
Classifying High-Dimensional Text and Web Data using Very Short Patterns

Hassan H. Malik and John R. Kender
Department of Computer Science, Columbia University

New York, NY 10027
{hhm2104,jrk}@cs.columbia.edu

Abstract

In this paper, we propose the "Democratic
Classifier", a simple, democracy-inspired pattern-
based classification algorithm that uses very short
patterns for classification, and does not rely on the
minimum support threshold. Borrowing ideas from
democracy, our training phase allows each training
instance to vote for an equal number of candidate size-
2 patterns. Similar to the usual democratic election
process, where voters select candidates by considering
their qualifications, prior contributions at the
constituency and territory levels, as well as their own
perception about candidates, the training instances
select patterns by effectively balancing between local,
class, and global significance of patterns. In addition,
we respect "each voter's opinion" by simultaneously
adding shared patterns to all applicable classes, and
then apply a novel power law based weighing scheme,
instead of making binary decisions on these patterns.

Results of experiments performed on 121 common
text and web datasets show that our algorithm almost
always outperforms state of the art classification
algorithms, without requiring any dataset-specific
parameter tuning. On 100 real-life, noisy, web
datasets, the average absolute classification accuracy
improvement was as great as 9.4% over SVM,
Harmony, C4.5 and KNN. Also, our algorithm ran
about 3.5 times faster than the fastest existing pattern-
based classification algorithm.

1. Introduction and Motivation

Machine learning algorithms like SVM, C4.5 and
kNN are among the most successful and widely used
classification algorithms. Additionally, a number of
rule-based (i.e., rule-induction-based, association-
based, or frequent-pattern-based) algorithms have
achieved initial success on a variety of classification
problems. We identified two major problems with

existing rule-based classification algorithms. These
problems are discussed in the next two sections.

1.1. Minimum support and long patterns

The classification model in a typical rule-based
classification algorithm consists of frequent patterns
that form classification rules. The patterns are obtained
by applying various pruning heuristics to reduce a very
large search space. Minimum support threshold is the
most common of these heuristics, and is widely used
[5, 7, 9, 10] as the primary means to filter a significant
percentage of candidate patterns (i.e., with a second
measure such as confidence, Information Gain, or Chi-
Square used for further filtration). Setting a good value
for this threshold is non-trivial. A high minimum
support may miss important patterns, and may also risk
having some training instances unrepresented
altogether (i.e., with no rules in the resulting
classification model to cover such training instances),
especially on unbalanced datasets. On the other hand, a
small value may result in discovering a large number
of noisy patterns. Considering these issues, one must
question the usefulness of minimum support as the
primary means to identify patterns for classification.

Additionally, on high-dimensional datasets, the
number of candidates considered, as well as the
number of frequent patterns found may significantly
increase with the pattern size, especially when a low
minimum support is used. Consequently, mining long
patterns might take significantly more computational
time as compared to mining short patterns. Since long
patterns are always derived from short patterns, we are
motivated to explore if high-dimensional datasets can
be effectively classified using only the short patterns.

1.2. Three levels of pattern significance

A number of existing rule-based classification
algorithms [2, 3, 4] follow a greedy rule-induction
process to discover classification rules. In these

algorithms, rules are discovered one rule at a time, and
instances covered by the newly discovered rule are
eliminated from the training set, which may degrade
the quality of discovered rules as the training process
advances [9], because of incomplete information.
Furthermore, this process may need to be repeated for
each class, negatively impacting the runtime of these
algorithms. On the other hand, association-rule-based
classification algorithms like [5, 7] first mine globally
significant patterns, and then follow a sequential
covering paradigm to select the final set of rules.
Because of their inherent dependencies on minimum
support and confidence thresholds, these algorithms
may find too many or too few rules, and may still not
cover some of the training instances. Therefore, we
consider these algorithms "non-democratic".

With Harmony, Wang and Karypis [9] proposed a
more effective, instance-centric approach to mine
classification rules. Harmony builds the classification
model by directly mining some user-defined number of
highest-confidence rules for each training instance that
satisfy minimum support. Furthermore, rules for all
classes are mined simultaneously, and one of the user-
configurable, local item ranking schemes (i.e.,
correlation coefficient ascending order) takes both the
class and global item supports in to account.
Experimental results in [9] show that Harmony, when
further tuned with a suitable minimum support value
for each dataset, outperformed existing rule based
classification algorithms, and achieved classification
accuracies that are comparable to SVM. These findings
are consistent with our own classification experiments.

We observe that a labeled collection of training
instances provides three important pieces of
information about each pattern in a categorical dataset:
first, the global frequency of the pattern; second, the
frequency of the pattern in each applicable class; and
third, the frequencies of atomic sub-patterns in
individual training instances that contain the whole
pattern. These three pieces of information can be used
to evaluate the pattern significance at various levels.
Unfortunately, none of the existing rule-induction-
based, association-based, and frequent-pattern-based
classification algorithms fully utilize all of these three
levels of information. As discussed above, most of the
existing algorithms only consider global significance
(i.e., global support, confidence, entropy, or
Information Gain), while others may estimate the
global significance using incomplete information. Note
that even though some of the widely used measures
like entropy select patterns that are significant across
all classes, they might not help in selecting a pattern
with respect to a specific class (i.e., Section V(A) of
[9] provides an example). Harmony fully utilizes the

global significance, and partially utilizes the class
significance of each pattern, but does not utilize the
local significance. Since Harmony ensures that each
training instance is covered by the selected patterns,
but does not consider pattern significance with respect
to individual training instances while selecting
patterns, we consider Harmony "semi-democratic".

1.3. The "Democratic Classifier"

We observe that the problem of finding patterns for
classification shares some similarities with the problem
of electing public representatives in a human society.
The typical election process in a human society
involves dividing the territory (i.e., a country) into
smaller constituencies (i.e., states or provinces). Each
"voter" is allowed to cast their vote(s) in the
constituency (or constituencies, in some cases) of its
residence. The voter is presented with a list of
candidates, and the voter selects a candidate (or
candidates) from the list. Through a formal election
campaign, the candidates communicate their
qualifications and prior achievements at both the
constituency and the territory level, hoping to
influence their voters' decision. Still, an individual
voter may be biased by its own perception about each
candidate.

In terms of finding patterns for classification, the
training phase may be considered analogous to the
election process, where the training set is the territory,
divided in to smaller constituencies (i.e., classes). Each
training instance represents a voter, and the set of
candidates in a constituency consists of all patterns that
exist in any instance that belongs to the constituency.
Each candidate's prior contributions and qualifications
at the territory and constituency levels are represented
by a pattern's global and class significance values,
respectively. Finally, a pattern's local significance
represents the voter's perception about the candidate. A
local significance value of zero means that the voter
does not have any opinion about the candidate (i.e., the
instance does not contain the pattern).

Considering that in spite of its problems (the details
of which are out of scope of this paper), democracy
[18] is the most widely adopted method of electing
public representatives, we adopt a democratic pattern
selection scheme in this paper. More specifically, we
adopt the "open list" method in the "proportional
representation" scheme [20], which allows each voter
to select up to k candidates from the candidate list.

After pre-processing training instances (Section 2.1)
to eliminate less-significant features, the "Democratic
Classifier" builds a classification model (Section 2.2)
that contains a list of very short (i.e., size-1 and 2)

patterns for each class, and allows patterns to appear in
multiple classes. On an instance by instance basis, each
training instance contributes to the classification model
by first adding all of its size-1 patterns to the pattern-
lists of its classes (i.e., the voter’s constituencies of
residence), and then, by "voting" for k (where k is a
user-defined value) size-2 patterns, each of which is
also added to the pattern-lists of applicable classes.
The "voting" process selects top k patterns for each
training instance in a way that provide an effective
balance between local (i.e., voter's perception of the
candidate), class (i.e., candidate’s qualifications and
prior contributions at the constituency level), and
global (i.e., candidate’s qualifications and prior
contributions at the territory level) significance. We
use the local pattern frequencies to determine local
significance, and a contingency table-based
interestingness measure to calculate class and global
significance values.

All patterns in the classification model (i.e., pattern
lists for each class) are then assigned an initial "pattern
weight". For this purpose, we use the global support
values for atomic (i.e., size-1) patterns, and the global
interestingness values of size-2 patterns. These weights
are first normalized using z-score standardization (with
more "importance" given to size-2 patterns), and then
adjusted with respect to pattern significance within the
class, using a novel, power law based weight
adjustment scheme. These weights are later used to
calculate class scores in the classification phase.

Test instances are classified (Section 3) by first
identifying all patterns in the test instance that also
exist in the classification model, and then applying a
scoring function to calculate class scores. Our scoring
function considers both the pattern weights in the
classification model, and the local pattern significance
in the test instance. For single-label problems, the class
with the highest score is selected, and for multi-label
problems a weighted dominant factor-based scheme
similar to [9] is used to select multiple classes.

In ten-fold cross-validated results of experiments
performed on 121 common benchmark datasets, we
show in Section 4.1 that our algorithm resulted in
classification accuracies that are better than, or
comparable to state of the art classifiers. On 100 real-
life web datasets, our algorithm significantly
outperformed all existing classification algorithms, and
achieved classification accuracies that rival human
experts (i.e., 95% as an average). Furthermore, unlike
existing classification algorithms, where dataset-
specific parameter tuning is necessary to achieve high
classification accuracies, we show that our fixed
parameters are robust across datasets. As an example,
results reported in Section 4.1 use the same parameter

values across all 121 datasets. Still, we achieve overall
classification accuracies that are comparable to, or
better than fully tuned existing classification
algorithms. Finally, we show in Section 4.2 that our
algorithm ran about 3.5 times faster than the state of
the art pattern-based classification algorithm.

For completeness, we note in passing that with this
research, we always intended to find a pattern-based
classification algorithm that yields superior
classification results on text and web data. Much like
the evolution of human history itself, our research
converged to a simple democratic solution after many
iterations and optimizations, allowing us to connect
our final solution to the powerful analogy of
democracy.

2. Training the Classifier

In this section, we provide details on training the

“Democratic Classifier”. We first discuss our simple-
yet-effective dimensionality reduction scheme, and
then describe various steps involved in building the
classification model.

2.1. Dimensionality reduction

Studies [16, 17] show that reducing the
dimensionality of the feature space may significantly
improve the effectiveness and scalability of traditional
classification algorithms, especially on high-
dimensional datasets. Furthermore, dimensionality
reduction tends to reduce overfitting [17]. Pattern-
based classification algorithms equally benefit from
dimensionality reduction, as both the quality and the
number of non-atomic patterns discovered directly
depends on the initial, atomic patterns (i.e., 1-
itemsets).

Typically, features are selected by first sorting all
available features in terms of their significance, and
then selecting top-n, or top-n-percent features (with a
caveat that selecting a suitable value for n is not
straightforward). A recent study [16] evaluated various
measures to calculate feature significance and
concluded that Information Gain, Chi-Square and Bi-
normal Separation worked equally well on a number
of datasets, with no statistically significant difference.

Unfortunately, selecting top-n features alone may
leave some training instances with no features, which
also eliminates all aize-2 pattern candidates available
to these instances for later selection, as in Section 2.2.
Furthermore, the optimal number (or percentage) of
features (i.e., the value of n) needed to achieve good
classification results remains unclear. The literature

[17] is inconclusive on n: some studies suggest that the
number of selected features should be same as the
number of training examples, while others suggest that
feature selection may make matters worse, especially
when the number of available features is small.

Considering these issues, in a way similar to [32],
we adopt a three-step heuristic feature selection
method that uses the number of training instances, and
the number of available features to automatically
estimate n, and also ensures that the final set of
selected features covers all training instances.

Step 1 (calculate n):

⎟
⎠
⎞

⎜
⎝
⎛ ×+=

i
fiin log

Where i = number of training instances, and f =
total number of available features. This empirically
derived formula ensures a reasonable base amount for
low dimensional datasets, while moderately growing
this number for high dimensional datasets.

Step 2 (select globally significant features): Sort
all features in decreasing order of their Information
Gain values, and then add the resulting top-n features
to set S (i.e., the set of "selected" features).

Step 3 (ensure local coverage): First find all
training instances with less than t features in S (i.e.,
instances not properly covered by the selected
features), and then process these instances, on an
instance by instance basis. Sort all features in the
current instance in the decreasing order of their (TF *
Information Gain), where TF = Term Frequency,
calculated in the usual way. This "balances" the local
significance (i.e., TF) and the global significance (i.e.,
Information Gain). Finally, add the resulting top-t
features to set S. The experiments in this paper used an
empirically selected fixed value of t = 10.

2.2. Building the classification model

Typical rule-based classification algorithms

associate each selected rule (or pattern) to a single
class. In reality, a large percentage of patterns may
appear in many training instances that might not be
associated with the same class. Table 1 contains a
training dataset used as a running example throughout
this section. Pattern {b, d} appears in six training
instances in this example. Two of these training
instances (i.e., T1 and T10) are associated with class 0
whereas the other four are associated with class 1.
Associating this pattern to only one of these classes
might not fully capture its significance in the training
set. Instead of making such a binary decision, or
eliminating these "shared" patterns as "confusing" or
"insignificant", we borrow ideas from some of the
world’s democracies that allow candidates to be

elected from multiple constituencies, and allow
patterns to appear in multiple classes, with weights
(i.e., described below) representing their significance
in each applicable class.

Table 1. An example training set, feature selected
Instance ID Feature-frequency pairs Class ID

T1 (a:2), (b:4), (d:1) 0
T2 (a:3), (c:1), (d:6), (e:1) 0
T3 (b:2), (c:3), (d:1) 1
T4 (b:3), (c:1), (d:2), (e:4) 1
T5 (b:7), (c:2), (d:1) 1
T6 (a:1), (b:1), (c:1), (e:1) 0
T7 (b:9), (c:3), (f:4) 1
T8 (c:6), (d:2) 0
T9 (b:3), (d:2), (e:6) 1

T10 (a:4), (b:2), (d:7), (f:3) 0
T11 (c:1), (e:1), (f:1) 1

Additionally, training instances in real-life text and
web datasets may contain a feature (i.e., atomic
pattern) more than once. These local feature frequency
counts are largely ignored by existing algorithms (such
as Harmony [9]) that only considers binary presence or
absence of features in training instances to select
patterns used for classification. Similar to the
democratic election process where a voter’s perception
about each candidate may significantly impact their
selection, these local feature frequencies may provide
useful insights about a pattern's significance with
respect to a training instance. As an example, we
consider a recent news article at cnn.com about certain
types of dinosaurs that are believed to be good
swimmers. The word "dinosaurs" occurs 19 times in
the entire article whereas the word "marine" occurs
only once. Clearly, considering both of these words
with equal importance can be problematic. Therefore,
by accommodating local frequencies, our training
algorithm achieves a balance between global, class,
and local significance. Note that considering features
with high local frequencies is not the same as
considering features with high support.

Figure 1 presents our training algorithm. After
selecting features and initializing the classification
model, training instances are processed, one instance at
a time. Each training instance first adds all of its size-1
patterns (i.e., patterns remaining after feature selection)
to the pattern-lists of all of its applicable classes (i.e.,
the voter’s constituencies of residence), with global
support used as the initial pattern weight (line 6).

Next, each size-2 pattern is processed (lines 10-23)
to compute the "overall" pattern significance with
respect to the current training instance, considering the
pattern significance at all three (i.e., local, class, and

global) levels. We determine the local pattern
significance (line 11) by averaging the TF values of
both the atomic patterns (i.e., p1 and p2) in the size-2
pattern (i.e., p).
01) build-model(training_set, k, measure)
02) {select features as explained in Section 2.1}
03) model = Φ
04) forall training instances t ∈ training_set do begin
05) forall atomic patterns p ∈ t do begin
06) weight(p) = support(p, training_set)
07) append (p, each applicable class in model)
08) end
09) list = Φ
10) forall size-2 patterns p ∈ t do begin
11) significancelocal = average(TF(p1), TF(p2))
12) class_significance_list = Φ
13) forall class c ∈ p do begin
14) append(class_significance_list,
15) interestingness(p, measure, training_set, c)
16) end
17) significanceclass = average(class_significance_list)
18) significanceglobal =
19) interestingness(p, measure, training_set)
20) significance(p) = significancelocal*
21) significanceclass * significanceglobal
22) append (list, p)
23) end
24) {sort list in decreasing order of significance(p)}
25) for (i = 1; i <= k; i ++) do begin
26) weight(listi) =
27) interestingness(listi, measure, training_set)
28) append (listi, each applicable class in model)
29) end
30) end
31) {apply z-score standardization on all weights in model}
32) forall classes c ∈ model do begin
33) forall patterns p ∈ c do begin
34) weight(p) = weight(p) * mono(support(p, c)/size(c))
35) end
36) end
37) return model
38) end

Figure 1. Method build-model
Next, in order to determine the pattern significance

at class and global levels, we use a common 2 x 2
contingency-table-based interestingness measure. A
recent study [19] evaluated most of the interestingness
measures found in [12, 13], in the context of
hierarchical document clustering, and reported that
only a small number of interestingness measures
generalize well to datasets with varying characteristics.
Coincidently, we found that the same measures (in a
slightly different order) are useful to determine class
and global significance values for pattern-based
classification. Since training instances may belong to
more than one class in multi-label classification
problems, we determine the class significance (lines

13-17) by averaging the pattern interestingness values
of all classes applicable to the current training instance.

All size-2 patterns are then sorted according to
their significance values (line 24), and top-k patterns
are selected (lines 25-29) to represent the training
instance in the classification model, with global pattern
significance used as initial pattern weight (line 26).

Example: Considering the training instance T1 in
Table 1, and pattern {a, b}, we calculate the local
pattern significance by averaging the TFs of atomic
patterns 'a' (i.e., 2/7 = 0.285) and 'b' (i.e., 4/7 = 0.571),
i.e., 0.428. The class significance of pattern {a, b} is
obtained by calculating the value of the selected
interestingness measure using a contingency table,
formed using the frequencies of atomic patterns 'a'
(i.e., 4) and 'b' (i.e., 3) in class 0, where N = 5 (i.e.,
number of instances in class 0), in the usual way [12].
Similarly, the global significance of pattern {a, b} is
obtained by calculating the value of the selected
interestingness measure using a contingency table, that
considers the frequencies of atomic patterns 'a' (i.e., 4)
and 'b' (i.e., 8) in the whole training set, where N = 11
(i.e., the total number of instances in the training set).

It is important to note that weights assigned to size-
1 and size-2 patterns do not lie on the same scale. This
is an artifact of their methods of calculation, rather
than their relative importance. We investigated ways of
normalizing these weights, and found that the simplest
way is to use z-score standardization. Realizing that z-
score standardization assumes a normal distribution,
which might not be true in some cases, we leave
investigating a more robust technique for future work.

Furthermore, based on our empirical observation
that size-2 patterns are more important than size-1
patterns, we scale down the weights of size-1 patterns
(i.e., by a factor of 4, which again performs robustly).

Finally, we adjust normalized weights of patterns
assigned to each class (lines 32-36) with respect to the
class size and pattern support in the class, using a
monotonically increasing weight adjustment scheme.
We evaluated various monotonically increasing
functions for this purpose, and empirically found that
the best classification results are achieved when
mono(x) = xp, with 0.05 <= p <= 0.10. We fix this
value to 0.07 (line 34) for all experiments in this paper.

Note that the final form of our pattern weighing
scheme was obtained by evaluating many alternatives,
including one that used class interestingness instead of
global interestingness. We found that these class-
specific values are highly unstable, especially on
datasets with a high-degree of class imbalance, and are
not suitable to be used globally (i.e., to compare
significance across classes). Therefore, these values
are only used in the more meaningful context of

selecting top-k patterns for training instances (lines 10-
30).

3. Classifying Test Instances

Once the classification model is available, it can be
used to classify previously unseen, unlabeled (test)
instances by the following three-step process:

Step 1: Given a test instance t, and model, identify
the set of common patterns CP (i.e., patterns that exist
in both t and model).

Step 2: Use patterns in CP and a scoring function
(below) to obtain scores for all classes in model.

Step 3: For single-label problems, select the label of
the class with the highest score. For multi-label
problems, select multiple classes using the "weighted
dominant factor-based" scheme in Section V(C-3) of
[9], except replacing all uses of confidence with the
selected interestingness measure.

The scoring function: Given the set of common
patterns S (i.e., step-1 above), and a class c, our
scoring function uses all (i.e., size-1 and size-2)
patterns in S that also exist in the pattern list of class c
in model, to calculate the score of class c with respect
to the test instance:

∑
= ⎩
⎨
⎧

∉
∈×

=
S

i ci

ciciS

Sif
SifSweightTF

cSScore i

1 elmod0
elmod)elmod,(

),(

where TF is the term frequency of pattern Si in the test
instance for size-1 patterns, and the average of the TF
values of both atomic patterns in Si for size-2 patterns.
The idea of using local pattern frequencies here is
similar to the idea of using local pattern significance in
our training phase, which aims to capture the notion of
a voter’s bias towards each candidate.

4. Experimental Results

We conduced an extensive experimental study, and

evaluated the performance of our algorithm on 121 text
and web datasets, with varying characteristics. For
each dataset, we compared the classification results
obtained by our algorithm against various state of the
art classification algorithms. In order to ensure a fair
comparison we obtained data from the same sources
and used the same evaluation metrics as used by the
existing classifiers. We do not report the details of
datasets used in our experiments here and refer the
reader to [9, 15, 21, 27].

4.1. Classification performance

We first evaluated the effectiveness of various
interestingness measures [12, 13], to determine global

and class significance values (i.e., Section 2.2) on a
number of datasets, and found that the top measures
reported in [19], in the context of hierarchical
document clustering, also consistently performed well
in our context (in a slightly different order). We
observe that Added Value generally outperformed
other measures, while Mutual Information, Chi-
Square, and Yule's Q achieved very close (i.e., within a
few-percent range) classification performance. For the
reason of space, we do not compare the relative
performance of these measures here and note that all
results reported in this section used Added Value as the
interestingness measure, with k fixed to 25.

Additionally, all results reported here used the 10-
fold cross validation scheme (with averages of all 10
experiments reported, as usual), except on Reuters-
21578 dataset, where we used the ModApte split [21]
to ensure an apples-to-apples comparison with results
reported by existing studies.

4.1.1. Reuters-21578 (ModApte) text dataset.
Reuters-21578 is the most-commonly used benchmark
dataset to evaluate the performance of multi-class,
multi-label classification algorithms. Existing studies
like [9, 22] used the micro-averaged, precision-recall
breakeven points on 10-largest categories, as the main
performance criteria. We calculated these breakeven
points in a way similar to [9], i.e., by changing the
dominant factor, and keeping a fixed "score differentia
factor" (i.e., 0.8). Note that we already fixed the
interestingness measure to Added Value and k to 25.
Table 2. Breakeven performance on Reuters-21578

Category Harm
ony

Find
Sim

Naïve
Bayes

Bayes
Nets

Trees SVM
(linear)

ARC-
BC

Demo
cratic

acq 95.3 64.7 87.8 88.3 89.7 93.6 90.9 95.1
corn 78.2 48.2 65.3 76.4 91.8 90.3 69.6 72.5
crude 85.7 70.1 79.5 79.6 85.0 88.9 77.9 91.6
earn 98.1 92.9 95.9 95.8 97.8 98.0 92.8 96.4
grain 91.8 67.5 78.8 81.4 85.0 94.6 68.8 91.9

interest 77.3 63.4 64.9 71.3 67.1 77.7 70.5 84.2
money-fx 80.5 46.7 56.6 58.8 66.2 74.5 70.5 89.0

ship 86.9 49.2 85.4 84.4 74.2 85.6 73.6 85.4
trade 88.4 65.1 63.9 69.0 72.5 75.9 68.0 87.2
wheat 62.8 68.9 69.7 82.7 92.5 91.8 84.8 73.3

micro-avg 92.0 64.6 81.5 85.0 88.4 92.0 82.1 92.6
Table 2 presents the results of this experiment. The

results for Find-Sim, Naïve Bayes, Bayes-Nets, Trees
(i.e., Decision-Trees), and linear-SVM are obtained
from [22], while the results for ARC-BC are obtained
from [23]. Note that [9] also used the same results.
Finally, the results for Harmony are obtained from
Table VIII of [9]. Among the ten-categories, our
algorithm achieved the best break-even performance
on 3 categories (i.e., crude, interest and trade), and

ranked second on another 3 categories (i.e., acq, ship
and trade) with ranks 3-5 achieved on the remaining 4
categories. Most importantly, our algorithm
outperformed all existing classification algorithms in
terms of micro-average performance.

4.1.2. Text datasets. From Table 2, we observe that
linear SVM and Harmony outperformed other
classification algorithms on the Reuters-21578 dataset.
We performed additional experiments on 20 standard
text datasets, and evaluated the 10-fold cross validated
classification accuracies achieved by our “Democratic
Classifier” against these two classification algorithms.
Data sets tr11, tr12, tr23, tr31, tr41, tr45, fbis, hitech,
la1, la2, la12, and sports are derived from TREC-5,
TREC-6, and TREC-7 collections [28]. Data sets re0
and re1 are from Reuters-21578, obtained by removing
the relatively easy to classify dominant classes such as
learn and acq, and by splitting the remaining classes
into two sets. The Classic4 dataset is obtained by
combining CACM, CISI, CRAN, and MED abstracts.
Datasets k1a, k1b and wap are from the WebACE
project, and dataset ohscal was derived from the
Ohsumed collection. All of these datasets are available
as part of the Cluto clustering toolkit [27].

Table 3. Classification accuracies on text datasets

Linear SVM
(tuned for C)

Harmony
(tuned for support)

Democratic
(untuned)

classic4 76.45 94.17 91.73
fbis 76.70 77.96 78.52

hitech 70.28 67.08 72.27
k1a 76.50 76.54 78.03
k1b 75.30 97.79 94.10
la1 78.15 83.46 85.39
la2 80.16 83.53 87.84
la12 78.93 85.37 86.41
mm 97.30 95.58 98.93

ohscal 76.66 76.91 73.43
re0 76.20 78.33 80.92
re1 75.01 78.02 82.02

sports 95.79 94.90 97.12
tr11 81.91 84.55 86.22
tr12 84.95 81.16 89.81
tr23 84.31 87.74 94.10
tr31 95.25 96.12 97.20
tr41 91.46 92.14 94.31
tr45 90.15 91.04 90.58
wap 74.55 72.62 75.51

average 81.80 84.75 86.72
We used the SVM light [29] implementation of

linear SVM, and used various values of C (i.e., 0.1,
0.5, 1.0, 1.5, 2.0, 2.5) to tune linear SVM on each
dataset. We report the best 10-fold cross validated
classification accuracy achieved on each dataset in

Table 3. As the authors of Harmony [9] have also
noted, we found other SVM kernels (such as RBF)
impractical for large text datasets, because of their
extensive computational time requirements.

Similarly, we obtained Harmony executables from
the first author of [9], and tuned Harmony with various
values of minimum support (i.e., 25, 50, 75, and 100)
on each dataset. We report the best 10-fold cross
validated classification accuracy achieved on each
dataset in Table 3. Note that it was not always possible
to execute harmony on each dataset for all of these
minimum support values (see Section 4.2 for details).

In contrast, our Democratic Classifier used the same
fixed parameter values (i.e., Added Value as
interestingness measure, and k = 25) on all 20 datasets.
In addition, we only used the top-scoring class for each
test instance to calculate the classification accuracies
on these single-label datasets.

From Table 3, we observe that the Democratic
Classifier, without any parameter tuning, resulted in
the highest classification accuracies on 16 out of 20
datasets, and was very competitive on the remaining 4
datasets. Most importantly, the Democratic Classifier
achieved the highest average classification accuracy
across all 20 datasets. Note that tuning our classifier on
each dataset with various values for k and
interestingness measure improved the classification
accuracies even further (we noticed up to 5%
improvement on some datasets). However, we consider
extensive parameter tuning to be less meaningful for
practical purposes and omit those results.

4.1.3. TechTC-100 web datasets. In recent years,
many researchers questioned the usefulness of standard
news datasets, such as Reuters-21578 as realistic
benchmarks for classification research. Dumais and
Chen [24] state that “the Reuters collection is small
and very well organized compared with many realistic
applications”. Scott [25] noted that the Reuters corpus
has a very restricted vocabulary, since Reuters in-
house style prescribes using uniform unambiguous
terminology to facilitate quick comprehension.
Considering these issues, a recent study [14] followed
a systematic process to produce a new, more realistic
collection of 100 benchmark datasets, called TechTC-
100 [15]. These datasets are generated using real web-
sites, classified by human editors as part of the open
directory project [26]. Furthermore, TechTC-100
datasets are very noisy, and high-dimensional (i.e., an
average of 18,073 features in each dataset, where the
average number of instances is only 149), with
categorization difficulties uniformly distributed
between 0.6 and 0.92 [15].

Table 4 compares the average classification
accuracies achieved by our classifier against SVM,
C4.5, K-Nearest-Neighbor (i.e., KNN), and Harmony,
on all of the TechTC-100 datasets. We obtained results
of SVM, C4.5 and KNN from [16] (and reported at
[15]). These results represent the performance of each
of the three classifiers at their respective optimal
feature selection levels. Note that the un-tuned
accuracies of all three classifiers reported at [15] are
much lower (i.e., an average of 77% for SVM).

Table 4. Average classification accuracies on all
TechTC-100 datasets

SVM
(tuned)

C4.5
(tuned)

KNN
 (tuned)

Harmony
(tuned)

Democratic
(untuned)

85.3 84.3 82.7 85.8 95.2
We tuned Harmony on each dataset, using various

kRules (i.e., 1, 3, 5, 10), and minimum support (i.e.,
10, 13, 15, 20, 25, 30) values. We recorded the best
tuned 10-fold cross-validated accuracies for each
dataset, and report the average in Table 4. Note that the
classification accuracies using the same set of
parameters for all datasets peaked at about 83.4%, with
kRules = 5, and min support = 25.

Figure 2. Classification accuracies on TechTC-100
In contrast, our algorithm used the same fixed

parameter values on all datasets, and we report the
overall average accuracy in Table 4. In addition, we
report classification accuracies of our classifier, and
the best competitor on each of the TechTC-100
datasets in Figure 2. For the sake of clarity, these
accuracies are sorted in the decreasing order of our
accuracies across all datasets.

From Figure 2, we observe that our algorithm,
without any parameter tuning, outperformed existing
classification algorithms with a very significant margin
(i.e., an average of 9.4%). Our algorithm was better
than all other algorithms on 97 out of 100 datasets, and
was ranked second on the remaining 3 datasets. We
believe that this happens because of four main reasons.
First, the noise-level on these real-life datasets is quite

high, and our novel, voting-based pattern selection
method is less sensitive to noise, because we select
patterns that provide an effective balance between
local, class, and global significance. Second, as we
noted in Section 2.2, the local pattern significance
values can be very important for web datasets,
something that is ignored by most of the existing
algorithms. Third, a large number of TechTC-100
datasets contain patterns that are shared across classes
(especially on datasets with closely-related categories);
our unique democracy-inspired pattern assignment
scheme allows these patterns to appear in multiple
classes, with weights adjusted according to their class
significance, whereas most of the existing algorithms
make binary decisions on these patterns that may be
sub-optimal. Finally, most datasets in this collection
are relatively balanced, and democracy is known to
work well with balanced constituencies.

4.2. Runtime performance

Since our classifier is most similar to Harmony [9]
in that Harmony also builds a classification model
directly from patterns mined from the training set, we
compare the runtime performance of our classifier
against Harmony in this section. For fairness, we note
that even though Harmony is shown to run orders of
magnitude faster than existing classifiers including
linear SVM as implemented in SVM Light [29] (which
we also used for experiments reported in this paper),
we expect newer linear-time linear SVM
implementations such as [33] to run faster than both
Harmony and our classifier. Nevertheless, the accuracy
gains realized by our classifier may provide a
reasonable justification for considering it over SVMs.

To compare our classifier against Harmony, we
executed both Harmony (as implemented by the
original authors), and our Democratic Classifier on all
of the TechTC-100 cross-validation datasets (i.e., a
total of 1000 datasets), and summed the total training
and testing times. The same dedicated machine (a 64-
bit Intel Xeon based server, with Windows XP 64
professional, and 8 GB of memory) was used to
execute both algorithms. Furthermore, we repeated this
test using various parameter values. For Harmony, we
used kRules = 3, 5, and 10, and for each kRules value,
we set minimum support to 10, 15, 20, 25 and 30,
yielding to a total of 15,000 (i.e., 5 x 3 x 1000)
executions. On the other hand, we used k = 20, 25, and
30 for our algorithm. Figure 3 presents the results of
this experiment.

For fairness, we note in passing that when minimum
support was set as low as 10, many of the executions
on dataset 82 caused Harmony to execute for 5+ hours,

after which it had to be terminated. Upon manual
investigation, we found that some training instances in
this dataset are very large (i.e., large number of atomic
patterns), and they cause long-pattern-based algorithms
to take a very long time. As a result, we do not report
the performance of Harmony at this support level.

From Figure 3, we observe that the performance of
Harmony significantly depends on the parameter
values used, varying by a factor of 10. Setting a low
minimum-support causes Harmony to take a long time,
whereas it finishes quickly on a high minimum-support
value. Unfortunately, high-minimum support values
may not always result in good accuracies. Furthermore,
higher kRules values also causes Harmony to take
more time. Note that these issues are not unique to
Harmony and other minimum support based
algorithms are likely to exhibit the same behavior.

Figure 3. Total runtime and average classification
accuracies of Harmony at various support levels,
with kRules = {3, 5, 10}, and our classifier, with k =
{20, 25, 30} on TechTC-100 datasets

In contrast, the performance of our algorithm did
not notably vary with k values. This happens because
in our algorithm, each training instance first calculates
significance scores of all of its size-2 patterns, and then
selects top-k patterns. As a result, a slightly higher
value for k only adds a negligible amount of work.

Table 5. Total runtime of Harmony with optimal
supports, and our classifier with k = 25 on TechTC-100

Harmony (optimal support) Democratic Classifier (k=25)
3846 seconds 1096 seconds

Table 5 reports the total Harmony execution times
using the parameters that resulted in the best
classification accuracy values on each dataset (i.e.,
parameters used for the results reported in Table 4).
Table 5 also reports the total execution times of our
algorithm using our fixed parameter values. We
observe that our algorithm ran about 3.5 times faster.
Harmony took an average of 3.9 seconds to train and
test a dataset (which is still very fast) whereas our
algorithm took an average of 1.1 seconds only. The

primary contributor towards this significant difference
is the fact that we use very short patterns.

5. Related Work

Our work relates to existing rule and pattern-based
classification algorithms, with several important
differences. Rule-induction-based classifiers like FOIL
[2], RIPPER [3], CPAR [4] and C4.5 [1] use heuristics
such as Gini Index and Information Gain (or
Information Gain variants), to identify the best literal
by which to grow the current rule [9], and many of
them follow the sequential covering paradigm. In
contrast, association rule-based classifiers such as
CBA [5], CAEP [6], CMAR [7], ARC-BC [8], and
DeEPs [11] first mine a large set of association rules
that satisfy user-defined support and confidence
thresholds, and then extract the final set of
classification rules by following a database covering
technique.

Our algorithm is similar to these algorithms in that
we also use patterns. But unlike rule-induction based
algorithms, we do not discover one rule at a time, and
unlike association-based algorithms, we do not have a
global pattern mining step. Instead, we directly find
"balanced" patterns from each training instance, for all
applicable classes simultaneously.

In these aspects, our approach resembles Harmony
[9], which follows an instance-centric approach that
mines at least one highest-confidence rule for each
training instance. However, our approach differs from
Harmony in many ways. First, Harmony uses a
minimum support threshold, which is difficult to reuse
across datasets (Section 4.1), and may also result in a
classification model that do not cover some of the
training instances. In contrast, by having each training
instance "vote" for top-k "balanced" patterns, our
approach guarantees that the resulting classification
model covers each training instance. We show in
Section 4.1 that our fixed parameter k performs
robustly. Second, Harmony primarily uses global
pattern significance, and partially uses the class
significance in a local item ranking scheme whereas
we balance local, class, and global pattern significance.
Third, we replace confidence with a contingency table-
based interestingness measure. Fourth, Harmony does
not impose any limits on pattern length, whereas we
use very short patterns, resulting in significant
performance improvements without sacrificing
accuracy. Fifth, our score calculation method also
considers local significance of patterns in test
instances.

We observe that our algorithm shares some
similarities with RCBT [10], a pattern-based
classification algorithm that achieved high accuracy on
gene expression data. For each row in the training set
of the gene expression profiles, RCBT finds top-k rule
groups for the corresponding class, and does not use a
minimum confidence threshold. Still, it uses a
minimum support threshold, and relies on confidence
as a significance measure. Additionally, RCBT
imposes no limits on pattern lengths, and training and
test phases in RCBT do not utilize local and class
significance of patterns.

We finally note that recent work in augmenting
training data with discriminative frequent patterns [30,
31], originally applied to low-dimensional numerical
UCI datasets, is also related to our research, and we
intended to compare our Democratic Classifier with
this approach. Unfortunately, the executables that we
obtained from the authors of [30, 31] did not work on
high-dimensional text datasets used in this paper.
Therefore, we leave this comparison for future work.

6. Conclusions and Future Work

We proposed a democracy-inspired, short-pattern-
based classification algorithm in this paper. In addition
to size-1 patterns, our algorithm selects top-k size-2
patterns to represent each training instance, that
provide an effective balance between local, class and
global significance. Our novel pattern assignment
scheme allows patterns to appear in the classification
model of multiple classes, with a unique, power law
based scheme used to adjust pattern weights.
Furthermore, our algorithm replaces hard-to-generalize
minimum support and confidence thresholds with k
and an interestingness measure, parameters that are
robust across datasets. With ten-fold cross-validated
results of experiments performed on 121 datasets, we
show that our algorithm achieves overall classification
results that are better than many well known
classification algorithms, with most significant gains
realized on real-life, noisy, web datasets. In addition,
our algorithm ran about 3.5x faster than the fastest
existing pattern-based classification algorithm.

In the future, we plan to investigate a more robust
scheme to replace z-score standardization, and to
investigate better ways of assigning weights to size-1
patterns. We also intend to apply our algorithm in
other domains.

7. Acknowledgements

The authors would like to acknowledge that
Harmony served as the initial inspiration for this
research, and thank Jianyong Wang for providing us
the executables. We would also like to thank the
anonymous reviewers from ICDM’08 for their useful
feedback.

7. References

[1] J. Quinlan, "C4.5: Programs for Machine Learning",
Morgan Kaufman, ISBN:1-55860-238-0, 1993.
[2] J. Quinlan and R. Cameron-Jones, "FOIL: A Midterm
Report", In Proc. ECML, 1993.
[3] W. Cohen, "Fast effective rule induction", In Proc.
ICML, 1995.
[4] X. Yin and J. Han, "CPAR: Classification based on
Predictive Association Rules", In Proc. SDM, 2003.
[5] B. Liu, W. Hsu and Y. Ma. "Integrating Classification
and Association Rule Mining", In Proc. KDD, 1998.
[6] G. Dong et al., "CAEP: Classification by aggregating
emerging patterns", Discovery Science, 1999.
[7] W. Li, J. Han and J. Pei, "CMAR: Accurate and Efficient
Classification based on multiple class-association rules", In
Proc. ICDM, 2001.
[8] M. Antonie and O. Zaiane, "Text Document
Categorization by Term Association", In Proc. ICDM, 2002.
[9] J. Wang and G. Karypis, "On Mining Instance-Centric
Classification Rules", IEEE TKDE, 2006.
[10] G. Cong et al., "Mining Top-k Covering Rule Groups
for Gene Expression Data", In Proc. SIGMOD, 2005.
[11] J. Li, G. Dong, K. Ramamohanarao and L. Wong,
"DeEPs: A New Instance based Discovery and Classification
System", Machine Learning, 54(2), 2004.
[12] P. Tan, V. Kumar, and J. Srivastava, “Selecting the right
interestingness measure for association patterns”, In Proc.
SIGKDD, 2002.
[13] L. Geng and H. J. Hamilton, "Interestingness Measures
for Data Mining: A Survey", ACM Computing Surveys,
38(3), September 2006.
[14] D. Davidov, E. Gabrilovich, and S. Markovitch,
"Parameterized Generation of Labeled Datasets for Text
Categorization Based on a Hierarchical Directory", In Proc.
ACM SIGIR, 2004.
[15] E. Gabrilovich, "The TechTC-100 Test Collection for
Text Categorization", Technion Inst. of Technology,
available at
http://techtc.cs.technion.ac.il/techtc100/techtc100.html.
[16] E. Gabrilovich and S. Markovitch, "Text Categorization
with Many Redundant Features: Using Aggressive Feature
Selection to Make SVMs Competitive with C4.5", In Proc.
ICML, 2004.
[17] F. Sebastiani, "Machine learning in automated text
categorization", ACM Computing Surveys, 34(1), 2002.
[18] Democracy, http://en.wikipedia.org/wiki/Democracy.

[19] H. H. Malik, and J. R. Kender, "High Quality, Efficient
Hierarchical Document Clustering Using Closed Interesting
Itemsets", In Proc. ICDM 2006, pp. 991-996.
[20] Proportional representation, Available at.
http://en.wikipedia.org/wiki/Proportional_representation.
[21] S. Bergsma, "The Reuters-21578 (ModApte) dataset",
Dept. of Computer Science, University of Alberta. Available
at http://www.cs.ualberta.ca/~bergsma/HTML/Courses/650/.
[22] S. Dumais, J. Platt, D. Heckerman and M. Sahami,
"Inductive Learning Algorithms and Representations for
Text Categorization", In Proc. CIKM, 1998.
[23] M. Antonie, and O. Zaiane, "Text Document
Categorization by Term Association", In Proc. ICDM, 2002.
[24] S. Dumais and H. Chen, "Hierarchical classification of
web content", In Proc. SIGIR, pp. 256–263, 2000.
[25] S. Scott, "Feature engineering for a symbolic approach
to text classification", Master’s thesis, U. Ottawa, 1998.
[26] The Open Directory Proj., http://dmoz.org/.
[27] Cluto, http://glaros.dtc.umn.edu/gkhome/views/cluto.
[28] TREC. Text REtrieval conference. http://trec.nist.gov.
[29] Multi-Class Support Vector Machine,
http://svmlight.joachims.org/svm_multiclass.html
[30] H. Cheng, X. Yan, J. Han and C.-W. Hsu,
"Discriminative Frequent Pattern Analysis for Effective
Classification", In Proc. ICDE, 2007.
[31] H. Cheng, X. Yan, J. Han and P. S. Yu, "Direct
Discriminative Pattern Mining for Effective Classification",
In Proc. ICDE, 2008.
[32] H. H. Malik, and J. R. Kender, "Classification by
Pattern-Based Hierarchical Clustering ", In From Local
Patterns to Global Models Workshop, ECML/PKDD, 2008.
[33] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin, “LIBLINEAR: A library for large linear
classification”, Journal of Machine Learning Research
9(2008),

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

