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Abstract—In this paper, we consider a recently proposed
supervised learning problem, called online multiclass prediction
with bandit setting model. Aiming at learning from partial
feedback of online classification results, i.e. “true” when the
predicting label is right or ‘“false’” when the predicting label is
wrong, this new kind of problems arouses much of researchers’
interest due to its close relations to real world internet applica-
tions and human cognitive procedure. While some algorithms
have been brought forward, we propose a novel algorithm
to deal with such problems. First, we reduce the multiclass
prediction problem to binary based on Conservative one-versus-
all others Reduction scheme; Then Online Passive-Aggressive
Algorithm is embedded as binary learning algorithm to solve
the reduced problem. Also we derive a pleasing cumulative
mistake bound for our algorithm and a time complexity bound
linear to the sample size. Further experimental evaluation on
several real world multiclass datasets including RCV1, MNIST,
20 Newsgroups and USPS shows that our method outperforms
the existing algorithms with a great improvement.

Keywords-online multiclass prediction; bandit setting model;
one versus all reduction; passive-aggressive algorithm;

1. INTRODUCTION

A new supervised learning problem, the multiclass pre-
diction with bandit setting model, is first proposed by [1].
Unlike the conventional supervised learning paradigm, it
focuses on applications in which only partial feedback,
instead of full label information, is received by the learner
itself. “Partial feedback” as mentioned, means that the
learner receives only “right” or “wrong” feedback about its
prediction results from some independent oracles, such as
people.

Naturally, this kind of paradigm is online. And for most
real world internet usages, full label information is hardly
revealed. On one hand, as we all know, the internet surfers
are too “lazy” to enter true labels even if they have already
known them; On the other hand, even the surfer does not
know what exactly he or she wants. For example, people put
some requiring features to the search engine, but they cannot
figure out the definite item type they request. However, a
simple click of the mouse responses an approximate incli-
nation of the user, representing kind of “partial feedback”.

The rising usages of internet raise new challenges to the
traditional learning fields and impose a powerful encourage-

ment of this learning model. Such an online recommender
system is mentioned by [1], [2]. It is said that when
user makes a query (e.g. requiring song types, commodity
features, etc.) to the recommender system, the system gives a
suggestion under its former knowledge about the user (e.g.
searching records, purchasing records, browsing histories,
etc.); Then the user responses to the suggestion(s) by either
clicking or not clicking it(them). Nevertheless the system
does not learn any about what would happen if it provides
other suggestions as substitutions.

Besides, we find that this kind of learning paradigm
has something to do with the human cognitive procedure.
Consider the puzzle game as an example. If you join in a
puzzle game, your partner asks you the Riddle of the Sphinx:
“Which creature in the morning goes on four legs, at mid-
day on two, and in the evening upon three, and the more
legs it has, the weaker it be?” Then he gives you ten choices
of animals, including “man”, “tiger”, “monkey”, “bird” etc.
You may answer: Tiger. Then your partner replies a “no”
as feedback. You may take use of this information and your
former thinking procedure to make a new choice. Then you
get a reply, and you will think again if it is “no”... At the
end, when you reach the answer “man”, you will get a “yes”
feedback. From then on, if you encounter similar puzzles,
you would probably reach the correct answer quickly.

Though the real world applications are more complicated,
in this paper, we only focus on the multiclass prediction with
bandit setting model as in [1]. Essentially, we formalize
the model setting as follows: the learner gets an input
feature vector x; at each round t; then based on infor-
mation obtained from the former round, the learner makes
a prediction and assigns a label g, to this input; finally,
according to its prediction and the true label of the input
X¢, the learner receives a limited feedback that whether its
prediction is correct or not. In contrast, conventional online
supervised learning problem would disclose the true label
y; to the learner at each consecutive round. So with partial
feedback, this kind of problems are harder than conventional
supervised learning problems.

In order to take advantage of the partial feedback infor-
mation as completely as possible to build a “good” learner



for future prediction, [1] proposed the Banditron Algorithm.
Based on multiclass perceptron algorithm, the Banditron
uses an exploitation-explore scheme to handle the difficulties
of utilizing the negative feedback. In some rounds where the
algorithm explores, it makes a prediction uniformly with
probability + from the full label set instead of the most
probable one the learner believes.

Another approach is Offset Tree reduction algorithm[2], a
recent research work for learning with partial labels, which
deals with a more general problem than what we consider.
However, since “When solving a given problem, try to
avoid solving a more general problem as an intermediate
step”’[3], our method focuses on the specific problem instead
of the general one. When the partial label learning problem
requires an interactive setting, the reward for one prediction
choice is restricted in 1 and O and it’s always possible to
choose the best action, the partial label learning problem
degenerates to the online multiclass prediction with bandit
setting problem and the corresponding algorithm is called
Realizable Offset Tree Reduction algorithm. And Costing
algorithm[4] is applied to the updating rule according to
the partial feedback.

Some other works is related to “multi-armed bandit”
problem[5], [6]. Though both dealing with side information,
the online multiclass prediction with bandit setting model
focuses more on the classification problem and finding effi-
cient algorithms, while those consider more on the abstract
hypothesis spaces[1].

This paper provides a new perspective for online mul-
ticlass prediction with bandit setting model. Our algorithm,
called Conservative OVA(one-versus-all) Reduction with On-
line Passive-Aggressive Algorithm, enjoys a pleasing theo-
retical result of cumulative error rate as well as updating
time cost linear to the sample size. First, we reduce the
multiclass problem to binary according to Margin Based
Reduction from Multiclass to Binary[7]; then a conservative
scheme is applied for dealing with the bandit setting ;
finally Online Passive-Aggressive algorithm[8] is embedded
to handle binary problems. More details about our algorithm
will be discussed later. Further experiments on several
multiclass prediction dataset verify our theoretical bound
and demonstrate that our algorithm performs far better than
the Banditron Algorithm and the Realizable Offset Tree
Reduction Algorithm.

II. BASIC DEFINITIONS

In this section, we will define the problem of online
multiclass prediction with bandit setting model in details,
as well as the concept of Online Binary Linear Predictor,
which will be used in the following sections.

A. Online Multiclass Prediction with Bandit Setting Model

In Online multiclass prediction with bandit setting prob-
lem, the learner observes instances in a consecutive manner.

At each round t, the learner receives an instance feature
vector x¢ € R?, then it predicts a label y; from a prede-
fined label set, which includes k& labels, denoted by [k] =
{1,...,k}. Once a predicted label is given, in traditional
multiclass problem, the information that which label y, € [k]
the instance x¢ actually corresponds to would be revealed
to the learner; however, in bandit setting, the learner would
only receive partial feedback 1[¢; = ], where 1[n] is equal
to 1 if the statement 7 is true and O otherwise. Under this
circumstance, the learner knows the actual label of instance
x¢ only if it gets a positive feedback; if it receives a negative
feedback, the learner would only know that the predicted
label g, is wrong, but it is not disclosed that what the true
label y; is.

As conventional online learning, the ultimate goal of the
task is to minimize the cumulative number of prediction
error /. Until round 7', E can be shown as

E=Y 1 # i M
t=1
To minimize F, we have to take every efforts of what we
can to make a better classifier for later round prediction at
each round.
Also we denote learning hypothesis of this problem at
each round t to be h;, where h; : R? — [k] belongs to a
class of hypotheses H.

B. Online Binary Linear Predictor

For instance (xg,y;), where x¢ € R% and y; € {—1,+1},
an online binary linear predictor maintains a weight vector
wi € R? and makes a prediction based on the sign of
(wg - x¢). Then wy is updated after the label feedback is
received at each round. Not only the sign of (wy - xt)
indicates the predicted label, but also the magnitude of it
represents some kind of confidence. We denote the term
ye(Wy - x¢) as the (signed) margin acquired on round t as
[8]. So aiming at realizing a large margin which convinces
a higher confidence, some online binary linear predictor
would attain a margin of at least 1. Therefore, this kind
of algorithm incurs a loss whenever a margin is less than
1 occurs. A usual loss used is called hinge-loss function
defined as following,

0 ye(w-x) >1
1 —yi(wy - x¢) otherwise

Iy (We; (%6, Y1) = { (2)

This loss is equal to 0 when the (signed) margin is larger
than 1; otherwise it is equal to the distance(difference)
between 1 and the margin value. In Online Binary Linear
Prediction problem, the small cumulative loss Zthl l; or
small cumulative squared loss Z;‘rzl 12 is desired. The
cumulative loss or cumulative squared loss is an upper bound
of the cumulative number of prediction mistakes F, because



whenever a mistake is made then [; > 1 and lf > 1, as well
as the obvious fact that [; > 0, which is noted in Eq. (1).

III. THE CONSERVATIVE OVA REDUCTION WITH
ONLINE PASSIVE-AGGRESSIVE ALGORITHM

A. Overview

In this section, we will introduce our Conservative
OVA(one-versus-all others) Reduction with Online Passive-
Aggressive Algorithm in details, which is novel and concen-
trated on the idea of “conservative”.

In contrast to the Banditron Algorithm[1], our method
doesn’t take much efforts to deal with the balance between
exploitation and exploration, since we abandon the Kesler’s
construction [9] for multiclass setting. Instead, we bring in
the method of Margin Based Reduction from Multiclass to
Binary[7] as an oracle framework for multiclass prediction
problem with bandit setting. The simplicity of this method
as well brings a lot of benefits for fully theoretical analysis.

What we mean by calling our algorithm “conservative” is
that we choose to take advantage of maximum information
each sample discloses fully, and not to explore greedily to
obtain more information. More about “conservative” would
be clearly explained in subsection III-C.

Furthermore, we embed Online Passive-Aggressive Al-
gorithms[8] for online binary learners as base learning
algorithm to accomplish our method for online multiclass
prediction with bandit setting problem. Noting that other on-
line binary learning algorithms can be suitable for our oracle
Conservative OVA Reduction scheme, we adopt this choice
to make a comparable part against Banditron Algorithm, as
well as further theoretical analysis.

B. Margin based Reduction from Multiclass to Binary

Reducing multiclass prediction problem to binary attracts
much attention during the years, which includes two of
the most famous methods, one-versus-all others and all-
pairs approaches[10]. Usually these kinds of reduction for
multiclass prediction enjoy acceptable performance as good
as some direct algorithms.

In this paper, we adopt the Margin based Output Cod-
ing[7] as the basic scheme for our problem. First, a coding
matrix

M e {—1,0,+1}Fx!

is given, where k is the number of classes and [ is the
number of binary classifiers. Any binary classifier learning
algorithm is provided with labeled examples in the form of
(xi, M (y;, s)), where s = 1,...,l. In definition, M (y;, s) =
1 means that the sample (x;,y;) is a positive example for
stp, binary classifier, while M (y;, s) = —1 indicates that it
is a negative example and M (y;, s) = 0 means this sample
is omitted by the s, binary classifier.

For instance, for all-pair reduction, M is a k x (g) matrix
with each column corresponding to a label pair (ki, k2). In

this column, ki row is +1, ko row is —1 and others are
equal to 0. Thus one classifier is maintained for examples
from these two classes; for one-versus-all others approach,
the matrix M is k£ x k with only +1 along diagonal, while
—1 in other elements.

Then for each binary learning algorithm, we provide
a single hypothesis fs(x) to deal with every samples
(x4, M (y;, s)). Therefore, variants of binary learning algo-
rithm are suitable for such reduction.

Then, how to combine every binary output to predict the
final class? Several methods have been carefully studied.
First, Let M(r) denote the 7, row of matrix M and f(z)
represent the prediction vector of x:

f(z) = (f1(2), f2(2), - .., ful®)).

The basic idea is to find out a label r whose corresponding
M(r) is most similar to the output f(x).

The simplest method of combining binary classifiers is
called Hamming Decoding[7]. It is to count the number of
difference between the prediction f(x) and the 7., row M(r)
of matrix M, which is so-called hamming distance:

l
an (M), £2) = 5 37 (1= sign(M(r,5)£,(2))) @)
s=1

where sign(z) equals +1 when z > 0, —1 when z < 0 and
0 when z = 0. For an input instance x, the predicted label
g€ [k] is

= h(x) = arg mrin dg (M(r),f(z)) “4)

However, the Hamming Decoding only exploits the “sign”
information of the prediction f(x) and ignores the advantage
of the prediction margin which can be shown as kind of
“confidence”. Another approach called loss-based decod-
ing[7] is proposed, which aims to predict the label y by
minimizing the total loss on an input instance X,

l
dr(M(r). £(2)) = Y L(M(r, ) fs(2)). ©)

where L(z) = (1 — z)4 = max{0,1 — z} is a convex loss
function. Other convex loss functions can be used, but here
we only consider the above one.

Therefore, similar to hamming decoding the predicted
label § € [k] can be denoted as:

7 = h(x) = arg mrin dr,(M(r), f(x)). (6)

C. The Conservative OVA Reduction Scheme

In this subsection, we describe our Conservative OVA
Reduction Scheme for multiclass prediction with bandit
setting problem in details.



At first, we reduce the multiclass problem to binary by
one-versus-all others reduction. As mentioned in III-B, now
the coding matrix M is k x k,

+1 -1 - -1

M — -1 +1 : )
: IR
-1 - =1 41

Generally speaking, we maintain &k binary classifiers to
distinguish each class from all other classes. An example
(z,y) is a positive example only for the yy, classifier, and
a negative example for the other £ — 1 classifiers.

Then based on one-versus-all others reduction, we will
talk about our Conservative Scheme. In bandit setting, if
a learner receives a positive feedback of its prediction,
then it immediately reveals what the actual label of this
sample is. Thus an example with full label information is
obtained and all the k binary classifier can be updated by
the sample (x:,y:) at this step; Otherwise, if a negative
feedback is accepted, the learner will only know that this
example doesn’t belong to a certain class and has no further
information about which class it belongs to, denoted by ;.
Thus only the binary classifier corresponding to y; with x;
as a negative example is updated, and with other binary
classifiers unchanged.

Finally, the learner outputs the predicted label based on
its former knowledge by minimizing the total loss as Eq.
(6), where M is shown as Eq. (7).

In this Conservative scheme, when an input instance X
is misclassified, only the corresponding binary classifier is
updated in order to put on more loss to assign such example
as this misclassified class. So if a similar instance x,/ comes,
then the learner is more likely to predict it as another class.
Since other binary classifiers are not changed, the combined
learner’s preference of other labels will only root in the
knowledge obtained from former steps. Thus we try not to
make any prior knowledge to influence the learner, and let
the learner exploit the knowledge by itself.

This updating scheme is conservative. We don’t take any
efforts to explore what the real label the example z; is when
the predicted result is incorrect. Instead, we try to make use
of the partial information that which class it does not belong
to as entirely as possible. Thanks to the one-versus-all others
reduction, these partial feedbacks can be easily handled by
only updating corresponding binary classifiers.

In addition, an online algorithm is called conservative if it
updates its prediction rule only in rounds in which it makes a
prediction error[11]. Nevertheless in our work, the definition
of conservative is not quite the same. We call our algorithm
conservative because that when the algorithm gets a negative
feedback, it only updates the corresponding binary classifier,
while leaving others unchanged.

D. Embedding Online Passive-Aggressive Algorithms

In subsection III-C, we introduced the Conservative OVA
Reduction Scheme for multiclass prediction problem with
bandit setting model. However, we do not provide any
algorithm to handle the binary learning problem. In this sub-
section, we will focus on Online Binary Passive-Aggressive
Algorithm[8] to accomplish our method.

Algorithm 1: The Conservative OVA Reduction with
Online Passive-Aggressive Algorithm

Data: sequential data (x1,y1),..., (z7,yr)
Aggressive Parameters: C
Initialization: wsg =0 € R%, s =1,...,k

fort=1,2,...,7T do
Receive z; € RY;
Set ¢ = arg min, d;, (M(r),f(z));
Predict g, and reveal the feedback 1(¢: = y1);
if 1(’gt = yt) then
for s=1,...,k do
ws(t+1)=PA(07 Wst, (xh M(Qh S)))
end
else
wy, (t.+1)=PA(C, wy, 1, (24, —1));
end
end

Algorithm 2: Online Passive-Aggressive Algorithm(PA)

Input: C,wy, (x4, yt)
Output: w1
Suffer loss: I; = max{0,1 — y; (wyxs)};

Update:
Wiyl = Wy + QY
where
a; = 4 (Basic PA);
or
oy = min {C’, W}(PA-I);
or
R .
Q= [ (PAID:

The binary classification learner maintains a weight vector
wi € R?, which is initialized to wo = (0,...,0). When
a sample (x¢,¢;), where g € {—1,+1}, is coming in
round ¢, the basic Passive-Aggressive algorithm updates wy
according to

1
Wi = argmin -||w — wl|? ®)
weR
s.t. Z(W, (xt,ﬂt)) =0

which is called PA model. Whenever the hinge-loss [ is
0, w41 remains as wy;; And when the loss is positive,



Eq. (8) forces the updated weight vector w1 to satisfy
Uw; (24, 9¢)) = 0.

Since problem (8) is a convex optimization problem, it
can be easily solved. According to Karush-Khun-Tucker
conditions[12], the closed form of solution for (8) is

L
[l [[?

€))

Wir1 = Wi + atﬂtact, where Qp =

It seems too brutal to force the weight vector wgq
to satisfy the constraint imposed by the current example
(¢, J:) because of the common phenomenon of the noisy
label information. Thus a nonnegative slack variable £ is
brought in to achieve a soft-margin classifier. When the
objective function scales linearly with &, we call it PA-I
model:

Wit1 = argmlanW well* + C¢ (10)
weRd
s.t. l(W7 (Itvyt)) < 5
£>0

On the other hand, when the objective function scales
quadratically with &, we call it PA-II model:

Wig) = argmmf”w wil|]? + C¢? (11)
weRd
s.t. Uws (24, 90)) <€
£>0

where C' is a parameter that adjusts how much the soft-
margin ¢ affects the objective function.

Eq. (10) and Eq. (11) are also convex optimization
problems, the solutions to which also take the closed form
Wii1 — Wi + atjjtact, where

«; = min {C, th} (PA-I) (12)
|||
or
I
o = A (PA-II)
llze]|? + 56

Embedding above online binary prediction algorithm into
our Conservative OVA Reduction scheme, we can conclude
our algorithm as Algorithm 1.

IV. THEORETICAL ANALYSIS

In this section, we will carefully derive some relative
bounds for our Conservative OVA with PA algorithm and
verify the effectiveness of our algorithm.

First, as [7], we define the distance between two rows of

coding matrix M, u,v € {—1,0,+1}, as

if ugs=vs Aug #0Avs #0
if ug #vs Aus #0Avs #0
ifus=0Vovs=0

l

Au,v) = Z

s=1

= = O

_ i 1 — usvg
N 2
s=1

_l—u-v
)

Thus, the minimum distance p between all of the distinct

rows can be denoted as:
p=min{A(M(ry),M(rs)) : 71 # 72} (13)

Eq. (13) is important for our further analysis of mistake
bounds. For instance, for one-versus-all others coding, on
which will be mainly concentrated in this paper, p = 2; and
for all-pairs coding, p = ((5) —1)/2+ 1.

Second, by noting that the hinge-loss function Eq. (2) is
convex of parameter z = y;(Wy - X¢), we denote L(z) =
(1 —2); = max{0,1 — z} and easily obtain the following
inequality:

L(z) 4+ L(—2)

> =
> L) =1,

VzeR (14)
Then we bring up following theorem to bound the online
cumulative mistakes E of all kinds of coding matrix M.

Theorem 1. Assuming that for a sequence of samples
(x1,91), (x2,2), ..., (x7,yr), where z; € RY y, €
[k], at each round, we maintain a classifier fy, where
fi = (fit, fot, - -+, fir). And with a coding matrix M €
{=1,0,+1}**! and loss function L as defined above, let
p be as Eq. (13), the cumulative number of mistakes made
by the loss-based decoding scheme of an online algorithm
satisfies:

SO TL(M(yi, s) fa(i) (15)

& 1
Ezzlyt#yt < -
=1 Pii=1

Proof: In round t, if the incoming example (zy,y;) is
incorrectly classified, then by the definition of loss decoding,
there exists at least one label 7 # y; that satisfies:

dr(M(r), fi(z)) < dr(M(y), fi()) (16)

Let z5 = M(y, s)fst(x¢) and 2ot = M(r,s) fst(xt), then
Eq. (16) can be rewritten as

l
Z L(Zst S Z Zst



Let S = {s : M(r,s) # M(y;s),s = 1
inequality can be attained:

l
Z L(zst) Z Z L(Zst>
s=1 S

If M(r,s) = —M(ys,s) and M(r,s)M(ys,5) # 0, 2 =
— 2t thus L(zg )+ L(zst) > 2L(0) = 2; Otherwise at least
one of z4 and zg equals 0, which indicates that L(zst )+
L(zs) > L(0) = 1. So by the definition p and d(u,v), we
can derive that:

ZL yt7

Therefore, by taking summation of Eq.(18) according to
round ¢ and considering the basic character of loss function
L(-) that L(-) > 0, we obtain the following bound of the
number of cumulative mistakes E:
l

ZL (i, s

tlel

1} An

1 ,
>3 Z(L(ZSt )+ L(zs)) (17)

S

) fst(xe)) > A(M(r), M(y:)) > p  (18)

T
E =7 1[5 # ] s 8) fse())
t=1
Simply switching the two summations completes the proof.
|
Theorem 1 differs from the training error bound of [7]
since we focus on deriving a bound for online algorithms,
while [7] deals with its batch counterpart.
For the ome-versus-all others reduction, the following
Corollary holds:

Corollary 1. If the condition is the same to Theorem I,
for one-versus-all others reduction, the cumulative number
of mistakes made by the loss-based decoding scheme of an
online algorithm satisfies,

l T
3 S T L(M (g, 8) farla)) (19)

s=1t=1

N =

T
E= Zl[?t # 1y <
t=1

Proof: With p = 2 in Eq.(15) for one-versus-all others
reduction, Eq.(19) is simply verified. ]
In [8], Crammer etc. have proven bounds for PA algo-
rithm. And PA-I and PA-II updating method approximate
the basic PA updating when aggressive parameter C' goes to
infinity. The following lemma for binary classifiers has been
mentioned and carefully discussed in [8].

Lemma 1. Assuming that for a sequence of samples,
(1,91), (x2,92), ..., (x7, Y1), we have z; € R? and y; €
{+1, —1}. Let u be an arbitrary fixed predictor and define

If = 1(w; (w4, 9¢)) (20)

Then by setting o be as in Algorithm 2, we hold the bound
for any u € RY,

Iy = l(wy; (x4, 1))  and

T
D (2l = ayllz])* = 217) < [u]]? e2y)

t=1

Lemma 2. Assuming that for a sequence of samples,
(z1,91), (®2,92), ..., (x7,yr), we have z, € R% y, €
{+1, -1} and ||z¢|| < R for all t. Then the cumulative
squared loss of PA model on this sequence is bounded by,

T T
S < (mlull +2/Y
t=1

Lemma 3. Assuming that for a sequence of samples,
(x1,91), (x2,92), -, (¥7,yr), we have z; € RY, y, €
{+1,—1} and ||z;|| < R for all t. Then the cumulative
squared loss of PA-II model on this sequence is bounded by,

le (RQ+)<|u|2+2cz ) 23)

Corollary 2. Assuming that for a sequence of samples,
(Ilv y1)7 ($2,y2)7 LR (xTv yT); we have Tt € Rd: Yt €
{+1, -1} and ||z¢|| < R for all t. Thus the derived bound
for cumulative loss of PA model is,

T
>t < VIRl cory we e

Proof: The Corollary is simply verified by usmg
Cauchy Schwarz inequality that (3, 1,)2 < T Y/, 12
to the left-hand side of Eq.(22) in Lemma 2. [ |

The following Corollary 3 can be verified by using
Cauchy Schwarz inequality, which is similar to the proof
of Corollary 2.

(15)2)* (22)

Corollary 3. Assuming that for a sequence of samples,

(z1,11), (®2,92), ..., (x7,y1r), we have z; € R4 Yy €
{+1, -1} and ||x¢|| < R for all t. Thus the derived bound

for cumulative loss of PA-II is,

T
k< <R2+) (|u|2+2(]z (1) ) (25)
t=1

Lemma 4. Assuming that for a sequence of samples,

(I17y1)>($27y2)7~~~7($T7?JT)’ we have T € Rdr Yt S
{+1,—1} and ||z:|| < R for all t. Then the cumulative

loss of PA-I on this sequence is bounded by,

T 1 T
I, <max [ =|ull®> +2 I
T (C| a2y

T
(v 2R?[[ul|? +4CR2 Y "1y (26)

t=1

Proof: Because a; = min (C’, W) we can know

that oI} < Ol and oy)|z¢||? < It, thus by using Lemma 1
directly, we obtain

T T
> ey < Jul®+20) 1
t=1 t=1



Then with definition of oy of PA-I, Eq.(26) is derived. ®

Finally, plugging Corollary 2, 3 and Lemma 4 into The-
orem 1, we provide a bound on the cumulative number of
mistakes, F/, which the Conservative OVA with PA algorithm
makes.

Theorem 2. Assuming that for a sequence of samples,
(x1,91), (x2,2), ..., (x7,y1), where x; € R, 3, € [K]
and ||x¢|| < R, in each round, we maintain a classifier
fy, where fy = (fit, fot, - - ., fir). And with a coding matrix
M € {-1,0,+1}**! as in Eq.(7) and loss function L, let
p be as (13), the cumulative number of mistakes made by
the Conservative OVA (one-versus-all others) Reduction with
Online Passive-Aggressive Algorithm satisfies: for basic PA

model,
1 l
2Z<\F|u5|+2\/TZ () ) 27)

for PA-I model,

l T
1 1 .
< 5 D max (c“s”2 +230 0
s=1 t=1
T

| 2R?[[us||? + 4CR2 Y "1z, (28)

t=1

for PA-II model,

1

2
T

: (Ilusll2 +2C Za:m) (29)
t=1

In linearly separable cases, by the definition of us and
[%,, we find that there exist ug, s = 1,...[ which makes the
corresponding [}, equals 0. Thus the cumulatlve mistakes
made by the Conservative OVA with PA Algorithm would
only be a function of ug. Therefore, the cumulative error
rate would approach to 0 as the number of samples T goes
to infinity. Here we see a very pleasing theoretical results of
our algorithm.

V. TIME COMPLEXITY

In our method, we deal with samples in a consecutive
manner. For each sample, k binary classifiers are maintained,
so our method would update at most k£ binary classifiers.
With regard to each binary classifier, the updating procedure
takes a closed form and takes time linear to the feature
dimension d, no matter which Online Passive-Aggressive Al-
gorithm is employed. Thus our method takes at most O(kd)
time for each sample, which leads to a time complexity
linear to sample size n.

VI. EXPERIMENTS
A. Overview

In this section, we will validate the performance of
Conservative OVA with PA algorithm on several real world
datasets and report the experimental results. First, we de-
scribe the datasets we used; then we compare our method
with its counterparts, namely Banditron and Realizable Off-
set Tree Reduction algorithm. We implemented Multiclass
Perceptron, an online algorithm for learning with full label
feedback information, as well for comparison. All the exper-
iments are performed with MATLAB R2008a on a Intel(R)
Core(TM)2 Duo CPU E8400@3.00GHZ running Windows
XP with 3.25GB main memory.

For Conservative OVA with PA algorithm, all three PA
updating methods are implemented as base learner. In both
PA-I and PA-II models, the aggressive parameters C' is
tuned by grid search. Actually, we found that C' = 1 is a
quite good parameter value, leading to a good classification
performance in all datasets we used. So we arbitrarily set the
aggressive parameters C' equal 1. Although the randomness
of our method is negligible, only including random guess at
the beginning, we ran the algorithm 10 times also and report
the average cumulative error rate.

For Banditron, as in [1], we ran the algorithm for different
values of the exploration parameter <y to determine the
best value for each dataset. Since this algorithm contains
a stochastic scheme, the cumulative error rate we report is
averaged over 10 independent runs.

For Realizable Offset Tree Reduction algorithm, in-
stead of taking binary perceptron as a base classification
algorithm[2], we embed the the Online Passive-Aaggressive
algorithm to construct a more comparable counterpart. As
Conservative OVA with PA algorithm, we found out that
aggressive parameters C' as 1 is good based on grid search.
Also we ran the algorithm 10 times to get the average
cumulative error rate.

For Multiclass Perceptron, we adopt a simple adaptation
of Perceptron algorithm[13] for multiclass prediction in the
full label feedback case, called Kesler’s construction in [9],
[11]. Since there are random guesses in first few steps, we
also ran the algorithm 10 times to get the average cumulative
error rate.

B. Datasets

We use four real world datasets in our experiments, cov-
ering a wide range of properties: RCV1-v2[14], MNIST!,
20 Newsgroups> and USPS>.

RCV1-v2[14]: This dataset is an archive of newswire
stories for research purposes by Reuters, Ltd. Documents
in this data set can contain more than one label. Practicably

Uhttp://yann.lecun.com/exdb/mnist/
Zhttp://people.csail. mit.edu/jrennie/20Newsgroups/
3http://cervisia.org/machine_learning_data.php



we choose data samples with only one of the highest four
topic codes (CCAT, ECAT, GCAT and MCAT) in the “Topic
Codes” hierarchy in the data set. This process constructs data
size of 704877 from the original 804414 samples, vectors
of which are cosine-normalized, log TF-IDF vectors.

MNIST: This is a database of handwritten digits, which
had been size-normalized and centered in a 28 X 28 image.
The formal dataset maintains 60000 examples for training
and 10000 for testing. For our usage, we simply combine
these two into onedataset consisting of total 70000 examples,
vectors of which are the gray value of pixels and scaled to
[0, 1].

20 Newsgroups: This dataset collects nearly 20000 news-
group documents categorized by 20 different newsgroups.
We use the whole dataset including 19928 examples, vectors
of which are scaled to binary encoding.

USPS: This is an optical character recognition dataset
with 9298 samples. Samples are digits of 10 different
classes, vectors of which are of 256 dimensions.

C. Results and Discussion

Figure 1, 2, 3 and 4 show the experimental results on
four real world datasets mentioned above. The parameter
v of Banditron for RCV1-v2 is set as 0.03, for MNIST
as 0.15, 20 Newsgroups as 0.3, USPS as 0.3. For each
figure, the left subgraph represents the cumulative error
rate of four algorithms, Multiclass Perceptron, Banditron,
Conservative OVA with PA-I and Realizable Offset Tree with
PA-I, on consecutive samples of each data set; the middle
one describes the cumulative error rate of Conservative OVA
Reduction scheme with three kinds of PA algorithms as base
classifiers; the right subgraph depicts the cumulative error
rate of Realizable Offset Tree reduction scheme whose base
learners are achieved by three kinds of PA algorithms.

Table I shows the final cumulative error rate of each
algorithm on each dataset.

From the experimental results on four datasets, we can
see that

1) For online multiclass prediction with bandit setting
problem, Our Conservative OVA Reduction scheme
with PA algorithm as base learning algorithm gener-
ally outperforms other algorithms when evaluating the
cumulative error rate. Even prediction results of our
methods quite comparable to those of Multiclass Per-
ceptron, which is a learning algorithm for traditional
problem with full label information as feedback.

2) Our algorithm performs far better in contrast to Ban-
ditron algorithm, with an improvement on cumulative
error rate at least 7.96% on RCV1-v2 dataset, while
at most 47.71% on 20 Newsgroup dataset.

3) Though on RCV1-v2 dataset, the result of Realizable
Offset Tree Reduction with PA as base learner is rather
comparable to our method, its low performances on
other dataset show the unstable characteristic of it.

Thus it is not an executable algorithm for real world
application.

4) From the results of either our Conservative OVA
Reduction or Realizable Offset Tree Reduction scheme,
we find out that the difference between the three
models of PA algorithm is slight and usually PA-
I would achieve an acceptable results. Thus in real
world application, we can only embed the PA-I as a
base learning algorithm.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel algorithm for online
multiclass prediction with bandit setting problem. The prac-
ticability of our algorithm is verified theoretically by show-
ing a pleasing bound. Moreover, experimental evaluation on
four real world datasets suggests that our Conservative OVA
with PA algorithm performs better than other algorithms on
the same problem.

For future work, we would like to think about online
multiclass multilabel problem with bandit setting problem,
where each sample has more than one label. It seems
more practical that samples have multilabel in real world
usages, especially in recommender systems. As well a cost
sensitive online multiclass problem in such setting would be
of great interest to us. Also this kind of paradigm seems
related to Semi-supervised Learning(SSL)[15], [16], [17]
if we consider the instance with positive feedback is the
labeled instance and the one with negative feedback is the
unlabeled instance for classes that it does not belong to.
Another approach is to consider the interclass hypothesis
sharing as in [18] to build a more accurate online classifier.
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AVERAGE ERROR RATE(%) COMPARISON ON FOUR REAL WORLD DATASET. (Multiclass Perceptron DEALS WITH FULL LABEL FEEDBACK PROBLEM,
WHILE OTHER METHODS DEAL WITH PARTIAL FEEDBACK PROBLEM.)
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Table I

Algorithm RCV1-v2 | Mnist | 20 Newsgroups | USPS

Banditron 10.80 36.79 75.07 50.28
Conservative OVA with PA 291 14.01 33.75 18.85
Conservative OVA with PAI 2.84 13.92 37.70 17.70
Conservative OVA with PAIL 2.87 14.23 33.36 18.60
Realizable Offset Tree with PA 6.13 65.04 62.85 58.79
Realizable Offset Tree with PAI 3.79 64.97 50.04 59.50
Realizable Offset Tree with PAII 4.58 64.33 51.58 59.51
Multiclass Perceptron 3.97 14.19 29.50 14.47
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