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Abstract

Given a percentage-threshold andreadings from a pair
of consecutive upstream and downstream sensors, flow
anomaly discovery identifiesdominant time intervalswhere
the fraction of time instants of significantly mis-matched
sensor readings exceed the given percentage-threshold.
Discovering flow anomalies (FA) is an important problem
due to applications such as environmental flow monitor-
ing networks andearly warning detection systems for wa-
ter quality problems. However, mining FAs is computa-
tionally expensive because of the large (potentially infi-
nite) number of time instants of measurement and poten-
tially long delays due to stagnant (e.g. lakes) or slow mov-
ing (e.g. wetland) water bodies between consecutive sen-
sors. Traditional outlier detection methods (e.g. t-test) are
suited for detecting transient FAs (i.e., time instants of sig-
nificant mis-matches acrossconsecutivesensors) andcan-
not detect persistent FAs (i.e., longvariable time-windows
with a high fraction of time instant transient FAs) due
to a lack of a pre-defined window size. In contrast, we
propose a Smart Window Enumeration andEvaluation of
persistence-Thresholds (SWEET) method to efficiently ex-
plorethesearch spaceof all possiblewindow lengths. Com-
putation overhead isbrought down significantly by restrict-
ing the start and end points of a window to coincide with
transient FAs, using a smart counter andefficient pruning
techniques. Analytical evaluation show that the proposed
method is correct and complete. Experimental evaluation
using synthetic and real datasets shows our proposed ap-
proach outperformsNaı̈vealternatives.

1. Introduction

Motivation. Mining flow anomalies (FA) is important
in several spatio-temporal application domains such as en-
vironmental monitoring networks for detection of potential
floodconditions, chemical spill s, and/or pollutantsentering
river networks. Maintaining sufficient water of high qual-

ity for the world population is one of our greatest global
challenges [15]. Several recent articles from the popular
pressreport that many dangerouscontaminantsare entering
our water from unknown sources and at unknown times,
resulting in expensive and experimental manual investiga-
tions (e.g. [12]).

Currently, hydrologistsand environmental engineersare
placingadvanced sensorsin water bodiesaroundtheUnited
States to understand the behavior of river networks and
lakes [11]. Figure 1a shows a satellit e image of Shingle
Creek, MN where there arefive sensorsmonitoring various
water quality parameters [6] (e.g., turbidity, dissolved oxy-
gen, specific conductivity, nitrate levels, etc.). Two sensors
(water flow from 5 to 1) are placed in the creek and three
others are placed in neighboring ponds. Figure 1a ill us-
trates that the water from neighboring ponds can flow into
the creek between sensors 5 and 1. Because of the large
amount of data collected continuously, a pollutant entering
the river between two monitoring sensors could easily go
unnoticed. For example, ameasured variable in theShingle
Creek, MN study site is the amount of nitrate in the wa-
ter at a given time. It is known that the large consumption
of nitrate by infants or pregnant women may cause methe-
moglobenemia, or Blue Baby syndrome, which can cause
death [10]. A robust methodfor identifyingsuch a contam-
ination event and pin-pointing the time intervals at which
it occurred while minimizing false alarms could vastly im-
provenot only warningsystems but the abilit y of scientists
andengineers to understandthe causeof the event.

Problem Statement. Given pairsof time-seriesof mea-
sured variablesfrom consecutiveupstream and downstream
sensors, flow anomaly discovery flags pollution events oc-
curring between the sensor pair by finding time-periods
with a (user-defined) high fraction of time-instants hav-
ing significantly different readings acrossconsecutive up-
stream and downstream sensors. In absence of contami-
nation between sensors, the observationsare similar across
both upstream and downstream sensors. If a phenomenon
is seen only at onesensor and not theother, a transient flow
anomaly has occurred. A single persistent flow anomaly
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(a) Shingle Creek, MN (Source: Google
Maps)
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Figure 1. Study Site and Motivational Exam-
ple (Best Viewed in Color)

may consist of several transient flow anomalies with a few
time-instants without flow-anomalies. A persistent flow
anomaly is dominant (e.g., entire oil spill event) if its time-
interval is not asubset of time intervalsof any other persis-
tent flow anomaly. For example, Figure1bshowsoneof the
largest oil spill s in San Francisco, CA history in November
of 2007. As can be seen, the spill does not flow as a single
unit; rather there areseveral gapswithin thespill [7].

Challenges. Mining FA patterns is computationally
challenging for several reasons. First, a single persistent
FA pattern may consist of subsets that may or may not be
anomalies. Second, sizeof the time-interval for the longest
dominant persistent FAs may not be known in advance.
Third, thetemporal length of each persistent FA patternmay
be different. Fourth, the match between the observationsat
the upstream and downstream sensors may be one-to-one,
one-to-many,or many-to-many. Finally, thedatasetsof time
instantsmay bepotentially infinite in size.

Related Work. Related work to the discovery of flow
anomalies may be categorized into two groups: string
matching and data stream correlations. In string matching,
relationshipsare created based onthe similarity or dissimi-
larly between two strings. Amir et al. proposed an inverse
string matching technique that finds a pattern between two
strings that maximizes or minimizes the number of mis-
matches[1]. Lee et al. proposedasimilar methodto inverse
pattern matching that included wild cards [9]. However,
there are several main differenceswith stringmatchingand
the discovery of FA patterns. First, several string match-
ing techniques use an exact matching technique between
multiple strings, whereas the FA problem needs a statisti-
cal measure because an exact match may not exist between
datastreams. Second, stringmatching usesadiscrete alpha-
bet whereasmultiple time seriesanalysisusesa continuous
alphabet.

In datastreams, relationshipsaremadeusingafixed slid-

ing window and a correlation measure. Chan et al. found
local correlations between multiple data streams using a
sliding window [3]. Sayal found global relationships be-
tween data streams and a single siding window to summa-
rize asingle data stream [13]. Balut introduced an incre-
mental approach to findcorrelationsof aquery for multiple
pre-defined time windows [2]. Datar and Muthukrishnan
identified rarity and similarity between data streams using
a fixed window size [4]. However, these approaches fo-
cus on finding correlations using a fixed size sliding win-
dow and some correlation measure. Using a fixed window
size may assume that the domain specialist knows the du-
ration of the anomalous events which may not be known
in environmental systems (e.g. rain events). In addition, a
large window sizemay miss several smaller yet interesting
events, whereas a smaller window may misslarger events.
Correlationmeasures are used to find associations between
data streams whereas this work proposes a statistical inter-
est measure to find interestingrelationships.

To some extent, basic outlier detection techniques (e.g.
t-test [5]) detecting transient FAs may discover transient
and some persistent FAs (with a 100% mismatched time-
interval) (e.g. [8, 14]). However, these methods are not
designed to detect persistent flow anomalies with lessthan
100%mismatched time-instantsandmay missmany persis-
tent flow anomalies.

Contr ibutions. In this paper, we propose aSmart Win-
dow Enumeration and Evaluation of persistent-Thresholds
(SWEET) approach that utili zes several key insights into
this problem to efficiently identify persistent FAs between
the upstream and downstream sensors. First, to reducethe
thesearch spacefor different sized windows, spaceof inter-
esting persistent FAsare constrained to start andendat tran-
sient FAs, i.e. time-instantswithsignificantly different mea-
surements. Second, a smart counter is used to reduce the
computation required to evaluate a candidate time-interval
for the interest measure, from a linear function of time-
interval-sizeto a constant function. Finally, apruningstrat-
egy is used to reducethe number of persistent FAs (pFAs)
to discover thedominant pFAs (dpFAs).

In summary, this paper makes the following contribu-
tions: First, we define Flow Anomalies (FAs) and the FA
mining problem. Second, we propose anew interest mea-
sure to discover and mine FAs. Third, we characterizethe
computational structure of the FA discovery problem and
propose anovel and computationally efficient SWEET al-
gorithm by restricting the start and end points of a window
to coincide with persistent FAs, using a smart counter and
efficient pruning techniques. Fourth, we show that the pro-
posed algorithm iscorrect andcomplete. Finally, we exper-
imentally evaluateour proposedmethod usingsynthetic and
real datasets.

Scope. Thefollowingissuesarebeyondthescopeof this
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Figure 2. Example Input and Output for the
Flow Anomaly Discovery Problem

paper: (i) anomalies occurring beyondthe two consecutive
upstream and downstream sensors, (ii ) inferring the travel
timefrom thedataset, that is, the travel time isgiven aspart
of the input for the FA discovery problem, and (iii ) one-to-
many and many-to-many matches of time instants of mea-
surements across sensors, that is, only one-to-one matches
isconsidered for theFA discovery problem.

Organization. The rest of the paper is organized as fol-
lows. Section 2 presentsthebasic conceptsto provide afor-
mal model of FAsandtheproblem statement of discovering
FAs. Section 3 presentsour proposed SWEETmethod. An-
alytical analysis of our proposed approach is given in Sec-
tion 4. Section 5 givesthe experimental evaluationandSec-
tion 6concludesthepaper and discusses futurework.

2. Basic Concepts and Problem Statement

In this section, wefirst introduceseveral key concepts to
model Flow Anomalies (FAs) and then, we give a formal
problem statement. Figure 2, referenced throughout this
section, ill ustratesan input and output exampleof discover-
ingFlow Anomalies. Theinput consistsof timeseriesof 10
timeinstantsfor theupstream and downstream sensorswith
a constant travel time (TT) of 1 for simplicity. The out-
put contains two dominant persistent FAs, using the time
instantsat theupstream sensor, the periodsare1-3 and 6-9.

2.1 Basic Concepts

This section presents several relevant definitions to our
problem statement and proposed approaches.

Definition 1 An observation o is a measured reading of a
variable at every time instant t at the upstream up and a
downstreamdown sensors.

For example, Figure 2a, up sensor has an observation
of 20 at time-instants 1,2,. . .,etc. and down sensor has an
observation of 40 at time instant 2. Figure 1a gives an ex-
ample of two sets of up and a down sensors observing a
phenomena. Sensors 5 and 1are the up and down sensors
respectively within theriver. Sensors2 and 4aretheup and
down sensors respectively within the lakes.

Definition 2 Travel Time, TT , is theduration between the
time(t) when an observationo ismadeat theupsensor and
the time (t+TT[ t] ) of the corresponding observation at the
down sensor.

Figure 2a gives an example where the travel time (TT)
is 1. For time instant 2, up[2] and down[2+1] have corre-
sponding observationsof 20and 20respectively.

Definition 3 An Instant Pair, IP , is two observations of
a common phenomenonmade at the up anddown sensors
having atemporal length of TT between them.

Definition 3can be formally expressed in Equation 1.

IP [t] = (up[t], down[t + TT ]) (1)

Figure 2a gives an example where the instant pair (IP)
at time instant of 1 is IP[1]=(20,40) where the TT=1. We
notethat thisdefinitionassumesavery small temporal foot-
print for the phenomenon of interest at each sensor. This
assumption ismadeto simpli fy thediscussion in thispaper.
It is revisited in the last section onfuturework.

Definition 4 An upstream contiguous set of instant pairs
are IPs that occur oneright after theother for sometempo-
ral length k.

Definition 4can be formally expressed in Equation 2.

S = {< up[t+i], down[(t+i)+TT [t+i]] > |i ∈ 0, . . . , k}
(2)

Figure 2a gives an example of an upstream contigu-
ous set of instant pairs for the period of 1-3 containing
{< 1, 2 >, < 2, 3 >, < 3, 4 >} where the travel time, TT,
is1.



Definition 5 A transient Flow Anomaly, tFA is when the
difference between the corresponding observations across
each sensor in theIP , is larger thanthegiven error thresh-
old, Θe.

The term “flow” refers to anomalies found between the
flow of two sensors (e.g. sensors5 and 1). Definition 5can
be formally expressed in Equation 3.

tFA[t] ⇐⇒ (|up[t] − down[t + TT ]| > Θe) (3)

Suppose the error threshold is zero (or 10 or 15); then
Figure 2a gives an example of a flow anomaly at time in-
terval 1 where the IP[1]=(20,40) because the difference in
observationsisgreater than zero.

Definition 6 A persistent Flow Anomaly, pFA, is an up-
streamcontiguous set of IPswhere a high fraction(≥ per-
sistent threshold Θp) are transient flow anomalies. Also,
the start s andende IP in apFA must bea transient flow
anomaly, tFA.

Definition 6can be formally expressed in Equation 3.

pFA[s . . . e] ⇐⇒

(tFA[s]) & (tFA[e]) &
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∑
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(3)

Figure 2b gives an example of a pFA pattern when the
persistent threshold is 0.6 and the error threshold is 0. The
period range of 1 to 3 time intervals of the up sensor is a
pFA pattern where the first and ending IPs are transient
flow anomaliesand the interest measure has a value of 2/3,
which satisfies the persistent threshold. The reason that the
up time intervalsfrom 1 to 9isnot apFA is that it doesnot
satisfy the persistence threshold of 0.6 (i.e., five transient
flow anomaliesby thetemporal length of 9 is lessthan 0.6).

Definition 7 A dominant persistent Flow Anomaly, dpFA,
isa pFA that isnot a subset of any other dpFA.

Figure2b givesan exampleof adpFA pattern as shown
by the up sensor time intervals from 1 to 3 and 6to 9. The
timeinterval for 6 to 9isdominant becausethere aresmaller
pFAs such as8 to 9andit isnot asubset of theother dpFA

from 1 to 3.

2.2 Problem Statement

TheFA discovery problem can be formally expressed as
follows:
Given:

• An upstream, up, anda downstream, down sensor
• Direction of flow between theup anddown sensor
• An upstreamcontiguous set of Instant Pairs, IP at time

intervals t = 1...n where n is the length of the time
series for up sensor

• Thetravel time, TT [t], between theup anddown sen-
sorsat every t

• An error threshold, Θe

• A persistent threshold, Θp

Find: All dominant persistent Flow Anomalies(dpFAs).
Objective: Minimizethe computational costs.
Constraints: A singledirectional flow betweensensorsand
a single one to one match between observation upstream
and downstream.

Example. Figure 2a gives an example of an input time
series from the up and down sensors where the travel time
is the temporal length when an observation is expected to
be seen once at each sensors. Figure 2b gives an example
output of the types of FA patterns when the error threshold
is zero and the persistence threshold is 0.6. The dominant
persistent Flow Anomalies (dpFA) in this example are the
timeinstantsat theup sensor of 1 to 3and 6to 9. ThedpFA
of 1 to 3satisfies thepFA conditionas follows: (1) theratio
of two anomalies and the period length of threeis greater
than 0.6 and (2) the first and last IP is a tFA. Likewise, the
dpGA of 6 to 9 also satisfies the pFA condition as follows:
(1) the ratio of three anomalies and the period length of 4
is greater than the persistence threshold of 0.6 and (2) the
first and last IP is a tFA. Also, periods 1-3 and 6-9 are not
subsets of each other satisfying Definition 7. Even though
the period length of 1 to 9 satisfies the second condition
whereboth thefirst andlast IPsare tFAs, theratio of 5 tFAs
and the period length of 9 does not satisfy the persistence
threshold. Thus, theperiod of 1-9 isnot a dpFA.

A key computational challenge for this problem is that
a dpFA may satisfy Θp but its subsets may not. Thus, no
apriori or other pruning strategies can be applied. Also, it
may be hard to prune any IPs apriori because they may be
part of a larger dpFA. For example, in Figure 2b, there are
several IPs within a dpFA pattern that do not quali fy to be
a tFA (Definition 5), but which are still i mportant for the
entiredpFA pattern.

3. Mining Flow Anomalies

In this section, we first discuss the Näıve method and
then propose anovel Smart Window EnumerationandEval-
uation of persistence-Thresholds(SWEET) methodto mine
dominant persistent flow anomalies.

3.1 Näıve Method



Algor ithm 1 Pseudocode for theNäıveMethod
Inputs:
• up anddown time series of o at t = 1 . . . n

• Travel Time, TT , of o at t = 1 . . . n

• Error Threshold, Θe

• PersistenceThreshold, Θp

Outputs:
• Dominant Persistent Flow Anomalies (dpFA)

Algor ithm
{Phase I : Identity pFAs}

1: tFA count = 0
2: pFA← ∅
3: for each window sizei = 1 . . . n do
4: for each shift of window j = 1 . . . n do
5: for each element k in window of sizei do
6: if (window exists in both up and down) AND

(diff(up[k],down[k+TT[k]]) > Θe) then
7: tFA count++
8: end if
9: end for

10: if (first and last IP is a tFA) AND
((tFA count/i) ≥ Θp) then

11: pFA← period j to j + i

12: end if
13: tFA count = 0
14: end for
15: end for
{PhaseII : Identify Dominant pFAs}

16: dpFA← ∅
17: while pFA set size 6= ∅ do
18: Identify pFA c with largest temporal length
19: Remove c from pFA
20: dpFA← c

21: Remove any pFA that is asubset of c

22: end while
23: return dpFA

This section presents the Näıve method to find all the
dominant persistent Flow Anomalies (dpFAs). In general,
the Näıve method has two main phases, namely, the identi-
fication of the persistent FAs and identification of the dom-
inant pFAs. The main ideaof the first phase is to exhaus-
tively search throughthe entire dataset for every possible
sizewindow and determineif each window satisfiestheper-
sistence threshold, Θp, based on the number of transient
Flow Anomalies (tFAs) foundwithin the window using the
error threshold, Θe. In the second phase, the pFAs having
thelargest temporal length arekept asthedpFAs, while any
other pFA that isasubset of the answersis removed andthe
final result is returned.

Algorithm 1 presents the pseudo code for the Näıve
method. The inputs of the Näıve method includes the fol-
lowing: (1) up and down time series of a single observa-
tion o at t = 1 . . . n, where n is the number of observa-
tions in each time series, (2) the Travel Time, TT , of o at
t = 1 . . . n, (3) the error threshold, Θe, and (4) the persis-
tent threshold, Θp. Theoutput of theNäıvemethodconsists
of thedpFAs in termsof thestart andend time intervals for
theup sensor.

Phase 1: Identify Persistent FAs. This phase is con-
cerned with identifying all the possible windows between
the up and down time series that satisfy the pFA defini-
tion (Definition 6). Initially, the counter for the number of
tFAs in awindow is set to zero andtheset pFA is set empty
(Lines 1-2 of Algorithm 1). An exhaustive search is com-
pleted by examining each window size to the length of the
time series and then shifting each window size throughthe
entire series (Lines 3-4 of Algorithm 1). As each window
size slides throughout the time series, each instant pair is
checked against the error threshold, Θe (Lines5-6 of Algo-
rithm 1). If a tFA is found, then the counter (tFA counter)
in this window is incremented (Line 7 of Algorithm 1).
Once each instant pair in the window of size i is checked
for a transient flow anomaly, then the method determines
whether the window satisfies the pFA definition and if it
does, the period is added to the pFA set (Lines 10-12 of
Algorithm 1). Thisprocesscontinuesuntil all possiblewin-
dowshavebeen analyzed.

Phase II : Identify Dominant pFAs. This phase is con-
cerned with identifyingall thedominant pFAsfrom thepFA
set foundin Phase 1 with the largest temporal length such
that it is not a subset of any other dpFA (Definition 7). Ini-
tially, the dpFA set to empty (Line16 of Algorithm 1). The
pFAwith thelargest temporal length isfound, removedfrom
thepFA set, andadded to thedpFA set (Lines18-20 of Algo-
rithm 1). All pFAs that are asubset of thisdpFA answer are
removed from the pFA set (Line 21 of Algorithm 1). This
processcontinues until there are no more pFAs available.
Finally, thedpFAsare returned (Line23 of Algorithm 1).

3.2 SWEET Method

This section presents the SWEET (Smart Window Enu-
merationandEvaluation of persistence-Thresholds) method
to findall the dominant persistent Flow Anomalies (dpFA).
The SWEET method has two main phases, namely, identi-
fication of thepersistent FAs and identification of the domi-
nant pFAs. UnliketheNäıve approach, themain ideasin the
first phase of the SWEET method is to initially perform a
singlescan andexaminepotential pFAs startingandending
with a transient Flow Anomaly (tFA). The second phase is
thesame asthat of theNäıve approach to findthedpFA pat-
terns. Algorithm2 presentsthepseudocodefor theSWEET
method. The inputsand outputsof the SWEET methodare
thesame as thoseof theNäıve approach.

Phase 1: Identify pFAs. This phase is concerned
with identifying all the possible windows between the up

and down time series that satisfy the pFA definition (Def-
inition 6). Initially, the number of tFAs in a window
(tFA count) for a period is set to zero, the set tFA that con-
tainsthetimeinterval at theup sensor when atransient flow
anomaly hasoccurred is set empty, andthepFA is set empty.



Algor ithm 2 Pseudocode for theSWEET Method
Inputs:
• up anddown time series of o at t = 1 . . . n

• Travel Time, TT , of o at t = 1 . . . n

• Error Threshold, Θe

• PersistenceThreshold, Θp

Outputs:
• Dominant Persistent Flow Anomalies (dpFA)

Algor ithm
{Phase1: Identity pFAs}

1: tFA count = 0
2: tFA← ∅
3: pFA← ∅
4: for each o at i = 1 . . . n do
5: if (diff(up[i],down[i+TT[i]]) > Θe) then
6: tFA← i
7: for each tFA, j = 1. . . tFA.size() do
8: for each element k in window tFA[j] to i do
9: if diff(up[k],down[k+TT[k]]) > Θe then

10: tFA count++
11: end if
12: end for
13: if (tFA count/i) ≥ Θp then
14: pFA← period j to j + i

15: end if
16: end for
17: tFA count = 0
18: end if
19: end for
{PhaseII : Identify Dominant pFAs}

20: dpFA← ∅
21: while pFA set size 6= ∅ do
22: Identify pFA c with largest temporal length
23: Remove c from pFA
24: dpFA← c

25: Remove any pFA that is asubset of c

26: end while
27: return dpFA

Unlikefor theNäıvemethod, only asinglescan of the entire
time series is performed (Line4 of Algorithm 2). The time
series is scanned until a tFA is foundfor an Instant Pair (IP)
and then the time interval at the up sensor is added to the
tFA set (Lines 5-6 of Algorithm 2). Oncethe tFA is found,
a scan from the first tFA in the tFA set to the current tFA is
checked for any additional anomalies (Lines 7-12 of Algo-
rithm 2). Then, thisperiod isadded to the pFA if it satisfies
thepersistencethreshold, Θp (Lines13-15 of Algorithm 2).
If it does not satisfy, any remaining tFAs are checked with
the current tFA for any pFAs. This processcontinues until
nomore tFAsare found.

Phase II : Identify Dominant pFAs. This phase is the
same as for the Näıve method, that is, to identify all the
dominant FAs (dFAs) from the pFA set found in Phase 1
with the longest temporal length such that it is not a sub-
set of any other dFAs (Definition 7). Initially, dFA is set to
empty (Line 20 of Algorithm 2). The pFA with the largest
temporal length is found, removed from the pFA set, and
added to the dpFA set (Lines 22-24 of Algorithm 2). All

Table 1. Execution Trace for SWEET

tFA Period Int. Meas. Satisfy? pFA
1 1-1 1/1 YES 1-1
3 1-3 2/3 YES 1-3
6 1-6 3/6 NO

4-6 2/4 NO
6-6 1/1 YES 6-6

8 1-8 4/8 NO
3-8 3/6 NO
6-8 2/3 YES 6-8

9 1-9 4/9 NO
3-9 4/7 NO
6-9 3/4 YES 6-9

pFAs that are a subset of this dpFA answer are removed
from the pFA set (Line 25 of Algorithm 2). This process
continues until there are no more pFA patterns available.
Finally, thedpFAsare returned (Line27 of Algorithm 2).

Design Decisions. Several additional design decisions
can be applied to theSWEETapproach to improvetheover-
all execution time. First, a smar t counter can be added
after a tFA has been foundto keep track of the total num-
ber of transient flow anomalies in the time series (Line 6
of Algorithm 2). This smart counter will allow the method
to identify the number of transient flow anomaliesbetween
thefirst tFA in the tFA set andthe current tFA without scan-
ning the window and determine if the window satisfies the
persistence threshold. This smart counter will remove the
re-scan of the window between the two tFAs (Line 8 of Al-
gorithm 2).

The second design decision is a pruning strategy that
can be applied as soonas a pFA candidate has been found
(Line14 of Algorithm 2). If a larger period has been found
to satisfy thepFA definition, then any other periodsthat are
a subset of the larger period do not need to be checked. As
will be shown in the experimental evaluation in Section 5,
this pruning strategy results, on average, in far fewer pFA
patternsthan theNäıvemethod.

Execution Trace. Table 1 gives the execution traceof
the SWEET algorithm as it is applied to the dataset in Fig-
ure 2 when the error threshold, Θe = 0 and the persistent
threshold, Θp = 0.60. Although our SWEET methodcan
handle variable travel times, for simplicity, this example
uses a constant time for TT. Initially, the SWEET method
will start scanningtheup anddown timeseriesuntil it finds
an instant pair that hasatFA. Thefirst tFA isat timeinterval
1 for the up sensor where the down sensor reads an obser-
vation valueof 40 based onthetravel timeof 1. Sincethisis
thefirst tFA, theperiod of 1-1 (both values refer to the time
intervals of only the up sensor) is added as one of the pFA
patterns and the smart counter will be incremented. The
SWEET methodwill continuescanning the two time series
until thenext tFA at time interval 3 is foundandincrements



the smart counter. Based onthe previously foundtFAs and
thesmart counter, theperiod 1-3 is analyzed to seeif it sat-
isfies Θp. The interest measure obtains a value of 2/3 and
is greater than 0.60 and adds it to pFA. It is important to
note that due to the pruning strategy incorporated into the
SWEET method, there is no reason to add period 3-3 will
be removed anyway in the second phase, resulting in one
lesspFA than theNäıve approach.

The next flow anomaly is foundat time interval 6 where
diff(up[6], down[6+1]) = diff(20, 40) < Θe andincre-
ments the smart counter. The period of the largest possible
among the previous foundtFAs is examined (period 1-6).
Based onthe smart counter, there are 3 tFAs in this period.
This period having an interest measure of 3/6 does not sat-
isfy the Θp of 0.6. Then the next smaller period of 4-6 is
analyzed which again does not satisfy the pFA definition.
Finally, 6-6 is reached andaddsthis to thepFAs. Thefourth
tFA is at time interval 8 and starts checking the largest pe-
riodfirst of 1-8. Thisperiod hasan interest measureof 4/8,
which is lessthan Θp. Thisprocesscontinuesuntil it s finds
the period 6-8 which is successful and adds it to the pFA.
Finally, the last anomaly is foundat time interval 9, which
again starts with the periods1-9 and 3-9, and is finally suc-
cessful at period 6-9. There is no need to go any further
because any smaller period that may satisfy the pFA defi-
nition will be removed in the second phase since 6-9 will
alwaysbe larger.

The second phase of the SWEET algorithm finds the
dominant pFA (dpFA) patterns. First, pattern 6-9 is found
having a temporal length of 4 and any other pFA that is a
subset of 6-9 is removed. The removed pFAs are 6-8 and
6-6. The next largest pFA is 1-3, which causes 1-1 to be
removed. Thus, thedpFA answersare1-3 and 6-9.

4. Analytical Evaluation

In this section, we present the analytical evaluation of
the SWEET methodand prove that: (1) SWEET is correct,
i.e., each pattern is dominant and satisfies the dpFA defi-
nition, (2) SWEET is complete, i.e., all patterns satisfying
the dpFA definition are found, and (3) SWEET has lower
asymptotic computational costs than theNäıvemethod.

Theorem 1 SWEET is correct if the pattern p satisfies the
dpFA definition andthe temporal length isdominant.

Proof A pattern p is dominant if it first satisfies the two
conditions in the pFA definition (Definition 6). The first
condition is that the first and last Instant Pairs (IPs) are a
transient Flow Anomaly (tFA) based on the error thresh-
old, Θe. In the SWEET method, this conditionwill always
be handled since only periods starting and ending with a
transient flow anomaly will be analyzed (Line 9 in Algo-
rithm 2). The secondcondition is that the period must sat-

isfy thepersistencethreshold, Θp. Each period havingafirst
and last IP that isa tFA will be checked within theSWEET
algorithm before it is added to the pFA set (Lines 13-15 of
Algorithm 2). Thus, only patterns satisfying the pFA defi-
nitionwill be foundin Phase1 of theSWEETmethod. The
dpFA will be foundin Phase 2 when the pattern with the
largest temporal length is found. Since apattern p will not
be asubset of any other pattern, dominant pFA patternswill
be found in the SWEET approach (Lines 20-26 of Algo-
rithm 2). �

Theorem 2 SWEET is complete if all dominant pFA pat-
ternsare found.

Proof In thefirst phase, only periodswherethefirst andlast
instant pairshave atFA are checked against Θp (Lines4-19
in Algorithm 2). In the pruning design decision, the num-
ber of tFAs is monotonic as the sizeof a period decreases.
This isbecause as the temporal length decreasesto thenext
possible period, the original number of tFAs is reduced by
one using the smart counter design decision. Based onthis
property, once apFA pattern is found, smaller pFA patterns
that are a subset of the larger one are pruned and do not
need to be analyzed because they would be removed any-
way in the second phase. Thus, no dpFA will be missed in
Phase I of the SWEET method. In the second phase, only
thepFA patternswith thelargest temporal length amongthe
remaining pFAs will be foundas the dpFA answers. Thus,
no dpFA patternswill bemissed in phase2 in SWEET. �

Theorem 3 SWEET has lower asymptotic computational
costs thantheNaı̈vemethod.

Proof Let n be the number of time instances for each up-
stream and downstream sensor, m be the number of tran-
sient flow anomalies, I bethe averagetemporal sizeof can-
didate time-intervals where m ≤ n and 1 ≤ I ≤ n. The
worst case complexity of each approach can be character-
ized by O(number of windows evaluated * average cost of
evaluatingeach window). In the the Näıve approach, it ex-
haustively searches throughall possible window sizes hav-
ing the complexity of n2 and the cost of evaluating each
window isI. Then, theworst case complexity for theNäıve
approach isO(n2∗I). In theSWEETapproach, thenumber
of windows evaluated is based on the number of transitive
flow anomalieshavingthe complexity of m∗m and because
asmart counter isused, the evaluation of each candidateisa
1 time cost. Thus, the complexity of the SWEET approach
is O(m2 ∗ 1) = O(m2). The pruning strategy will also
reduce the number of pFAs by identifying only the largest
quali fyingwindows. Thus, even though phase2 of both ap-
proachesisthesame, thepruningtechniquemay havefewer
pFAs to examine than in the Näıve case. The experimen-
tal evaluationshows that, on average, there are fewer pFAs



Synthetic 

Generator

Stream

Size

Travel

Time

% Number 

tFAs Θ
e

Synthetic

Dataset

Real

Dataset

Naïve SWEET
Θ
e

Θ
a

Analysis

Figure 3. Experimental Setup

foundin theSWEET approach using the pruningtechnique
than with theNäıvemethod. �

5. Experimental Evaluation

In this section, we present our experimental evalua-
tions of several design decisions and workload parameters
for the proposed SWEET method. We evaluated the Näıve
approach, the SWEET approach, SWEET using the smart
counter (denoted as “s” ), andSWEET using both the smart
counter and pruning technique (denoted as “s+p”) by vary-
ing the number of time intervals and the persistent thresh-
old using both synthetic and real datasets. Figure 3 shows
the experimental setup to compare the Näıve method and
SWEET methodalongwith its design decisions. The syn-
thetic generator takes four inputs (stream size, TT, % num-
ber of tFAs, and Θe) to create the synthetic datasets (see
Section 5.1). The Näıve and the SWEET approach and its
design decisionswasanalyzed usingthegeneratedsynthetic
dataset and two real datasets of measurable variables (tur-
bidity andspecific conductivity). All approacheswere com-
pared in terms of execution time and the number of pFAs
foundand results presented in plots with experimental val-
ues. All experimentswere performed onan Intel P4 2 GHz
1.2 GB RAM.

5.1 Experiments using Synthetic Data

The synthetic dataset was generated based on the fol-
lowing: (1) thesizeof thetimeseries for both up anddown

sensors, (2) the travel time, (3) the percent number of tran-
sient flow anomalies (tFA), and (4) the error threshold, Θe.
Based on these parameters, the generator creates a single
timeseriesof equal length that wasrandomly generatedand
used for each sensor. Theobservationsin thedown timese-
rieswere shifted by the specified TT . The location of each
tFA waschosen randomly andensured that therewill be ex-
actly thepercent number of anomalies specified in theinput.

5.1.1 Effect on theSizeof Time Intervals

The parameters used by the synthetic generator in this ex-
periment are as follows: (1) the size from 1000 to 5000,
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(2) TT=10, (3) 30% or 300 anomalies, and (4) Θe = 10.
The same TT and Θe was used in this experiment. Fig-
ure 4 gives the execution times of all four methods: Näıve,
SWEET, SWEETusingthesmart counter (SWEET(s)), and
SWEET using the smart counter and pruning technique
(SWEET(s+p)), as the number of time intervals increase.
Figure 4a shows that the Näıve approach performs more
poorly than the SWEET approach due to the exhaustive
search required to check for all possibleperiodlengths. The
SWEET(s) method (Figure 4b) results in a significant re-
duction in execution time by not having to check each pe-
riod again as in the SWEET method (Figure 4a). Also, in
Figure4b, theSWEET(s+p) outperformsall of themethods.
Themain reasonisdueto theremoval of pFAs that aresub-
sets of larger pFAsbefore the dominance can be completed
in phase2. This isevident by thesignificant decrease in the
number of pFAs (Figure5).

5.1.2 Effect on the Sizeof the Persistent Threshold

The parameters used by the synthetic generator in this ex-
periment are as follows: (1) size of 1000, (2) TT=10, (3)
30% or 300 anomalies, and (4) varied from 0 to 1 at 0.2
increments. The same size and TT was used in the experi-
ment. Thesizeof 1000waschosen because it was themost
competitivebetween Näıve andSWEETmethods. Figure6
gives the comparison between the Näıve approach and the
SWEET(s+p) method in terms of the execution time (Fig-
ure 6a) and the number of pFAs as the Θp varies from 0 to
1 (Figure 6b). SWEET (s+p) is the only proposed method
compared against the Näıve approach because it is the only
one using any pruning strategy. It is expected that as the
persistent threshold increases, fewer patterns will satisfy
the persistent threshold. However, the Näıve approach still
needsto perform an exhaustivesearch of thewholedataset.
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Execution Time (sec)
Θp Näıve SWEET(s+p)
0 83.9 0.1

0.2 83.8 0.1
0.4 83.5 0.1
0.6 83.9 0.2
0.8 82.8 0.1
1 83.0 0.1

(c) Exp. Data for (a)

Number of pFAs
Θp Näıve SWEET(s+p)
0 44850 300

0.2 44666 300
0.4 1665 257
0.6 325 160
0.8 130 88
1 107 86

(d) Exp. Data for (b)

Figure 6. Synthetic: Varying Θp

Whereas, theSWEET(s+p) will always scan thetimeseries
once andcheck for periodsas tFAsare identified. Thus, the
execution time for SWEET is much better than for Näıve
(Figure6a).

Figure 6b showsa significant droparoundthe persistent
threshold of 0.30. This is due to the fact that the input pa-
rameter of thesynthetic generator for thepercent number of
tFAs is also set to 0.30. Thus, when the threshold is below
0.30, theNäıvemethodwill t akeinto account all of thetFAs
within thedataset. In thisexperiment, thetemporal length is
1000time intervals and there are exactly 300 tFAs. Based
on the pFA definition and an persistent threshold of zero,
there will be 300 choose 2 combinations, or 44,850 pFAs
for the Näıve method (Figure 6b). The significant drop in
the number of generated pFAs may influencethe execution
timein thesecond phaseof bothmethods, but themaincosts
aredueto the exhaustivesearch byNäıve.

5.2 Experiments Using Real Data

The real datasets were obtained from the study site
shown in Figure 1b between sensors 5 and 1. Two datasets
representing different measurablevariableswereused in the
experiments, turbidity (approx. 3000 time intervals) and
dissolved oxygen (approx. 5000time intervals). The travel
time was taken from the real dataset using discharge and
depth measured at sensor 5, the width of Shingle Creek,
and the length between sensors5 and 1.

5.2.1 Effect on theSizeof Time Intervals

Figure 7 gives the execution time for the real dataset us-
ing turbidity. As the time intervals increase, Näıve is more
expensive than SWEET. Since both methods use the same
phase 2 method and no pFAs are pruned, this experiment
gives an accurate comparison to search for pFA patterns.
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Execution Time (sec)
Size Näıve FA FA(s) FA(s+p)
1000 124.7 0.4 0.38 0.36
2000 982.3 0.6 0.611 0.611
3000 3258.2 0.8 0.881 0.831
4000 7917.8 1.1 2.063 1.082
5000 15531.8 1.3 3.505 1.302

(c) Experimental Values

Figure 8. Dissolved Oxygen: Execution Time

Figure7b gives the execution timebetween SWEET(s) and
SWEET(s+p). Sincethe number of pFAs for SWEET(s+p)
is lower than SWEET(s) (Figure 9a), the performance of
SWEET(s+p) ismuch better than SWEET(s) (Figure7b).

Figure 8 gives the execution time for the real dataset us-
ing dissolved oxygen as the number of Time Intervals in-
crease. In Figure 8a, SWEET performs better than Näıve
due to the single scan andchecking for periodswhen a tFA
has occurred. Figure 8b shows that the execution time for
both methods is similar up to the 3000th time interval be-
cause the number of pFAs for both approaches is close to
zero (Figure9b). Thus, the pruningstrategy isnot effective
due to very few number of pFAs. As the number of tem-
poral intervals increases from 3000to 5000, a decrease in
executiontimeoccursfor thepruningtechnique(Figure8b)
as it isevident in thenumber of pFAs found(Figure9b).

5.2.2 Effect on the Sizeof the Persistent Threshold

Figure 10 shows the comparison between Näıve and
SWEET(s+p) as the Θp is varied for turbidity. As Θp in-
creases, the number of pFAs and the execution times are
reduced in both approaches in the second phase. However,
this will not affect phase 1 of Näıve due to its exhaustive
search of every window size whereas SWEET(s+p) is de-
pendent on the number of tFAs in the dataset when the pe-
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Number of pFAs
Size Näıve SWEET(s+p)
1000 10 5
2000 24235 447
3000 218913 1076

(c) Exp. Data for (a)

Number of pFAs(K)
Size Näıve SWEET(s+p)
1000 0.0 0.0
2000 0.0 0.0
3000 6.5 0.2
4000 645.5 1.2
5000 1438.0 1.7

(d) Exp. Data for (b)

Figure 9. Real: Number of pFAs
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(b) Number of pFAs

Execution Time (sec)
Θp Näıve SWEET(s+p)
0 121.9 0.1

0.2 120.6 0.1
0.4 120.5 0.1
0.6 120.5 0.1
0.8 120.7 0.1
1 120.9 0.0

(c) Exp. Data for (a)

Number of pFAs
Θp Näıve SWEET(s+p)
0 153 19

0.2 42 11
0.4 21 7
0.6 14 6
0.8 10 5
1 10 5

(d) Exp. Data for (b)

Figure 10. Turbidity: Varying Θp

riodsare validated against thepFA definition.
Figure 11 gives the comparison between Näıve and

SWEET(s+p) as the persistent threshold is varied for dis-
solved oxygen. Figure 11a gives the execution time of
Näıve and performsworse than SWEET(s+p) due to its ex-
haustive search. Figure 11b gives the number of pFAs and
showsthat thenumber of pFAsfor SWEET(s+p) islessthan
for Näıvedue to itspruningstrategy.

6. Conclusion and Future Work

In this paper, we have introduced a novel problem
of finding all dominant persistent Flow Anomalies. This
problemhasapplicationsfor environmental monitoring net-
works to aid environmentalists in their search for clues on
how potential contaminantsmay enter ariver network. Sev-
eral new conceptsandinterest measuresare introduced. We
characterized the computational structureof theFA discov-
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(b) Number of pFAs

Execution Time(sec)
Θp Näıve SWEET(s+p)
0 119.6 0.1

0.2 119.4 0.1
0.4 119.2 0.2
0.6 119.2 0.2
0.8 119.3 0.2
1 119.3 0.1

(c) Exp. Data for (a)

Number of pFAs
Θp Näıve SWEET(s+p)
0 13041 161

0.2 12762 160
0.4 10940 160
0.6 6562 159
0.8 6429 158
1 5741 155

(d) Exp. Data for (b)

Figure 11. Dissolved Oxygen: Varying Θp

ery problem and proposedanovel andcomputationally effi-
cient SWEET(Smart Window EnumerationandEvaluation
of persistent-Thresholds) algorithm by restricting the start
andend pointsof awindow to coincidewith persistent FAs,
usingasmart counter andefficient pruningtechniques. The
proof of correctnessand completeness is shown. Finally,
experimental evaluation was performed on both synthetic
andreal datasets.

We plan to explore additional real datasets using nitrate
and specific conductivity. Further studies may be needed
to discover the path of a FA acrossmore than two sensors.
Also, multiplesensorswould createfurther challenges such
as multiple inputsand outputs to discover FAs. Finally, the
effect of FAsfor one-to-manyandmany-to-manymatchings
will be explored.
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