facilitates both efficient computation and the use of regu-
larization techniques. Specifically, SRKDA only needs to solve a set of regularized regression problems
and there is no eigenvector computation involved, which is a huge save of computational cost. Moreover,
the new formulation makes it very easy to develop incremental version of the algorithm which can fully
utilize the previous computational results on the existing training samples.

The points below highlight the contributions of this paper:

• KDA in the binary-class case has been shown to be equivalent to regularized kernel regression with
the class label as the output [14]. Our paper extends this relation to multi-class case.

• We provides a new formulation of KDA optimization problem. With this new formulation, the
KDA optimization problem can be efficiently solved by avoiding the eigen-decomposition of the
kernel matrix. Theoretical analysis shows that the new approach can achieve 27-times speedup
over the ordinary KDA approaches.

• Moreover, SRKDA can be naturally performed in the incremental manner. The computational
results on the existing training samples can be fully utilized when new training samples are in-
jected into the system. Theoretical analysis shows that SRKDA in the incremental mode has only
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quadratic-time complexity, which is a huge improvement comparing to the cubic-time complexity
of the ordinary KDA approaches.

• Since SRKDA uses regression as a building block, various kinds of regularization techniques can
be easily incorporated (e.g ., L1-norm regularizer to produce sparse projections). Our approach
provides a huge possibility to develop new variations of kernel discriminant analysis.

The remainder of the paper is organized as follows. In Section 2, we provide a brief review of LDA
and KDA, plus a detailed computational analysis of KDA. Section 3 introduces our proposed Spectral
Regression Kernel Discriminant Analysis algorithm. The incremental version of SRKDA is introduced
in Section 4 and the extensive experimental results are presented in Section 5. Finally, we provide some
concluding remarks in Section 6.

2 A Brief Review of LDA and KDA

Linear Discriminant Analysis (LDA) seeks directions on which the data points of different classes are far
from each other while requiring data points of the same class to be close to each other [7]. Suppose we
have a set of m samples x1,x2, · · · ,xm ∈ R

n, belonging to c classes. The objective function of LDA is
as follows:

aopt = arg max
aT Sba
aT Swa

, (1)

Sb =
c∑

k=1

mk(μμμ(k) −μμμ)(μμμ(k) −μμμ)T ,

Sw =
c∑

k=1

(
mk∑
i=1

(x(k)
i −μμμ(k))(x(k)

i −μμμ(k))T

)
,

where μμμ is the global centroid, mk is the number of samples in the k-th class, μμμ(k) is the centroid of the
k-th class, and x(k)

i is the i-th sample in the k-th class. We call Sw the within-class scatter matrix and
Sb the between-class scatter matrix.

Define the total scatter matrix St =
∑m

i=1(xi −μμμ)(xi −μμμ)T , we have St = Sb + Sw [7]. The objective
function of LDA in Eqn. (1) is equivalent to

aopt = arg max
aT Sba
aT Sta

. (2)

The optimal a’s are the eigenvectors corresponding to the non-zero eigenvalue of eigen-problem:

Sba = λSta. (3)

Since the rank of Sb is bounded by c− 1, there are at most c− 1 eigenvectors corresponding to non-zero
eigenvalues [7].

To extend LDA to the nonlinear case, we consider the problem in a feature space F induced by some
nonlinear mapping

φ : R
n → F
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For a proper chosen φ, an inner product 〈, 〉 can be defined on F which makes for a so-called reproducing
kernel Hilbert space (RKHS). More specifically,

〈φ(x), φ(y)〉 = K(x,y)

holds where K(., .) is a positive semi-definite kernel function. Several popular kernel functions are:
Gaussian kernel K(x,y) = exp(−‖x−y‖2/2σ2); polynomial kernel K(x,y) = (1+xTy)d; Sigmoid kernel
K(x,y) = tanh(xTy + α).

Let Sφ
b , Sφ

w and Sφ
t denote the between-class, within-class and total scatter matrices in the feature

space respectively. We have

Sφ
b =

c∑
k=1

mk(μμμ
(k)
φ −μμμφ)(μμμ(k)

φ −μμμφ)T ,

Sφ
w =

c∑
k=1

(
mk∑
i=1

(
φ(x(k)

i ) −μμμ
(k)
φ

)(
φ(x(k)

i ) −μμμ
(k)
φ

)T
)

,

Sφ
t =

m∑
i=1

(
φ(xi) −μμμφ

)(
φ(xi) −μμμφ

)T
,

where μμμ
(k)
φ and μμμφ are the centroid of the k-th class and the global centroid, respectively in the feature

space.

Let ννν denote the projective function in the feature space, the corresponding objective function (2) in
the feature space is

νννopt = arg max
νννT Sφ

b ννν

νννT Sφ
t ννν

, (4)

which can be solved by the eigen-problem:

Sφ
b ννν = λSφ

t ννν.

Because the eigenvectors are linear combinations of φ(xi) [1][14], there exist coefficients αi such that

ννν =
m∑

i=1

αiφ(xi).

Let ααα = [α1, · · · , αm]T , it can be proved [1] that Eqn. (4) is equivalent to:

αααopt = arg max
αααT KWKααα

αααT KKααα
, (5)

and the corresponding eigen-problem is:

KWKααα = λKKααα. (6)

where K is the kernel matrix (Kij = K(xi,xj)) and W is defined as:

Wij =

⎧⎪⎨⎪⎩
1/mk, if xk and xj both belong to

the k-th class;
0, otherwise.

(7)
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Each eigenvector ααα gives a projective function ννν in the feature space. For a data example x, we have

〈ννν, φ(x)〉 =
m∑

i=1

αi〈φ(xi), φ(x)〉

=
m∑

i=1

αiK(xi,x)

= αααT K(:,x)

where K(:,x) .= [K(x1,x), · · · , K(xm,x)]T . Let {ααα1, · · · ,αααc−1} be the c − 1 eigenvectors of the eigen-
problem in Eqn. (6) with respect to the non-zero eigenvalues. The transformation matrix Θ = [ααα1, · · · ,αααc−1]
is a m × (c − 1) matrix and a data sample x can be embedded into c − 1 dimensional subspace by

x → z = ΘT K(:,x).

The above approach extends LDA into RKHS by using “kernel trick” is independently developed by
Mika et al . [12] and Baudat et al . [1]. This algorithm was named as Kernel Fisher Discrimiant (KFD)
in [12] and Generalized Discriminant Analysis (GDA) in [1].

2.1 Computational Analysis of KDA

To get a stable solution of the eigen-problem in Eqn. (6), the matrix KK is required to be non-singular
[8]. When K is singular, there are two methods to solve this problem. The first method is by using
eigen-decomposition of K, which was proposed in [1].

Suppose the rank of K is r(r ≤ m) and the eigen-decomposition of K is as follows:

K = UΣUT = UrΣrU
T
r

where Σ = diag(σ1, · · · , σm) is the diagonal matrix of sorted eigenvalues (σ1 ≥ · · · ≥ σm ≥ 0) and U is
the matrix of normalized eigenvectors associated to Σ. Σr = diag(σ1, · · · , σr) is the diagonal matrix of
nonzero eigenvalues and Ur is the first r columns of U . Thus Σ−1

r exists and UT
r Ur = I, where I is the

identity matrix.

Substituting K in Eqn. (5), we get

αααopt = arg max

(
ΣrU

T
r ααα
)T

UT
r WUr

(
ΣrU

T
r ααα
)(

ΣrUT
r ααα
)T

UT
r Ur

(
ΣrUT

r ααα
) .

We proceed to variable modification using βββ = ΣrU
T
r ααα and get:

βββopt = arg max
βββT UT

r WUrβββ

βββTβββ
,

Thus, the optimal βββ’s are the leading eigenvectors of matrix UT
r WUr. Once βββ’s are calculated, ααα can be

computed as ααα = UrΣ−1
r βββ.
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The second method is using the idea of regularization, by adding constant values to the diagonal
elements of KK, as KK + γI, for γ > 0. It is easy to see that KK + γI is nonsingular. This method is
used in [12]. By noticing that

KK + γI = UΣUT UΣUT + γI = U(Σ2 + γI)UT ,

we define Σ̃ = (Σ2 + γI)1/2, the objective function of regularized KDA can be written as:

max
αααT KWKααα

αααT (KK + γI)ααα

=max
αααT UΣUT WUΣUTααα

αααT U Σ̃Σ̃UTααα

=max
βββT Σ̃−1ΣUT WUΣΣ̃−1βββ

βββTβββ

where βββ = Σ̃UTααα. The optimal βββ’s are the leading eigenvectors of matrix Σ̃−1ΣUT WUΣΣ̃−1. With this
formulation, the above two methods can be computed in exactly the same way.

To reduce the computation in calculating βββ, we shall exploit the special structure of W . Without loss
of generality, we assume that the data points are ordered according to their labels. It is easy to check
that the matrix W has a block-diagonal structure

W =

⎡⎢⎢⎢⎢⎣
W (1) 0 · · · 0

0 W (2) · · · 0
...

...
. . .

...
0 0 · · · W (c)

⎤⎥⎥⎥⎥⎦ (8)

where {W (k)}c
k=1 is a mk × mk matrix with all the elements equal to 1/mk.

We partition the m × r matrix Ur as [U (1)
r , · · · , U

(c)
r ]T , where U

(k)
r ∈ R

r×mk . Let v(k)
i be the i-th

column vector of U
(k)
r , we have:

UT
r WUr =

c∑
k=1

U (k)
r W (k)(U (k)

r )T

=
c∑

k=1

1
mk

(
mk∑
i=1

v(k)
i

mk∑
i=1

(v(k)
i )T

)

=
c∑

k=1

mkv̄(k)(v̄(k))T

=HHT

where H =
[√

m1v̄(1), · · · ,
√

mcv̄(c)
] ∈ R

r×c and v̄(k) is the average vector of v(k)
i .

To calculate the c leading eigenvectors of HHT , it is not necessary to work on matrix HHT which is
of size r× r. We can use a much more efficient algorithm. Suppose the Singular Value Decomposition of
H is

H = PΓQT ,
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it is easy to check that the column vectors of P are the eigenvectors of HHT and the column vectors
of Q are the eigenvectors of HT H [16]. Moreover, if P or Q is given, we can recover the other via the
formula HQ = PΓ and P T H = ΓQT . Since c � r, we can calculate the c eigenvectors of HT H and then
recover the eigenvectors of HHT , which are βββ’s.

We use the term flam [15], a compound operation consisting of one addition and one multiplication,
to measure the operation counts. All the kernel methods need to compute the kernel matrix K which
requires O(m2n) flam, where n is the number of features. The eigen-decomposition of K requires 9

2m3

flam [16, 8]; Calculating the c − 1 eigenvectors βββ’s requires 9
2c3 + 3

2mc2 flam; Computing ααα’s from βββ’s
requires m2c flam. Finally, we conclude the time complexity of KDA measured by flam is

9
2
m3 + m2c + O(m2n) +

3
2
mc2 +

9
2
c3.

Considering m � c, the above time complexity can be simplified as

9
2
m3 + m2c + O(m2n). (9)

For a large scale problem, we have m � n. Thus, the time complexity of KDA is determined by 9
2m3,

which is the cost of eigen-decomposition of size m × m kernel matrix K.

3 Efficient KDA via Spectral Regression

In order to solve the KDA eigen-problem in Eqn. (6) efficiently, we use the following theorem:

Theorem 1 Let y be the eigenvector of eigen-problem

Wy = λy (10)

with eigenvalue λ. If Kααα = y, then ααα is the eigenvector of eigen-problem in Eqn. (6) with the same
eigenvalue λ.

Proof We have Wy = λy. At the left side of Eqn. (6), replace Kααα by y, we have

KWKααα = KWy = Kλy = λKy = λKKααα

Thus, ααα is the eigenvector of eigen-problem Eqn. (6) with the same eigenvalue λ.

Theorem 1 shows that instead of solving the eigen-problem Eqn. (6), the KDA projective functions
can be obtained through two steps:

1. Solve the eigen-problem in Eqn. (10) to get y.

2. Find ααα which satisfies Kααα = y. The kernel matrix K is positive semi-definite. When K is non-
singular (positive definite), for any given y, we have a unique ααα = K−1y which satisfy the above
linear equations system. When K is singular, the system may have no solution or have infinite many
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solutions (the linear equations system is underdetermined) [8]. A possible way is to approximate
ααα by solving the following linear equations:

(K + δI)ααα = y (11)

where I is the identity matrix and δ ≥ 0 is the regularization parameter.

The advantages of this two-step approach are as follows:

1. We will show later how the eigen-problem in Eqn. (10) is trivial and we can directly get those
eigenvectors y.

2. The eigen-decomposition of K is avoided. Since the matrix K +δI is positive definite, the Cholesky
decomposition can be used to efficiently solve the linear equations in Eqn. (11) [8], [15]. The
computational complexity analysis will be provided in the later section.

The linear equations system in Eqn. (11) has close connection with regularized regression [17]. We
denote the projective function in the feature space as:

f(x) = 〈ννν, φ(x)〉 =
m∑

i=1

αiK(x,xi)

It can be easily verified that the solution ααα∗ = (K + δI)−1y given by equations in Eqn. (11) is the
optimal solution of the following regularized regression problem [17]:

min
f∈F

m∑
i=1

(
f(xi) − yi

)2 + δ‖f‖2
K (12)

where yi is the i-th element of y, F is the RKHS associated with Mercer kernel K and ‖ ‖K is the
corresponding norm.

Now let us analyze the eigenvectors of W which is defined in Eqn. (7) and (8). The W is block-
diagonal, thus, its eigenvalues and eigenvectors are the union of the eigenvalues and eigenvectors of
its blocks (the latter padded appropriately with zeros). It is straightforward to show that W (k) has
eigenvector e(k) ∈ R

mk associated with eigenvalue 1, where e(k) = [1, 1, · · · , 1]T . Also there is only one
non-zero eigenvalue of W (k) because the rank of W (k) is 1. Thus, there are exactly c eigenvectors of W

with the same eigenvalue 1. These eigenvectors are

yk = [ 0, · · · , 0︸ ︷︷ ︸∑k−1
i=1 mi

, 1, · · · , 1︸ ︷︷ ︸
mk

, 0, · · · , 0︸ ︷︷ ︸∑ c
i=k+1 mi

]T k = 1, · · · , c (13)

Since 1 is a repeated eigenvalue of W , we could just pick any other c orthogonal vectors in the space
spanned by {yk}, and define them to be our c eigenvectors. The vector of all ones e is naturally in
the spanned space. This vector is useless since the corresponding projective function will embed all the
samples to the same point. Therefor, we pick e as our first eigenvector of W and use Gram-Schmidt
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process to orthogonalize the remaining eigenvectors. The vector e can then be removed, which leaves us
exactly c − 1 eigenvectors of W . We denote them as:

{ȳk}c−1
k=1, (ȳT

k e = 0, ȳT
i ȳj = 0, i = j) (14)

The above two-step approach essentially combines the spectral analysis of the matrix W and regression
techniques. Therefor, we named this new approach as Spectral Regression Kernel Discriminant Analysis
(SRKDA). In the following several subsections, we will provide the theoretical and computational analysis
on SRKDA. Please see [3] for applying the similar technique on Linear Discriminant Analysis to obtain
an efficient algorithm.

3.1 Theoretical Analysis

SRKDA calculates the projective functions through the linear equations system in Eqn. (11). When the
kernel matrix K is positive definite and the δ = 0, Theorem 1 shows that the c−1 solutions αααk = K−1yk

are exactly the eigenvectors of the KDA eign-problem in Eqn. (6) with respect to the eigenvalue 1. In
this case, SRKDA is equivalent to ordinary KDA. Thus, it is interesting and important to see when the
positive semi-definite kernel matrix K will be positive definite.

One of the most popular kernels is the Gaussian RBF kernel, K(xi,xj) = exp(−‖xi −xj‖2/2σ2). Our
discussion in this section will only focus on Gaussian kernel. Regarding the Gaussian kernel, we have the
following lemma:

Lemma 2 (Full Rank of Gaussian RBF Gram Matrices [10]) Suppose that x1, · · · ,xm are distinct
points, and σ = 0. The matrix K given by

Kij = exp(−‖xi − xj‖2/2σ2)

has full rank.

Proof See [10] and Theorem 2.18 in [14].

In other words, the kernel matrix K is positive definite (provided no two xi are the same).

Thus, we have the following theorem:

Theorem 3 If all the sample vectors are different and the Gaussian RBF kernel is used, all c − 1
projective functions in SRKDA are eigenvectors of eigen-problem in Eqn. (6) with respect to eigenvalue
1 when δ = 0. In other words, the SRKDA and ordinary KDA are equivalent.

Proof This theorem can be easily proofed by combining Lemma 2 and Theorem 1.

It is easy to check that the values of the i-th and j-th entries of any vector y in the space spanned
by {yk} in Eqn. (13) are the same as long as xi and xj belong to the same class. Thus the i-th and
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j-th rows of Ȳ are the same, where Ȳ = [ȳ1, · · · , ȳc−1]. Theorem (1) shows that when the kernel matrix
is positive definite, the c − 1 projective functions of KDA are exactly the solutions of the c − 1 linear
equations systems Kαααk = ȳk. Let Θ = [ααα1, · · · ,αααc−1] be the KDA transformation matrix which embeds
the data points into the KDA subspace as:

ΘT [K(:,x1), · · · , K(:,xm)] = Ȳ T .

The columns of matrix Ȳ T are the embedding results of data samples in the KDA subspace. Thus, the
data points with the same label are corresponding to the same point in the KDA subspace when the
kernel matrix K is positive definite.

These projective functions are optimal in the sense of separating training samples with different labels.
However, they usually overfit the training set thus may not be able to perform well for the test samples,
thus the regularization is necessary.

3.2 Computational Analysis

The computation of SRKDA involves two steps: responses (ȳk in Eqn. 14) generation and regularized
regression. The cost of the first step is mainly the cost of Gram-Schmidt method, which requires (mc2 −
1
3c3) flam [15].

To solve the c − 1 linear equations systems in Eqn. (11), we can use the Cholesky decomposition,
which uniquely factorizes the positive definite matrix K + δI in the form K + δI = RT R, where R is
upper triangular with positive diagonal elements. The Cholesky decomposition requires 1

6m3 flam [15].
With this Cholesky decomposition, the c−1 linear equations can be solved within m2c flam [15]. Besides
solving the SRKDA optimization problem, we also need to compute the kernel matrix K which requires
O(m2n) flam, where n is the number of features. Thus, the computational cost of SRKDA is

1
6
m3 + m2c + O(m2n) + mc2 − 1

3
c3,

which can be simplified as
1
6
m3 + m2c + O(m2n).

Comparing to the computational cost of ordinary KDA in Eqn. (9), SRKDA reduces the dominant part,
which is 9

2m3 of ordinary KDA, to 1
6m3; achieves a 27-times speedup.

4 Incremental KDA via Spectral Regression

Due to the difficulty of designing an incremental solution for the eigen-decomposition on the kernel
matrix in KDA, there has been little work on designing incremental KDA algorithms that can efficiently
incorporate new data examples as they become available. The SRKDA algorithm uses regression instead
of eigen-decomposition to solve the optimization problem, which provides us the chance to develop
incremental version of SRKDA.
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Figure 1: Sherman’s march (Cholesky decomposition)

The major cost in SRKDA computation is the step of Cholesky decomposition which requires 1
6m3

flam. Fortunately, the Cholesky decomposition can be easily implemented in the incremental manner [15].
Actually, Sherman’s march, one of the most popular Cholesky decomposition algorithms, is implemented
in the incremental manner [15].

The procedure of Sherman’s march is illustrated graphically in Figure 1. The gray area represents
the part of the Cholesky decomposition that has already been computed with R and RT separated by a
diagonal line1. The white area represents untouched elements of the original matrix. The thin vertical
box represents the column of R about to be computed. The algorithm is easy to derive. We show how
to proceed from (m − 1) × (m − 1) submatrix to a m × m matrix. We have

Km =

(
Km−1 k1m

kT
1m kmm

)

=

(
RT

m−1 0
rT
1m rmm

)(
Rm−1 r1m

0 rmm

)
,

which leads to

Km−1 =RT
m−1Rm−1

k1m =RT
m−1r1m

kmm =r2
mm

When the Cholesky decomposition of the (m − 1) × (m − 1) submatrix Km−1 is known, it is easy to get
the Cholesky decomposition of the m × m Km. For detailed derivation, please see [15].

Now, let us consider the additional computational cost of incremental SRKDA when Δm new data
samples are injected to the system which already has m samples. Compare to the batch mode of SRKDA,
we can get computational saving on two steps:

1. We only need to calculate the additional part of kernel matrix which requires O(nmΔm + nΔm2)
flam;

2. The incremental Cholesky decomposition requires 1
6(m + Δm)3 − 1

6m3 flam [15].

1Actually, we only need to store R.
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Table 1: Computational complexity of KDA and SRKDA
Algorithm operation counts (flam [15])

Batch mode
KDA 9

2m3 + cm2 + O(nm2)

SRKDA 1
6m3 + cm2 + O(nm2)

Incremental KDA 9
2m3 + cm2 + O(nmΔm)

mode SRKDA (Δm
2 + c)m2 + O(nmΔm)

m: the number of data samples
n: the number of features
c: the number of classes
Δm: the number of new data samples

Thus, the computation cost of incremental SRKDA measured by flam is

1
2
m2Δm +

1
2
mΔm2 +

1
6
Δm3 + (m + Δm)2c

+ O(nmΔm + nΔm2) + (m + Δm)c2 − 1
3
c3.

When Δm � m and c � m, the above cost can be simplified as

(
Δm

2
+ c)m2 + O(nmΔm).

We summarize our complexity analysis results in Table 1. The main conclusions include:

• The ordinary KDA needs to perform eigen-decomposition on the kernel matrix, which is very
computationally expensive. Moreover, it is difficult to develop incremental algorithm based on the
ordinary KDA formulation. In both batch and incremental modes, ordinary KDA has the dominant
part of the cost as 9

2m3.

• SRKDA performs regression instead of eigen-decomposition. In the batch mode, it only has the
dominant part of the cost as 1

6m3, which is a 27-times speedup of ordinary KDA. Moreover, it
is easy to develop incremental version of SRKDA which only has quadratic-time complexity with
respect to m. This computational advantage makes SRKDA much more practical in real world
applications.

5 Experimental Results

In this section, we investigate the performance of our proposed SRKDA algorithm in both batch and
incremental manners. All of our experiments have been performed on a P4 3.20GHz Windows XP
machines with 2GB memory.
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Table 2: Statistics of the three data sets

dataset dim (n)
train test # of

size (m) size classes (c)
Isolet 617 6238 1559 26
USPS 256 7291 2007 10
PIE 1024 8000 3554 68

5.1 Datasets

Three datasets are used in our experimental study, including spoken letter, handwritten digit image, and
face image data sets. The important statistics of three datasets are summarized below (see also Table
2):

• The Isolet spoken letter recognition database2 was first used in [6]. It contains 150 subjects who
spoke the name of each letter of the alphabet twice. The speakers are grouped into sets of 30
speakers each, and are referred to as isolet1 through isolet5. In the past usage [6][5], isolet1&2&3&4
were used as the training set and isolet5 was used as the test set. For the purposes of our experiment,
we also choose isolet5 as the test set and perform several runs with isolet1, isolet1&2, isolet1&2&3,
and isolet1&2&3&4 as the training set respectively.

• The USPS handwritten digit database is described in [9]. A popular subset 3 contains 9298 16×16
handwritten digit images in total, which is then split into 7291 training images and 2007 test
images. In our experiment, we train all the algorithms on the first 1500 (3000, 4500, 6000, and
7291) images in the training set and test on the 2007 test images.

• The CMU PIE face database4 contains 68 subjects with 41,368 face images as a whole. The face
images were captured under varying pose, illumination and expression. In our experiment, the five
near frontal poses (C05, C07, C09, C27, C29) under different illuminations and expressions are
used which leaves us 11,554 face images. All the images are manually aligned and cropped. The
cropped images are 32×32 pixels, with 256 gray levels per pixel5. Among the 11,554 images, 8,000
images are used as the training set and the remaining 3,554 images are used for testing. We also
run several cases by training all the algorithms on the first 2000, 3000, · · · , 8000 images in the
training set.

5.2 Compared algorithms

Four algorithms which are compared in our experiments are listed below:
2http://www.ics.uci.edu/∼mlearn/MLSummary.html
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#usps
4http://www.ri.cmu.edu/projects/project 418.html
5http://ews.uiuc.edu/∼dengcai2/Data/data.html
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Table 3: Performance comparisons on Isolet dataset
Error (%) Time (s)

Speedup
Training Set LDA KDA SRKDA KDA/QR SVM LDA KDA SRKDA KDA/QR SVM

Isolet1 15.27 11.74 12.89 17.19 12.51 1.93 18.86 1.21 0.93 4.75 15.6
Isolet1+2 6.61 3.79 3.85 7.63 4.11 2.14 134.6 5.51 3.60 13.79 24.4

Isolet1+2+3 5.90 2.99 3.08 7.12 3.34 2.37 451.6 14.09 7.98 23.84 32.1
Isolet1+2+3+4 5.71 2.82 2.89 6.86 3.27 2.56 991.2 27.86 14.02 34.82 35.6
∗Column labeled “Speedup” shows how many times faster the SRKDA is (comparing to ordinary KDA).

Table 4: Performance comparisons on USPS dataset
Error (%) Time (s)

Speedup
Training Size LDA KDA SRKDA KDA/QR SVM LDA KDA SRKDA KDA/QR SVM

1500 10.61 6.58 5.88 10.86 6.85 0.21 14.97 0.92 0.66 0.78 16.3
3000 9.77 5.53 5.38 10.66 5.58 0.27 111.9 4.35 2.61 2.20 25.7
4500 9.52 5.53 4.88 9.67 5.13 0.34 354.3 11.29 5.85 4.06 31.4
6000 9.92 5.03 4.43 9.37 5.08 0.40 825.3 22.74 10.41 6.22 36.3
7291 10.26 4.83 4.04 9.02 4.83 0.47 1553.6 37.59 15.60 8.18 41.3

∗Column labeled “Speedup” shows how many times faster the SRKDA is (comparing to ordinary KDA).

Table 5: Performance comparisons on PIE dataset
Error (%) Time (s)

Speedup
Training Size LDA KDA SRKDA KDA/QR SVM LDA KDA SRKDA KDA/QR SVM

2000 5.29 5.18 4.81 15.62 6.30 8.77 36.51 2.47 1.66 24.13 14.8
3000 4.61 4.25 3.94 9.82 4.70 9.06 116.9 5.39 3.66 43.99 21.7
4000 4.14 5.53 3.24 7.93 3.74 9.42 256.6 10.35 6.39 68.43 24.8
5000 3.85 3.23 2.90 5.94 3.29 9.73 502.3 17.40 10.00 96.26 28.9
6000 3.57 2.91 2.53 5.68 2.84 10.06 830.7 27.21 14.20 125.6 30.5
7000 3.40 2.65 2.19 4.08 2.64 10.39 1340.9 38.65 19.12 155.6 34.7
8000 3.35 2.41 2.17 4.00 2.34 10.79 1908.1 53.75 24.96 186.7 35.5

∗Column labeled “Speedup” shows how many times faster the SRKDA is (comparing to ordinary KDA).

1. Linear Discriminant Analysis (LDA) [7], which provides us a baseline performance of linear algo-
rithms. We can examine the usefulness of kernel approaches by comparing the performance of KDA
and LDA.

2. Kernel Discriminant Analysis (KDA) as discussed in Section 2. We test the regularized version and
choose the regularization parameter δ by five fold cross-validation on the training set.

3. Spectral Regression Kernel Discriminant Analysis (SRKDA), our approach proposed in this paper.
The regularization parameter δ is also chosen by five fold cross-validation on the training set.

4. KDA/QR [18], a KDA variation in which QR decomposition is applied rather than eigen-decomposition.
Thus, KDA/QR is very efficient.
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5. Support Vector Machine (SVM) [17], which is believed as one of the state-of-the-art classification
algorithms. Specifically, we use the LibSVM system [4] which implemented the multi-class classifi-
cation with one versus one strategy. SVM is used to get the sense that how good the performance
of KDA is.

We use the Gaussian RBF kernel for all the kernel-based methods. We tune the kernel width parameter
σ and large margin parameter C in SVM to achieve best testing performance for SVM. Then, the same
kernel width parameter σ is used in all the other kernel-based algorithms.

5.3 Results

The classification error rate as well as the training time (second) for each method on the three data sets
are reported on the Table (3 ∼ 5) respectively.

The main observations from the performance comparisons include:

• The Kernel Discriminant Analysis model is very effective in classification. SRKDA has the best
performance for almost all the cases in all the three data sets (even better than SVM). For Isolet
data set, previous study [5] reported the minimum error rate training on Isolet1+2+3+4 by OPT6

with 30 bit ECOC is 3.27%. KDA (SRKDA) achieved better performance in our experiment for
this train/test split. For USPS data set, previous studies [14] reported error rate 3.7% for KDA
and 4.0% for SVM, slightly better than the results in our experiment. For all the cases, KDA
(SRKDA) achieved significantly better performance than LDA, which suggests the effectiveness of
kernel approaches.

• Since the eigen-decomposition of the kernel matrix is involved, the ordinary KDA is computation-
ally expensive in training. SRKDA uses regression instead of eigen-decomposition to solve the
optimization problem, and thus achieve significant speedup comparing to ordinary KDA. The em-
pirical results are consistent with the theoretical estimation of the efficiency. The time of training
SRKDA is comparable with that of training SVM. SRKDA is faster than SVM on Isolet and PIE
data sets, while slower than SVM on USPS data set. This is because the time of training SVM
is dependant with the number of support vectors [2]. For some data sets with lots of noise (e.g .,
USPS), the number of support vectors is far less than the number of samples. In this case, SVM
can be trained very fast.

• The KDA/QR algorithm is very efficient because it only need to perform QR decomposition on
matrices with size m × c [18]. However, there is no theoretical relation between the optimization
problem solved in KDA/QR and that of the KDA. In all the three data sets, the performances of
KDA/QR is the worst.

6Conjugate-gradient implementation of back-propagation
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Figure 2: Computational cost of KDA, batch SRKDA and incremental SRKDA on the USPS data set.

5.4 Experiments on Incremental SRKDA

In this experiment, we study the computational cost of SRKDA performing in the incremental manner.
The USPS and PIE data sets are used. We start from the training set with the size of 1000 (the first
1000 samples in whole training set) and increase the training size by 200 for each step. SRKDA is then
performed in the incremental manner. It is important to note that SRKDA in the incremental manner
give the exactly same projective functions as the SRKDA in the batch mode. Thus, we only care about
the computational costs in this experiment.

Figure 2 and 3 shows log-log plots of how CPU-time of KDA (SRKDA, incremental SRKDA) increases
with the size of the training set on USPS and PIE data set respectively. Lines in a log-log plot correspond
to polynomial growth O(md), where d corresponds to the slope of the line. The ordinary KDA scales
roughly O(m2.9), which is slightly better than the theoretical estimation. SRKDA in the batch mode has
better scaling, which is also better than theoretical estimation with roughly O(m2.6) over much of the
range. This explains why SRKDA can be more than 27 times faster than ordinary KDA in the previous
experiments. The SRKDA in the incremental mode has the best scaling, which is (to some surprise)
better than quadratic with roughly O(m1.8) over much of the range.

6 Conclusions

In this paper, we propose a novel algorithm for kernel discriminant analysis, called Spectral Regression
Kernel Discriminant Analysis (SRKDA). Our algorithm is developed from a graph embedding viewpoint
of KDA problem. It combines the spectral graph analysis and regression to provide an efficient approach
for kernel discriminant analysis. Specifically, SRKDA only needs to solve a set of regularized regression
problems and there is no eigenvector computation involved, which is a huge save of computational
cost. The theoretical analysis shows that SRKDA can achieve 27-times speedup over the ordinary
KDA. Moreover, the new formulation makes it very easy to develop incremental version of the algorithm
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Figure 3: Computational cost of KDA, batch SRKDA and incremental SRKDA on the PIE data set.

which can fully utilize the computational results of the existing training samples. With incremental
implementation, the computational cost of SRKDA reduces to quadratic-time complexity. Extensive
experimental results show that our method consistently outperforms the other state-of-the-art KDA
extensions considering both effectiveness and efficiency.
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