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Abstract—Quality control using scalar quality measures is
standard practice in manufacturing. However, there are also
quality measures that are determined at a large number
of positions on a product, since the spatial distribution is
important. We denote such a mapping of local coordinates
on the product to values of a measure as a measurement
map. In this paper, we examine how measurement maps
can be clustered according to a novel notion of similarity—
mapscape similarity—that considers the overall course of the
measure on the map. We present a class of synopses called
global slope change that uses the profile of the measure along
several lines from a reference point to different points on
the borders to represent a measurement map. We conduct an
evaluation of global slope change using a real-world data set
from manufacturing and demonstrate its superiority over other
synopses.

Keywords-measurement map; mapscape similarity; synopsis;

I. INTRODUCTION

Product quality is one of the most important concerns in
manufacturing, since low or fluctuating product quality may
result in dissatisfied customers. Hence, quality control needs
to be employed. There are different strategies, but the core
concept is to constantly monitor quality, even at intermediate
processing steps, and to check for any quality degradation.
When a critical deviation is detected, the manufacturing
process has to be adjusted.

Quality control is standard practice and there is a rich
methodology for using scalar quality measures, such as
dimensions of a product. However, some quality measures,
e.g. surface temperature, depend on the position of measure-
ment. For example, heavily machined areas are hotter than
other areas. To use such quality measures in standard quality
control frameworks, the spatially distributed measure needs
to be transformed into a scalar measure. For example, the
temperature at a certain position or an aggregation like mean
temperature can be used as representation. This approach
may be admissible, but in any case, valuable information is
lost.

Figure 1 shows example distributions of surface temper-
ature that occur when a workpiece is formed or machined.
Such distributions are mappings (X,Y ) → Z of local
coordinates (X,Y ) to a measure Z(X,Y ), and we denote
the mapping as measurement map. The distribution mainly

Figure 1. Example Measurement Maps

depends on the performed processing steps, but also on the
internal composition of the raw material.

A key observation is that when the same processing steps
are performed on several workpieces, the differences in the
temperature distribution mostly characterize their internal
structure. Therefore, we need to classify measurement maps
into a set of classes of workpieces for which appropriate
corrective actions are known. However, since this set does
not exist currently, we need to employ clustering first to
establish it. In the rest of this paper, we consider only
clustering.

Standard clustering algorithms cannot be applied straight-
forward, which is due to the specific notion of similarity of
measurement maps. Intuitively, it is the overall shape of a
measurement map or, figuratively, the landscape that deter-
mines similarity. The examples in Figure 1 illustrate this.
The measurement maps in Figure 1 are similar, since both
exhibit a high elevation near the center and an approximately
concentric decrease in all directions from the center to the
borders. We denote this notion of similarity as mapscape
similarity. We require scale and rotation invariance. For
example, a map could be rotated by 90◦ around the vertical
axis and would still be similar to the original in terms of
mapscape similarity. These invariances are not ensured by
applying standard distance metrics like Euclidean distance
directly to two maps.

Therefore, we propose to create a synopsis of a mea-
surement map that can be compared using standard distance
metrics like Euclidean distance. The synopsis shall represent
the overall shape of the map. Clustering of measurement
maps can then be performed by clustering the associated
synopses. In this paper, we present a class of such synopses,
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called global slope change (GSC). The basic idea is to
use the slope profile along several cuts through the surface
of the measurement map. These cuts are made from a
reference point to different points on the borders of the
measurement map. The synopses differ in the aggregation
of the slope profiles, but they all ensure scale and rotation
invariance. Note that we restrict our discussion to rectangular
measurement maps. However, our approach can be extended
easily to general measurement maps with convex borders.

In the next section, we describe related work and discuss
its limited ability to capture mapscape similarity. In Section
III, we present the structure of global slope change synopses
and how they are calculated. We evaluate our approach and
compare it with other synopses in Section IV and conclude
the paper in Section V.

II. RELATED WORK

Since the notion of mapscape similarity is novel, GSC
is the first synopsis to capture it. However, in content-
based image retrieval (CBIR), similar synopses with similar
goals were proposed, since CBIR requires to determine the
similarity between two images based on the content. Since
a measurement map can be viewed as a gray-scale image,
with the measure providing the luminance information, these
synopses can be applied. However, they are not suitable
to capture mapscape similarity, as we will outline in the
following. A large body of work has been created over
the last 20 years and a number of surveys such as [1]–
[3] summarize the progress in the field. A commonality of
most proposed CBIR systems is that they define similarity
in terms of features extracted from the images at hand [1].
A multitude of features have been proposed, but they can
generally be classified in three main categories [2].

Shape: This class of features is based on prominent
geometric details. For example, edges can be detected and
then transformed into features, e.g. the distance of the points
of the edge with respect to some reference point [4]. This
approach is not applicable in our scenario since there are no
clearly defined meaningful shapes.

Texture: The second class of features is defined by the
fine-granular structure that emerges from virtually all sur-
faces or objects, e.g. clouds, concrete or shrubs. With regard
to processing, features based on texture are often created by
analyzing the neighborhood (e.g. the 8 surrounding pixels)
of all pixels in an image. This approach is by definition local,
while in our scenario, the global form of the map defines
similarity. But since this class of features is applicable
whatsoever, we selected a representative for our evaluation.
The method described in [5] uses the texture spectrum of
an image, which is gathered by moving a window (neigh-
borhood of a pixel) over the image and creating a histogram
of the encountered local binary patterns LBP . Patterns are
calculated from neighborhoods, by comparing the luminance
of each pixel in the neighborhood pn to the luminance of

(a) Map and cut lines of GSC.
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Figure 2. Structure of GSC synopses.

the central pixel pc. The windows can have different forms,
e.g. square or circle.

Color: The last class of features is derived from color. A
huge amount of work has considered problems of equality
of color, e.g. under different lighting or according to human
perception. This problem does not exist in our setting. The
most common approach is to represent the image–or parts
of it–with a color/luminance histogram [6]. This approach
does not capture spatial information, which is required in
our scenario. However, since this approach is used often,
we do use it in the evaluation.

III. GLOBAL SLOPE CHANGE

In this section, we will detail the notion of mapscape
similarity and introduce the class of global slope change
(GSC) synopses that are designed to capture it.

Mapscape similarity is intuitively defined as a similarity of
the overall shape of a measurement map. For example, two
maps with a high elevation near the center and a decrease in
all directions (Figure 1) are considered similar although they
differ locally. In other words, mapscape similarity results
from a similar sequence of changes of the measure when
viewing the map from an equal reference point in both maps.
Consider Figure 1, where the profile in the vertical center—
viewed from left to right—consists of a gradual rise followed
by a gradual decrease in the measurement values in both
maps. We will use this view as the basis for our proposed
Global Slope Change (GSC) synopses.

There are two challenges when trying to capture mapscape
similarity: scale invariance and rotation invariance. Scale
invariance is required for two reasons. First, measurement
maps can have different sizes, i.e. the domains of X and Y
may differ, yet they must still be comparable with respect
to the global shape. Second, since only the overall shape
is important, a homogeneous scaling in the domain of
measure Z must be tolerable, too. Rotation invariance is
important, since rotated measurement maps exhibit the same
distribution in just another orientation.
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A. The Global Slope Change Synopses

We now give an overview of the common steps of
creating Global Slope Change synopses and then describe
each step in detail. The first step applies a normalization to
the measurement map. Second, we define a reference point
based on which we observe the slope change and extract
profiles along these lines. Then, we apply a discretization
and represent the profiles by a discrete number of values.
The fourth step aggregates these values to a constant number
of feature values. Finally, we combine all these feature
values to one synopsis.

Normalization: In order to assure comparability in Z, we
first apply a normalization to the measurement map. For this,
we use the z-score normalization [7], which normalizes the
values of measure Z to mean 0 and variance 1.

Profile Extraction: We analyze the change of the global
slope profile of a map. Since the slope varies in dependence
of the two spatial dimensions (X,Y ), we need a comparable
reference point that defines the origin for profiles of the map.
Hence, profiles with different orientations in the (X,Y )-
plane can be extracted. In our application setting, we noticed
that the different classes of maps were well differentiable
when comparing the slope of the map from the center of the
map to several points on the border. Figure 2(b) shows this
slope profile along a line marked in Figure 2(a). Hence, we
choose the center of the map as reference point. Additionally,
choosing the center as reference point is beneficial to realize
rotation invariance. Therefore, we perform n cuts through
the surface of the measurement map from the center to the
border of the map. One cut realizes a straight line in the
(X,Y )-plane, and the associated Z values form the slope
profile along this line. The target points of the lines at the
borders are chosen in equally spaced intervals in order to
observe each part of the map evenly, resulting in a star-
shaped pattern (Figure 2(a)).

Discretization: Next, we represent each line by p values
of the measure Z. For the horizontal and vertical lines, we
choose these values from the discrete raster of the map. For
the diagonal lines, we interpolate to acquire p values that
have the same spatial distance as the values on the horizontal
and vertical lines.

Aggregation: We have divided our map into n different
lines and represented each line by p values. This could be
used as a form of representation, but it is not very compact
and is not scale-invariant since maps can have different
sizes and thus different numbers of values on a line. We
need to aggregate these values to a constant number of k
feature values. Therefore, we require an aggregation function
(aggFeatures) that transforms the p values on a line into
k feature values. In this paper, we present three different
approaches to aggregate the values along a line to feature
values. All three approaches encode the global shape of
the map and ensure scale invariance. According to different

parameters, they all result in the same number of features
when applied to different maps.

Finally, we need to combine the features of all lines
to one synopsis or representation vector. This synopsis
represents the overall slope profile of the whole map. Since
each map outputs the same number of features and because
the features are numeric, we can compare our synopses
using standard distance metrics like Euclidean distance. A
clustering algorithm can then be applied directly on the
synopses. For now, our synopsis requires one parameter: the
number of lines n, because we will introduce a rule to set
p, while k is determined by the chosen synopsis.

B. Average Global Slope Change

In this section, we want to introduce a first naive approach
to calculate the aggregation function aggFeatures. This
first idea consists of calculating the difference of two con-
secutive points on a line. By calculating the difference, we
generalize from different scales and base levels of measure
Z. Then we can aggregate the differences. For this basic
approach, called average global slope change (GSCA), we
calculate the average over the differences. This average
represents the slope profile along a line, the sign represents
the direction of the slope, and the value is the rate of change.
The GSCA approach results in only one feature value per
line, i.e., k = 1. The dotted line in Figure 2(b) illustrates
this feature value, which is negative in this example and thus
represents an important global characteristic of the map: the
decrease of the measure from the center to the border.

This approach has the advantage that it is simple to
calculate, requires no parameters beside the number of lines
n, and only stores n values in the final representation vector
(since k = 1). However, GSCA may reflect the course of
the map incorrectly. Since we only have one feature value,
we not only generalize local fluctuations along the lines, but
we might also lose important global characteristics of the
map. As an example, Figure 3(a) shows the profile along
a line chosen from a different map and a representation of
the associated average global slope change. Since the line
shows a deep minimum in the middle, the average global
slope change is close to zero. Therefore, it does not reflect
the line’s real course and represents the U-shaped profile
equal to a near flat profile.

C. Multi-Segment Global Slope Change

Since GSCA may overgeneralize in some cases, it may
yield distorted feature values. In this section, we extend
our first naive approach in order to compensate for this
problem. We need to approximate the lines more precisely
by analyzing several sections of the lines. We refine GSCA

by dividing each line into s equally sized segments and
describe the slope profile along the segments separately.
These segments have constant size in order to be comparable
between different maps. The associated feature value is now
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Figure 3. Average Slope Global Change

calculated according to GSCA for each of these segments
separately. We call this strategy Multi-Segment Global Slope
Change (GSCAMS), resulting in a final representation vec-
tor of size n∗s (k = s). For this synopsis, we have to define
a second parameter besides the number of lines: the number
of segments s.

Looking back at the example from the GSCA approach,
we now divide the line into four segments (Figure 3(b)) and
calculate the GSCA for each of these segments. As a result,
the corresponding feature vector reproduces the minimum in
the middle of the line. A benefit of this approach is that we
can adopt the accuracy of our description by changing the
number of segments. With increasing number of segments,
the lines are approximated more precisely and with more
detail. However, if we set the number of segments too high,
we might incorporate too many details of the line into the
final synopsis.

D. Wavelet-based Global Slope Change

In the last subsection, we proposed an approach that
can be used to capture the slope profile along a line at
different levels of detail, i.e., resolution. Wavelet analysis
[8] is a well-known approach and widely used in the areas
of image and signal processing, and it can similarly be used
to approximate a sequence of values at multiple levels of
resolution. Therefore, in this section, we want to calculate
the feature values using wavelet analysis.

The wavelet transform divides an input function into low-
and high-frequency components at progressively coarser
scales of resolution. For this, the discrete wavelet transform
uses discrete-time filterbanks and produces wavelet coeffi-
cients at different resolutions r as output. The simplest and
most used wavelet transform is the Haar wavelet transform,
which simply pairs up input values, providing the differences
as wavelet coefficients and passing the sums. The wavelet
coefficients at resolution r are calculated from resolution
level r− 1. Additionally, a normalization is applied to each
resolution level. When using the Haar wavelet transform to
implement aggFeatures, we gain a new parameter—the
resolution level r—for which we calculate the according

wavelet coefficients. We get k = 2r feature values per line,
because wavelet analysis yields 2r coefficients. An important
characteristic of the wavelet transform is that it requires the
number of input values p to be a power of two. Depending
on the choice of p, the maximum resolution level R of the
wavelet transform is ld(p) − 1. For the choice of p, our
goal is to do as less interpolation as necessary in order to
avoid adding or losing information in the map. Therefore,
we choose p close to half the average size of the maps and
calculate p values on the lines in equally spaced distances.
As a result, we do not need to perform interpolation on the
straight lines in most cases; only the diagonal lines require
some interpolation.

In summary, equivalent to the GSCAMS approach, we
have two parameters left for this synopsis: the number of
lines n and the resolution level r < R.

E. Achieving Rotation Invariance

When the map is rotated, the lines will correspondingly
move around the reference point. Since the final represen-
tation vector is created from a fixed starting line, rotating
the map will result in a different vector. To remove the
effect of rotation, our idea consists of finding the best
arrangement of two maps and determining the distance for
this arrangement. Therefore, we adjust the distance function,
so that we determine the minimal distance between all
possible rotations of two maps. With this approach, we find
the best arrangement of two similar maps.

To adjust the distance function, we fix one representation
vector v1 and rotate the other v2. Since we used the center of
the map as reference point, rotating the vector is equivalent
to rotating the map around the center point. Now, to rotate
the vector, we start from a given vector v12 and perform a
circular right shift n times. Apparently, when doing one shift
operation, all feature values for one line have to be moved
together, since we only want to rotate the lines. As a result,
we get n vectors

{
v12 , v

2
2 , ..., v

n
2

}
, which represent the slopes

along the lines at different rotations of the map. Finally, we
calculate the distances between vector v1 and all possible
rotations of vector vr2 and pick the minimum distance as
representative:

rotInvDist(v1, v2) = min
1≤r≤n

dist(v11 , v
r
2).

IV. EVALUATION

We now present the results of the experimental evaluation
of the GSC synopses and a comparison with selected related
work. We implemented all variants of GSC in Java using
the open-source data mining framework RapidMiner as
well as the direct comparison of two maps using the Eu-
clidean distance (ED), a color histogram (CH) [6] and the
local binary pattern (LBP ()) operator from [5].

The real-world test set consists of 90 measurement maps
that have been acquired from a manufacturing process. The
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Figure 4. Example dendrogram of measurement maps.

maps have different sizes, varying from 100 to 300 values
in X and Y direction. Domain experts performed a manual
inspection of the test set and identified five groups according
to mapscape similarity. Each map was assigned a label and
this labeled set serves as reference clustering Cref .

A. Experimental Setup

To measure how well GSC captures mapscape similarity,
we apply it to maps in the test set and cluster the created syn-
opses. The resulting clustering should resemble a predefined
meaningful clustering Cref as closely as possible. However,
a clustering does not yield consistent and meaningful labels.
There is no given correspondence between the groups in the
result and those in Cref , especially since the number of
groups might differ. Therefore, we use the method proposed
in [9], which presents a distance measure between clus-
terings dG. The basic idea is to check whether clusterings
agree on the assignment of all possible pairs of objects and
to increment a counter whenever clusterings disagree. For
example, two clusterings disagree if a pair of objects is in
the same group in clustering C1 but is in different groups in
clustering C2.

Using dG, we can evaluate clustering results quickly.
However, in general, the result does not solely depend
on the selected synopsis and the used parameters but
also on the selected clustering algorithm. We experimented
with several algorithms to find a suitable one. Partitioning
clustering algorithms like k-Means generally had a rather
bad performance, which could be due to the form of the
clusters. Density-based clustering can help in such situations.
We got very good results using DBSCAN [7]. However,
DBSCAN has two parameters and the optimal values for
these parameters varied when we changed the parameters of
the synopses. This means a full evaluation using DBSCAN
requires an expensive parameter optimization for each tested
parameter combination of our synopses.

To avoid this problem, we used Agglomerative Nesting
(AGNES) [7], a hierarchical clustering algorithm. The key
benefit is that no parameters have to be set, aside from the
selection of the linkage strategy. We evaluated several link-
age strategies and found that complete linkage provided the
best overall results. The result of AGNES is a hierarchical
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Figure 5. Parameter influence on the distance of clusterings to Cref .

clustering structure. It can be cut at a certain level l to get
a single clustering. For example, a cut at the topmost node
yields a clustering that consists of one cluster containing all
objects. This is illustrated in Figure 4.

In the evaluation, we cut a hierarchical cluster model
at all levels and acquire an ensemble of clusterings C =
{C1, C2, ..., Ck}, with k being the number of levels (90 in
our scenario, since we have 90 maps). For each Ci ∈ C, the
distance dG(C1, Creference) is calculated, which results in a
set of distances D = {dG(Ci, Creference)}, i = 1 . . . k. We
argue that the minimal distance dG in D is an appropriate
measure for the generalization power of the tested synopsis,
since it represents how well the best clustering result resem-
bled Cref . Hence, this is a result that can be achieved if the
clustering’s parameterization is good.

For the clusterings that were performed using DBSCAN,
we observed that a well parameterized run of DBSCAN
can yield a result equal to the best results of AGNES.
Therefore, we use AGNES in our evaluation to alleviate the
parameterization problem of DBSCAN.

B. Parameter Influence

In this section, we evaluate how the parameters of the
GSC synopses influence the achievable clustering quality.
The results are depicted in Figure 5 as a bar plot of the
minimal dG with respect to different parameter values.

GSCAMS : This synopsis has two parameters: the number
of lines n and the number of segments s. For s = 1,
GSCAMS is equal to GSCA. We evaluated all combinations
of n = 4, 8, 16, 32, 64 and s = 1 . . . 7. As can be seen
from Figure 5(a), the distance dG becomes small for larger
numbers of segments s and larger number of lines n. There
are two exceptions for s = 3 and s = 4, where larger n lead
to an increase in dG. We conclude that large values for both
n and s generally lead to better results, although the optimal
choice of s is difficult because of the possible occurrence of
outliers.

GSCW : This synopsis has two parameters: the number
of lines n and the resolution level r. We did not vary the
number of input values p but set it to 64 i.e., close to half
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the average size as stated in Section III-D. We evaluated all
combinations of n = 4, 8, 16, 32, 64 and r = 0 . . . 5. As can
be seen from Figure 5(b), higher resolution levels lead to a
better performance in terms of dG. The optimal value for n
depends on r. A generally good value is n = 8. However,
for larger r, the number of lines l should be set large, too.
We conclude that GSCW can more easily be parameterized.

C. Performance Analysis

Figure 6 shows the result of the comparison of our syn-
opses with three other approaches. We depict the minimum
and selected percentiles of the distribution of dG between
Cref and the clusterings that resulted from cuts on all levels
of the hierarchical clustering structure. Figure 6 contains
dG for a range of parameter combinations for each tested
synopsis.

This statistic has the following important characteristic.
The maximum dG is equal for all synopses (and was
excluded from the figure to make the other percentiles more
readable). The minimum dG provides us with an indicator of
how good a clustering can be when optimally parameterized.
The selected percentiles (10%, 25%, 50%, 75%) show how
bad the given percentage of the results became at maximum.
They are an indicator of how a not optimally parameterized
clustering performs.

From Figure 6, we draw the following conclusions: The
direct application of the Euclidean distance (ED) is clearly
the worst approach. Not even the best achievable clustering
came to resemble Cref . This confirms our expectations,
since this approach is not rotation-invariant. The color his-
togram (CH) performs better than ED but is still not usable
at all. LBP shows a distinctly better performance than
ED and CH , but even the best results still exhibit a large
distance to the Cref . GSCAMS is the best approach in terms
of minimum dG, only beating GSCW by a margin. The 10th
and 25th percentile are better than any other approach except
GSCW . This shows that non-optimal parameterizations can
still lead to good results. GSCW is similar to GSCAMS in
performance, reaching nearly identical results for minimum
dG and the 10th and 25th percentile.

In summary, GSCAMS and GSCW are able to create syn-
opses that capture mapscape similarity, since under a good
parameterization, these clusterings resemble the reference
set very closely. The other approaches are of limited utility.

V. CONCLUSION

Clustering of measurement maps can help improve the
control of production processes. In this paper, we presented
the global slope change GSC synopses. The basic GSCA

approximates a map using the average slope along a number
of lines from the rotational center to the borders of the
map. We refined GSCA in GSCAMS and GSCW , where
the lines are either approximated by the slope of several
segments or by wavelet coefficients. Both approaches are
able to yield excellent results. However, GSCW was easier
to parameterize than GSCAMS and should therefore be
preferred.

In the future, we will examine whether the problem of
choosing suitable parameters can be tackled by a multi-level
synopsis. The idea is to store GSCW or GSCAMS synopses
for a range of parameter combinations. Since selecting the
optimal parameterization is not possible without a reference
set, the challenge lies in designing a tailored distance
function that compares the multi-level synopsis and achieves
good results without a-priori knowledge.

Another topic of investigation is the extension of the
current approach to higher-dimensional measurement maps,
e.g. where the measure depends on three spatial dimensions.
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