
A Local Scalable Distributed Expectation Maximization
Algorithm for Large Peer-to-Peer Networks

Kanishka Bhaduri 	 Ashok N. Srivastava
Mission Critical Technologies Inc	 Intelligent Systems Division

Intelligent Systems Division	 NASA Ames Research Center
NASA Ames Research Center	 Moffett Field, CA 94035

Moffett Field, CA 94035	 Ashok.N.Srivastava@nasa.gov
Kanishka.Bhaduri-1@nasa.gov

ABSTRACT
This paper offers a local distributed algorithm for expecta-
tion maximization in large peer-to-peer environments. The
algorithm can be used for a variety of well-known data min-
ing tasks in a distributed environment such as clustering,
anomaly detection, target tracking to name a few. This
technology is crucial for many emerging peer-to-peer ap-
plications for bioinformatics, astronomy, social networking,
sensor networks and web mining. Centralizing all or some
of the data for building global models is impractical in such
peer-to-peer environments because of the large number of
data sources, the asynchronous nature of the peer-to-peer
networks, and dynamic nature of the data/network. The
distributed algorithm we have developed in this paper is
provably-correct i.e. it converges to the same result com-
pared to a similar centralized algorithm and can automat-
ically adapt to changes to the data and the network. We
show that the communication overhead of the algorithm is
very low due to its local nature. This monitoring algorithm
is then used as a feedback loop to sample data from the
network and rebuild the model when it is outdated. We
present thorough experimental results to verify our theoret-
ical claims.

Categories and Subject Descriptors
H.2.4 [Database Management Systems]: Distributed
databases; H.2.8 [Database Applications]: Data mining;
G.3 [Probability And Statistics]: Multivariate statistics;
C.2.4 [Distributed Systems]

General Terms
Algorithms, Performance, Experiments

Keywords
peer-to-peer, distributed data mining, local algorithms, EM,
GMM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD ’09 Paris, France
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Expectation Maximization (EM) is a powerful statistical

and data mining tool which can be widely used for a vari-
ety of tasks such as clustering, estimating parameters from
the data even in the presence of hidden variables, anomaly
detection, target tracking and more. In 1977, Dempster et
al. [10] presented the seminal work on EM and its appli-
cation for estimating the parameters of a Gaussian Mixture
Model (GMM). The authors showed that given a sample of
data, there is a two step process which can estimate certain
unknown parameters of the data in the presence of hidden
variables. This is done by maximizing the log likelihood
score of the data and assuming a generative model. Thus
the classical EM algorithm is well-understood and produces
satisfactory estimates of the parameters when the data is
centralized.

However, there exist emerging technologies in which the
data is not located at a central location but rather dis-
tributed across a large network of nodes or machines con-
nected by an underlying communication infrastructure. The
next generation Peer-to-Peer (P2P) networks such as Gnutella,
BitTorrents, e-Mule, Kazaa, and Freenet offer some exam-
ples. As argued on several occasions, P2P networks can no
longer be viewed as an isolated medium of data storage and
dissemination; recent research on P2P web community for-
mation [24] [9], bioinformatics l and diagnostics [13] [32] has
shown that interesting information can be extracted from
the data in such networks. However data analysis in such
environments calls for a new breed of algorithms which are
asynchronous, highly communication efficient and scalable.

To solve this problem, in this paper we develop a local,
P2P distributed (PeDEM) and asynchronous algorithm for
monitoring and subsequent reactive updating of a GMM
model using an EM style update technique. Our algorithm
is provably correct i.e. given all the data, our algorithm will
converge to the same result produced by a similar centralized
algorithm. The algorithmic framework is local, in the sense
that the computation and communication load at each node
is independent of the size or the number of nodes of the net-
work. This guarantees high scalability of the algorithm pos-
sibly to millions of nodes. The proposed methodology takes
a two-step approach for building and maintaining GMM pa-
rameters in P2P networks. The first step is the monitoring
phase in which, given an arbitrary estimate of the GMM
parameters, our local asynchronous algorithm checks if they
are valid with respect to the current data to within user-

lhttp://smweb.bcgsc.bc.ca/chinook/index.html

specified thresholds using different metrics, as we explain
later. If not, this algorithm raises a flag, thereby indicat-
ing that the parameters are out-of date. At this point, we
employ a convergecast-broadcast technique to rebuild the
model parameters. This step is known as the computation
phase. The correctness of the monitoring algorithm guar-
antees that a peer need not do anything if the flag is not
raised — thus reducing communication and computation
costs. When the data undergoes a change in the underlying
distribution and the GMM parameters no longer represent
it, the feedback loop indicates this and the parameters are
recomputed. The specific contributions of this paper are as
follows:

9 To the best of the authors’ knowledge this is one of
the first attempts on developing a completely asyn-
chronous and local algorithm for monitoring the GMM
parameters in P2P networks using an EM style of up-
date rule. Previous research has only performed com-
putation of the parameters in a distributed setup.

9 Besides this direct contribution, this paper shows how
second order statistics can be directly monitored in a
p2p network. Previous work [36] only showed how we
can monitor first order statistics such as the mean of
the data.

The rest of the paper is organized as follows. Section 2
presents the motivation of this work. Related background
material is presented in Section 3. Section 4 provides some
necessary background material on the EM algorithm and
then introduces the notations and problem definition. Sec-
tion 5 discusses the main theorem and its application for
developing the algorithm. The monitoring of the param-
eters are presented in Section 6. Section 7 discusses the
computation problem. Theoretical analysis of the algorithm
is presented in Section 8 followed by experimental results in
Section 9. Finally, Section 10 concludes this paper.

2. MOTIVATION
Monitoring models in large distributed environments can

be done in three different ways: (1) periodic, (2) incremen-
tal, or (3) reactive. In the periodic mode, a model is build
at fixed intervals of time. While this approach is simple,
one needs to come up with optimal value of the interval.
Too small a value of the interval may unnecessarily build
models when not needed, thereby wasting resources (e.g.
when data is stationary) while a longer interval may not
update the model often in case of dynamic data. The in-
cremental approach adjusts to the model whenever the data
changes, thereby keeping the model up-to-date. However,
developing incremental algorithms may be difficult. The
third approach, what we take in this paper and also shown
in [4][36][8], is to update a model only when the data no
longer fits it. If the data is piecewise stationary, it has been
shown that this approach may be both simple and efficient.

The suitability of the model and the data can be checked
using several metrics: L2-norm, χ2 , log-likelihood etc. In
this paper we have developed a local distributed algorithm
for monitoring the GMM parameters using (1) log-likelihood
of the data, and (2) norm difference between the parame-
ters. Local algorithms rely on a set of data dependent rules,
thereby deciding when a peer can stop sending messages
and output the result even it has communicated with only

a handful of immediate neighbors. A peer can do nothing
even if its data has changed as long as its local rules are
satisfied.

Practical scenarios in which distributed EM can
be used

3. RELATED WORK
Work related to this research can be subdivided into two

major areas — distributed EM algorithms and computation
in large distributed systems a.k.a P2P systems. We pro-
vide a brief exposure to each of the topics in the next two
subsections.

3.1 Distributed EM Algorithms
In standard EM algorithm, the task is to estimate some

unknown parameters from the given data in the presence
of some unobserved or hidden variables. The seminal work
by Dempster et al. [10] proposed an iterative technique al-
ternating between the E-step and M-step that solves this
estimation problem. The paper also proved the convergence
of the EM algorithm. In the E-step, the expected value of
assumed hidden variables are generated using an estimate of
the unknown parameters and the data. In the M-step, the
log-likelihood of the unknown parameters given the data and
hidden variables (as found in the previous step) are maxi-
mized. This two-step process is repeated until the parameter
estimates converge. Furthermore, for gaussian mixture mod-
els (GMM), the updates for the M-step can be written in a
closed form as a computation of the weighted combination
of all data points. This decomposable nature of the problem
makes it tractable in a distributed setup.

In the distributed setup, we need to find decentralized im-
plementations of the E-step and M-step. Distributed imple-
mentation of the E-step is straightforward and communication-
free: given the estimates of the parameters at each node,
simply evaluate the estimates of the hidden variables based
on only its local data. So the focus of most distributed EM
research is to efficiently compute the parameters in the M-
step in a distributed fashion. The naive approach of simply
aggregating all the data at a central location does not scale
well for large asynchronous networks. Next, we discuss sev-
eral implementations of the distributed M-step.

In 2003, Nowak [31] proposed a distributed EM (DEM)
algorithm with the execution of the M-step as follows. A
ring topology is overlaid over the original network encom-
passing all the nodes in the network. Due to this ring, the
updates in the M-step proceed in a cyclical fashion whereby
at iteration t, node m gets the estimates of the parameters
from its neighbor in the ring, updates those estimates with
its local data, and passes them to the next neighbor at clock
tick t + 1. The paper proves that DEM monotonically con-
verges to a local maxima and because of the incremental
update, it converges more rapidly than the standard EM al-
gorithm. However, this technique is not likely to scale for
large asynchronous networks due to the strict requirement of
the overlay ring topology covering all the nodes in the net-
work. Moreover, the algorithm is highly synchronized, with
each round of computation taking time which is proportional
to the size of the network. This becomes problematic espe-
cially if the data changes or a node fails or joins whence the
entire computation needs to be started from scratch.

To overcome this problem, several techniques have been
developed. Recalling that for GMM, the updates for the M-

step can be written as weighted averages over all the nodes’
data, any distributed averaging technique can be used for
performing this computing over a large number of nodes. In
the literature there are two basic types of distributed averag-
ing techniques: (1) probabilistic i.e. gossip style — [17] [6] [20]
in which a node repeatedly selects another node in the net-
work and averages its data with the selected node and (2)
deterministic i.e. graph-laplacian [26] or linear dynamical
systems based [34] — in which a node repeatedly communi-
cates with its immediate neighbors only and updates its state
with the information it gets from all its neighbors. While
the first class of algorithms probabilistically guarantee the
correct result, the deterministic algorithms converge to the
correct result asymptotically. Newscast EM [21] is the algo-
rithm proposed by Kowalczyk and Vlassis which uses gossip-
style distributed computation to compute the parameters of
the M-step. At each iteration, any peer Pi selects another
peer Pj at random and both compute the average of their
data. It can be shown that, if the peer selection is done
uniformly at random, any such gossip-based algorithm con-
verges to the correct result exponentially fast. For such a
technique to work in practice, the network must be fully con-
nected i.e. any node must be able to select any other node
in the network. Using deterministic averaging technique, Gu
[12] proposed an EM algorithm for GMM. In this algorithm
peers communicate with immediate neighbors only. At any
timestamp t, whenever a peer Pi gets the current estimates
from all of its immediate neighbors, it updates its own es-
timate based on its own data and all that it has received.
Then it moves to the next timestep t + 1 and broadcasts
its own estimate to its immediate neighbors. This process
continues forever. However, the major criticism for both of
these techniques is that they are highly synchronous and
hence not scalable for large asynchronous P2P networks.

In this paper we take a different approach. Assuming a
previous estimation of the parameters, we monitor if the
parameters are still valid with respect to the current global
data. Our algorithmic framework guarantees correct results
(with respect to centralization) at a low communication cost.

Several applications for distributed EM algorithms have
also been proposed in the literature. Multi-camera tracking
[27], acoustic source localization in sensor networks [19], dis-
tributed multimedia indexing [30] are some of the examples.

3.2 Data Mining in Large Distributed (P2P)
Systems

Based on the type of computation performed in P2P sys-
tems, this section can be subdivided into approximate algo-
rithms and exact algorithms.

3.2.1 Approximate Algorithms
Approximate algorithms, as the name suggests, computes

the approximate data mining results. The approximation
can be probabilistic or deterministic.

Probabilistic algorithms use some variations of graph ran-
dom walk to sample data from their own partition and that
of several neighbors’ and then build a model assuming that
this data is representative of that of the entire set of peers.
Examples for these algorithms include the P2P k-Means al-
gorithm by Banyopadhyay et al. [2], the newscast model
by Kowalczyk et al. [20], the ordinal statistics based dis-
tributed inner product identification for P2P networks by
Das et al. [9], the gossip-based protocols by Kempe et al.

[17] and Boyd et al. [6], and more.
Researchers have proposed deterministic approximation

technique using the method of variational approximation
[16][14]. Mukherjee and Kargupta [28] have proposed dis-
tributed algorithms for inferencing in wireless sensor net-
works. Asymptotically converging algorithms for comput-
ing simple primitives such as mean, sum etc. have also been
proposed by Mehyar et al. [26], and by Jelasity et al. [15].

3.2.2 Exact Algorithms
In exact distributed algorithms, the result produced are

exactly the same if all the peers were given all the data.
They can further be subdivided into convergecast algorithms,
flooding algorithms and local algorithms.

Flooding algorithms, as the name suggests, flood whatever
data is available at each node. This is very expensive espe-
cially for large systems and more so when the data changes.

In convergecast algorithms, the computation takes place
over a spanning tree and the data is sent from the leaves up
the root. Algorithms such as [33] provide generic solutions
— suitable for the computation of multiple functions. These
algorithms are, however, extremely synchronized.

Local algorithms are a class of highly efficient algorithms
developed for P2P networks. They are data dependent dis-
tributed algorithms. However, in a distributed setup data
dependency means that at certain conditions peer can cease
to communicate with one another and the result is exact.
These conditions can occur after a peer has collected the
statistics of just few other peers. In such cases, the over-
head of every peer becomes independent of the size of the
network and hence, local algorithms exceptionally suitable
for P2P networks as well as for wireless sensor networks.

In the context of graph theory, local algorithms were used
in the early nineties by Linial [23] and later Afek et al. [1].
Naor and Stockmeyer [29] asked what properties of a graph
can be computed in constant time independent of the graph
size. Local algorithms for P2P data mining include the ma-
jority voting and protocol developed by Wolff and Schuster
[37]. Based on its variants, researchers have further proposed
more complicated algorithms: facility location [22], outlier
detection [7], meta-classification [25], eigen vector monitor-
ing [8], multivariate regression [4], decision trees [5] and the
generic local algorithms [36].

Communication-efficient broadcast-based algorithms have
been also developed for large clusters such as the one devel-
oped by Sharfman et al. [35]. Since these algorithms rely on
broadcasts as their mode of communication, the cost quickly
increases with increasing system size.

4. PRELIMINARIES
In this section we present some background material nec-

essary to understand the PeDEM algorithm that we have
developed.

4.1 Expectation Maximization
EM [10] is an iterative optimization technique to estimate

some unknown parameters O given some data U. It is also
assumed that there are some hidden variables J. EM algo-
rithm iteratively alternates between two steps to maximize
the posterior probability distribution of the parameters O
given U:

9 E-Step: estimate the Expected value of J given O
and U.

• M-Step: re-estimate O to Maximize the likelihood
of U, given the estimates of J found in the previous
E-step.

In order to apply the above two rules for estimation, we need
closed form expressions for the E- and M-steps. Fortunately,
closed form expressions exist for a widely popular estimation
problem viz. Gaussian mixture modeling (GMM). We dis-
cuss this in details next as we will use it for the rest of the
paper for developing our distributed algorithm.

A multidimensional Gaussian mixture for a random vector
→−x ∈ Rd is defined as the weighted combination:

p(−→x)= E πsp(−→x |s)
s=1

of k gaussian densities where the s-th density is given by

p(−→ |s) = (2π)d/2 I Cs |1/2 exp [− (−→x − µ3)TCs-1 (−→x − µ3)2J

each parameterized by its mean vector −→µs = [µs.1µs.2 ... µs.d] T

and covariance matrix Cs=(x − µs)(x − µs)T . πs = p(s)
defines a discrete probability distribution over the k compo-
nents. Given n multi-dimensional samples X = { −→x 1 , ... , −→xn},
the task is to estimate the set of parameters

Θ = { −→µ1 , ... ,
 −→µk , C 1 , ... , C k , π1 , ... , πk}

by maximizing the log likelihood of the parameters given the
data:

n	 n	 k

L(Θ |X) =log
11

p(xz |Θ) = log ^ πsN (−→xa ; −→µs , Cs)
a=1	 a=1	 s=1

Using EM for GMM, the E-step and the M-step can be writ-
ten as:

E-step (estimate the contribution of each point):

πsN (−→xa ; −→µs , C s)	
1qs,a = E

M-step (recompute the parameters):
E

na=1 qs,a	 (2)πs = n

__
En

 qs,a xa
µs 	E
	

(3)En
Q3 , a

Cs = Ea=1 qs,a(xa
− µ s)(xa − -µ-+ s)T

	 (4)[^ n
Le a=1 qs,a

where N (−→xa ; −→µs , C s) denotes the pdf of a normal distribu-
tion with input −→xa , mean −→µs and covariance C s . Note that
the above computation needs to be carried out for all the k
Gaussian components.

In the next few sections we shift our focus to distributed
computation of these parameters and discuss some assump-
tions and necessary background material.

4.2 Notations and Assumptions
Let V = {P1 , ... , Pp } be a set of peers connected to

one another via an underlying communication infrastruc-
ture such that the set of Pi ’s neighbors, Γ i , is known to Pi .
Each peer communicates with its immediate neighbors (one
hop neighbors) only. At time t, let G denote a collection of

data tuples which have been generated from the k gaussian
densities having unknown parameters and unknown mixing
probabilities. The tuples are horizontally distributed over a
large (undirected) network of machines (peers). The local
data of peer Pi at time t is Si = [x2, xx2, ... , −−−→xi,m%

], where
−→ T dxi,j = [xi,j.1x i,j.2 ... xi,j.d] ∈ R . Here mi denotes the
number of data tuples at Pi and d denotes the dimensional-
ity of the data. The global input at any time is the set of
all inputs of all the peers and is denoted by G = U Si .

i=1,...,n
Our goal is to develop a framework under which each peer

(1) checks if the current parameters of the GMM are up-to-
date with respect to the global (all peers’) data, and (2) re-
computes the models whenever deemed unfit. The network
that we are dealing with can change anytime i.e. peers can
join or leave. Moreover, the data is dynamic and is only as-
sumed to be piecewise stationary. The proposed algorithm
is designed to seamlessly adapt to network and data changes
in a communication-efficient manner.

We assume that communication among neighboring peers
is reliable and ordered. These assumptions can be imposed
using heartbeat mechanisms or retransmissions proposed else-
where [11] [18] [36] [5]. Furthermore, it is assumed that data
sent from Pi to Pj is never sent back to Pi . One way of
ensuring this is to assume that communication takes place
over a communication tree – an assumption we make here
(see [36] and [5] for a discussion of how this assumption can
be accommodated or, if desired, removed).

4.3 Problem Formulation in P2P Scenario
When all the data is available at a central location, the

update equations for the iterative EM algorithm are given
by Equations 1–4. However, in the distributed setup, all the
data is not available at a central location. Therefore, for any
peer Pi , the log likelihood and the update equations, can be
written as:

kX	
!p m%

L(Θ |G) =	 log πsN (xza; −→µs , C s)	 (5)
i=1 a=1	 s=1

E-step:

l
−−→
	

/
πsN xi,a; µs , cCs

qi,s,a =E
r=1 πrN (xi,a; µr , Cr

/

M-step:

=E
p	 m%

i=1
E

a=1 qi,s,a

s
(7)

È̂
p

/^ i=1 mi
E

P 1
E

a- 1 qi,s,ax%aµs 	= (8)[^ p	 [^ m%

Le i=1 Le a=1 qi,s,a

Cs 	 =	
E

p1 Ea= 1 qi,s,a(x i,a − -/-t+ s)(x% a − µ s)T
(9)

E^`p	^`m
i=1 /te a=

%

1 qi,s,a

Note that computation in the E-step is entirely local to a
peer. However, for the log-likelihood and the M-step, a peer
needs information from all the nodes in the network in order
to recompute the parameters. In this paper, we consider a
monitoring version of this problem: given a time-varying
data set and pre-computed initial values of these parameters
(build from a centralized or sampled data) to all peers, does
these parameters describe the union of all the data held by
all the peers?

In other words, we focus on a monitoring and subsequent
reactive updating of the GMM parameters. Given all the
data at a central location, an admissible solution to the
GMM problem occurs when the estimated parameters (given
by Equations 2–4) become equal to the true parameters.
However, for the distributed setup, since we are consider-
ing a dynamic scenario, we relax this criteria and consider
the solution to be admissible when it is within a user defined
threshold ǫ of its true value. For the monitoring problem, let
mss, µs and cCs denote the parameters that were calculated
offline based on some past data, and disseminated to all the
peers. The monitoring problem is to check if these param-

c−→eters F. (1 × 1), µs (d× 1) and C. (d × d) are valid with
respect to the current data of all the peers. We use two dif-
ferent metrics to perform this (1) monitor the log-likelihood
of the data, and (2) monitor the parameters themselves. Be-
low is a formal problem definition.

Problem Definition: Given a time varying dataset Si ,
user defined thresholds ǫ 1, ǫ2 , and ǫ3 , and pre-computed
estimates Θb = {cπs , c−→µs, cCs,... }, for each gaussian, the mon-
itoring problem is to check if:

• L (bΘ |G)<ǫ

• |πs − F3 | < ǫ 1

• I
^^

l µs − µs l I 2 < ǫ2

• I
IICS II

F
 − Ui < ǫ3

for every gaussian s ∈ {1, ..., k} , where II· II
F denotes the

Frobenius norm of a matrix. In many cases, thresholding
the log-likelihood of the data may be enough. However,
there are situations where monitoring the parameters may
prove beneficial, as we discuss later.

4.4 Monitoring Functions in P2P Environment
As a building block of PeDEM, we use an efficient, prov-

ably correct, and local algorithm for monitoring functions of
average vectors in Rd , where the vectors are distributed in a
P2P network. Here we present a brief summary; interested
readers are referred to [3] [36] for details.

Peers communicate with one another by sending sets of
points in Rd or statistics as defined later in this section. Let
Xi ,j denote the last sets of points sent by peer Pi to Pj . As-
suming reliable messaging, once a message is delivered both
Pi and Pj know Xi ,j and Xj , i. Below we present definitions
of several sets which are crucial to the monitoring algorithm.

DEFINITION 4.1. The knowledge of Pi is the union of
Si with Xj , i for all Pj ∈ Γ i and is denoted by Ki = Si ∪

U Xj,i.

Pj Eri

Ki can also be initialized using combinations of vectors de-
fined on Si (instead of only Si) as we will present in the next
section.

DEFINITION 4.2. The agreement of Pi and any of its
neighbors Pj is Ai,j = Xi ,j ∪ Xj,i.

DEFINITION 4.3. The subtraction of the agreement from
the knowledge is the withheld knowledge of Pi with respect
to a neighbor Pj i.e. Wi, j = Ki \ Ai, j .

The next section presents a theorem which shows how
we can convert this monitoring problem into a geometric
problem for an efficient solution. For this we need to split
the domain into convex regions since the stopping condition
we describe later (Theorem 5.1) relies on this. The following
definition states the properties of these convex regions.

DEFINITION 4.4. A collection of non-overlapping convex
regions Rĵ = {R1 , R2 , ... , Rℓ , T} is a cover of region Rd ,
invariant with respect to a function F : Rd → O (where O is
an arbitrary range), if (1) every Ri ∈ Rj^ (except T) is con-
vex, (2) F is invariant in R i i.e., ∀ (x, y) ∈ Ri , F(x) = F(y),
and (3) T denotes the area of the domain, not encompassed
by Sℓ

i=1 Ri , known as the tie region.

Finally, for any →−
x ∈ Rd we denote Rĵ (−→x) the first region

of Rĵ which includes →−x. The precise specification of the
convex regions will depend on the definition of F. Monitor-
ing of the GMM parameters will require us to invoke three
separate monitoring problems with three separate convex
regions as we show in Section 6.

The goal is to monitor and compute mixture models de-
fined on G. Since G is a hypothetical quantity, not available
to any peer, each peer will estimate G based on only the sets
of vectors defined above. However, these sets can be large,
thereby making communication expensive. Fortunately, un-
der the assumption that communication takes place over a
tree topology imposed on the network, it can be shown that
the same sets can be represented uniquely by only two suf-
ficient statistics which we define next.

Set Statistics: For each set, define two statistics: (1) the
average which is the average of all the points in the respec-
tive sets (e.g. Si, Ki , Ai,j, Wi,j, Xi ,j, Xj , i and G), and (2)
the weights of the sets denoted by ω(Si), ω(Xi,j), ω(Xj,i),
ω(Ki), ω(Ai,j), ω(Wi,j), and ω(G). Each peer communicates
these two statistics for each set. We can write the following
expressions for the weights and the average vectors of each
set:

Knowledge

ω(Ki) = ω(Si) + X ω(Xj,i)
Pj Eri

X ω(X)
Ki = ω (Ki)

Si +	 ((
7,% Xj i

Pj Eri
ω `Zi)

Agreement

• ω(Ai,j) = ω(Xi,j) +ω(Xj,i)

• Ai,j =
ω (Xi,j)

ω (Ai ,j) Xi,j +
ω (Xj,i)

ω (Ai,j) Xj,i

Withheld

• ω(Wi,j) = ω(Ki) − ω(Ai,j).

• Wi,j = ω (Ki)

ω (Wi,j)
Ki − ω (Ai,j)

ω (Wi,j)
Ai,j

Note that these computations are local to a peer. The gen-
eral methodology for computing F(G) requires us to cover
the domain of F using non-overlapping convex regions. For
the GMM, we show the convex regions that we need for
monitoring the three parameters.

Our next section presents a general criteria which a peer
can use to decide the correctness of the solution based on
only its local vectors.

5. GLOBALLY CORRECT TERMINATION
CRITERIA

The goal of the monitoring algorithm is to raise a flag
whenever the estimates of the parameters are no longer valid
with respect to the union of all data i.e. G. The EM moni-
toring algorithm guarantees eventual correctness, which means
that once computation terminates, each peer computes the
correct result as compared to a centralized setting. The fol-
lowing theorem allows a peer to stop sending messages and
achieve a correct termination state i.e. if F(G) > ǫ or < ǫ
solely based on Ki , Ai, j, and Wi,j.

THEOREM 5.1. [Termination Criteria] [36] Let P1 , ... , Pn
be a set of peers connected to each other over a spanning tree
G (V, E). Let G, Ki , Ai,j, and Wi,j be as defined in the pre-
vious section. Let R be any region in R ĵ . If at time t no
messages traverse the network, and for each Pi , Ki ∈ R
and for every Pj ∈ Γi , Ai,j ∈ R and either Wi,j ∈ R or
Wi,j = ∅, then F(G) ∈ R.

PROOF. We omit the proof here. Interested readers are
referred to [36]. q

The above theorem allows a peer to stop the communica-
tion and output F(Ki) which will eventually become equal
to F(G). A peer can avoid communication even if its local
data changes or the network changes as long as the result of
the theorem is satisfied. Indeed, if the result of the theorem
holds for every peer, and all messages have been delivered,
then Theorem 5.1 guarantees this is the correct solution.
Otherwise, if there exists one peer Pz for which the condi-
tion does not hold, then either of the two things will happen:
(1) a message will eventually be received by P z or, (2) Pz

will send a message. In either of these two cases, the knowl-
edge Kz will change thereby guaranteeing globally correct
convergence.

Using this Theorem, we now proceed to monitor each of
the parameters of the GMM using the distributed EM.

6. MONITORING GMM PARAMETERS
In this section we present the monitoring of the log like-

lihood of the data and the three parameters given in Equa-
tions 7–9.

6.1 Monitoring log likelihood

6.2 Monitoring πs

Monitoring πs implies thresholding the absolute difference
between the current πs (implied by the current data) and the
calculated one F. is with respect to a user defined constant
ǫ 1 . Denoting this difference as Err(πs), we can write

Err(πs) = |πs − F^ | < ǫ 1

[[gy^ p [^ m
Lei=1 Lea=%1 qi,s,a

� − πs < ǫ 1[[gy^ p
Le i=1 mi

[[gy^ p [m%^Lei=1 Lea=1 [qi, s,a − πs]
� < ǫ 1[[gy^p

Le i=1 mi

This can be monitored using the framework presented in^ E p	 ^
Section 4.4. Note that the quantity 	 =1

E

 P=1

[q%,s,a—

f
s]

%=1
m%

is the average of the estimates in the E-step (qi,s,a − F.)
across all the peers. Each peer subtracts F. from each of its

Figure 1: (A) the area inside an ǫ2 circle (B) A ran-
dom vector (C) A tangent defining a half-space (D)
The areas between the circle and the union of half-
spaces are the tie areas.

local qi,s,a. This forms the input Si for this monitoring prob-
lem. However, due to the presence of the modulus operator,
two concurrent monitoring problems need to be run instead
of just one. Let these instances be M1

πs and M2
πs where

M7
s and M2s are used for checking if Err(πs) < ǫ1 and

−Err(πs) < ǫ 1 respectively. Since this monitoring problem
is in R, the convex regions are subsets of the real line. There-
fore, for monitoring πs , the following initializations need to
be carried out:

• M1
πs . Si = {qi,s,1 −cπs , ... , qi,s,m%

 − F.}

•	
πsM2 .Si = {cπs − qi, s,1 , ... , cπs − qi, s, m%

}

• Rj^= {z ∈ R: −1 ≤ z< ǫ1} U {z ∈ R: ǫ1 ≤ z ≤ 1}

6.3 Monitoring µy
Following a similar argument, monitoring −→µs is equivalent

to thresholding the following quantity:
2

Err(µy) = µy − µ s < ǫ2

	

[^p [^ m% 	 2

Le i=1 Le a=1 qi,s,ax i,a
− µ s < ǫ2

1

E
a- 1 qi,s,a

� � J

	

p m	
[

−−→	 2E
i=1

E
a=

%

1 qi,s,a xi,a − µ s � �
⇒ � �� � E

p [^ m% 	 < ǫ2

i=1 Le a=1 qi,s,a

r	 ,,,I
E

{=1 a= 1
q%, s,a [x a— µ sJ 1The quantity L	 p	 ,,,%	 J is the average of

%=1 E a=1
q%, s, a

qi,s,a

[

x a − µ sJ across all the peers. However the average
in this case is not taken with respect to the number of tu-
ples in the dataset Si , but rather over all the q i,s,a ’s. As a
result, we set |Si | = Ea_ 1 qi,s,a. Moreover, for this prob-
lem, the geometric interpretation to the monitoring problem
is to check if the L2-norm of the vector difference between
µy − µ s lies inside a circle of radius ǫ2 . L2 norm threshold-
ing of average data vector was first proposed in our earlier
paper [36]. In R2 , the problem can be depicted using Fig-
ure 1. The area in which Err(−→µs) < ǫ2 , is inside the circle
(sphere) and hence is already convex in R2 (Rd). However,
the other region outside the circle (sphere) is not convex.
Hence random tangent lines (planes) are drawn on the sur-
face of the circle (sphere) by choosing points u1, ... , u,. on

the circle (sphere) (the same points across all peers). Each
of these half-space is convex. To check if an arbitrary point
→−z is inside the sphere, a peers simply checks if k−→z k < ǫ2 .
To check if it is outside, a peer selects the first point ui such
that →−z · ui > ǫ2 . The following denotes the initialization
necessary for this instance of the problem M µs :

Fis

	

	 −−−→ --+• M Si =nqi,s,1 xi 1 − P s , ..., qi,s,m% x i,m% − P s

_ m%

• Mµs .Si =
P

a=1 q%,s,m%., a-^s] Mµs .ω(S
P a=1 q%,s,a

m%	 a=1 qi,s,a

• R., = { −→z ∈ Rd : || z || < ǫ2 }
S

i= 1 {−→z ∈ Rd : →−z · 'L6i > ǫ2 }
|	 {z	 }	 |	 {z	 }

R%n	 R1 , ... , Rr

6.4 Monitoring Cs

The last parameter that we need to monitor is the covari-
ance matrix Cs. A natural extension of the L2-norm in this
case is the Frobenius norm. Let y a = xx a − −→Ps . We have,

Cs = P i=1 Le a=1 qi,s,a / −−→ — →− s)(−−→→−
s)T

E
^`p ^` m% 	 \x i,a	 x i,a

i=1 /te a=1 qi,s,a
2yi,a.1	 yi,a.1yi,a.2	 . . .

P
p	 m% 	

 	

i=1 /te a=1 qi,s,a	 .

...	 ...	 y2i,a.d= p [^ mP
i=1 Le a=

%
1 qi,s,a

Therefore,

kCs =
P

p	
P m% 1	 2	 \ 2

% =1	 %,a. 1
P p

%=1P a=19%, s,a

2

	 P p	 E m%)2

Pp gy m%
% =1	 a=19%,s,a

+

P p P m%

··· +

	 2	 \ 2

P
p	 m%
%=1 E a=19%,s,a

≤
CAp

P
	

^ a= 	
2, 1

\ 2
%p =1	 a=1 9%, s, a l/% a.)

E m%
L^ %=1 E mi 1 9%, s, a

P p	 E m, %	 2	 p	 m%	 2
% =1	 a=19%,s,al/%, a. 1 %=1P a=19%,s,al/%, a.2

+ 2 p	 m%	 p	 m%
%=1 P a=19% ,s ,a)	 %=1P a=19%,s,a

P
p	

P m% 1	 2
%=1	 %,a.d

+

)2

· · · + P p
%=1	 a=19%, s,a

Pp E m% 	 2
	

2	 2
%=1	 a=1 9%, s,a {3/%,a . l + • • • +3/%,a.d

o

= 	 P p	
^ m%

%=1 a=19%, s,a

By taking the square root and re-substituting y a, we get,

function, but Cns is. Thus we monitor the latter one instead.
Note that, Cns < ǫ3 ⇒ kCs kF < ǫ3 . However, the other side
of the inequality is not true, i.e. C ns > ǫ3 #^ kCs kF >
ǫ3 . Thus using Cns for thresholding is more conservative: in
the worst case we will have more number of false alerts for
building new models, but will not miss any alert.

Let Err(Cns) = Cns − cCs . Let g : R2d → R be defined
as follows: ∀ (s 1, ... , s2d) ∈ R, g (s 1, ... , s2d) = Pd

i= 1 si −

E=d+l s% −i	 U. − ǫ3 . We have the following key result:_

Err(C ns) < ǫ3 ⇔

g P
i= 1 Le a=1 qi,s,a (xi,a.1, ... xi,a.d, xi,a.1, ... , xi,a.d)

/
p ^` m% 	 < 0.

Pi=1 /te a=1 qi,s,a

Each peer can locally compute the 2-d dimensional vector
2	 2qi,s,a (x i,a.1, . . . , xi,a.d, x i,a.1, . . . , xi,a.d) . Then the goal boils

down to zero-thresholding g applied to the average of local
vectors. The last thing to prove is that g (or −g) is a convex
function. Taking the Hessian of −g it can be easily shown
that −g is convex. We can therefore apply our tangent line
technique for monitoring Err (Cns).

Note that the inside of g is already convex. The outside
can be decomposed into convex regions using tangent lines
placed at random locations on g. For a 2-dimensional case,
Figure 2 shows the function (a parabola) and the possible
tangent lines. Let ul, ... , uz be points on the parabola which
define tangent lines. Checking if g(Ki) < ǫ3 is equivalent to
checking if Ki lies inside g. If not, we find the first point
ui such that K i · ui > k buik. We then apply the theorem for
half space defined by ui .

Now since Err(Cns) can be both positive or negative, we
need to check if |Err(Cns) | < ǫ3 . Therefore, we need two
monitoring instances denoted by Mcs and M2 s . The fol-
lowing denotes the datasets and convex regions for this mon-
itoring problem.

• M s
1 .Si = { [qi,s,1 (xi,1.1, ... , x2i,1.d, x i,1.1, ... xi,1.d)]

P m%
a=1 q%,s,a (x2%,a. 1 ,...,x2

%,a.d,x%,a. 1 ,...,x%,a. 1)
• MCs

1 .Si =	 P m%
a=1 q%,s,a	

,

M°
s .ω(Si) = Le a= 1 qi,s,a

Cs 	Cs 	Cs	m• M2 .Si = −M1 .Si , M2 .ω(Si) = ^a=
%

1 qi,s,a

•R., ={−→z ∈ R2d :g(z)<0^Sz
i=1{ −→z ∈ R2d : →−z · ui >

k bui k}

6.5 Algorithm
Having discussed each of the monitoring problems, we are

now in a position to present the algorithms for monitoring
the parameters. For each gaussian s ∈ { 1, ... , k} , we need
to run the following monitoring problems separately:

Pp	 m%	 d
Gvn	 =	 %	

P
a=19%,s,a Pk=1 (x%, a.k − 2/%s.k)

m%s	 p
%=1P a=1 9%, s, a

mf	 %
P =1 1k

E P 2

=	 Pp gy m%
% =1	 a=19%,s,a

nPP d	 p	 P m% 	 2
k=1	 % =1 a=19%,s,a x%, a.k

2	 p	 m%− /%s.k
P

%=1P a=19%,s,a

=	 Pp gy m%
% =1	 a=19%,s,a

nPP d	 p	 m%	 2
k=1	 %=1P a=19%,s,a x%, a.k

d
2

=

%=1P a=19% , s,a
/%s.k

k =1

d	 p	 m%	 2
%=1P a=19%,s,ax%,a.k

m%	 2P
%P=1P a=19%,s, ax%,a.k

=
E p E m%

k=1	 L^ % =1L^ a=1 9%,s,a

f
P

CA p	 Ca m%
E %=1 E a=1 9%,s,a

Thus thresholding problem is to check if kCs kF−Cs < ǫ3 i.e.
kCs k F < cCs + ǫ3 . As we show next, kCs kF is not a convex

• one for πs

• one for −→Ps

• one for C ns

In order to use Theorem 5.1 for developing a monitoring
algorithm, the following steps must be followed:

1. Specify the input to the algorithm (i.e. S i)

0

O
C

Figure 2: (A) the area inside a parabola (B) The
area covered by the half-space (C) A tangent defin-
ing a half-space.

Input: ǫ2 , Rĵ, Si , Γ i , L and c−→µs
Output: Set

flagµs = J 1 if II Mµs .Ki ll > ǫ2

0 otherwise
Initialization: Initialize Mµs

On MessageRecvd(X, ω(X)) from Pj

Mµs .Xj,i ← X;
Mµs .ω (Xj,i) ← ω (X);
Update vectors;

On any Event:
Call ProcessEvent(Mµs ,Rĵ , Γi , L, LastMsgSent);

14 for any peer Pi .

2. Specify the cover i.e. Rj^

For each of the monitoring problem, these are already speci-
fied in the previous sections. Algorithm 1, 2, 3 and 4 present
the pseudo-code. We describe the algorithm with respect to
monitoring πs only. The other two are almost identical.

Input: ǫ1 , Rĵ, Si , Γ i , L and F.
Output: SetJ

flag"
	 1 if M1 s .Ki > ǫ 1 V M2 s .Ki > ǫ 1
s =

0 otherwise
Initialization:

• Generate qi,s,a∀ (x a ∈ Si) using Equation 6

• Initialize two monitoring instances M7
s and M2s

On MessageRecvd(X, ω(X), id) from Pj

M d .Xj , i ← X;
Nl d .ω (Xj,i) ← ω(X);
Update vectors;

On any Event:
Call ProcessEvent(Mi s ,Rĵ , Γ i , L, LastMsgSent);
Call ProcessEvent(M2s ,Rĵ , Γ i , L, LastMsgSent);

Algorithm 1: Pseudo code for monitoring πs for any
peer Pi .

For any peer Pi , the input to the algorithm are ǫ, Rj^,

Si , Γi , L and F. (we describe L later). The output for each
of the monitoring instance is a flag which is set if the cor-
responding Ki exceeds the threshold. In the initialization
phase, it initializes its local statistics Ki , Ai,j and Wi,j ac-
cording to the equations in Section 4.4. The algorithm is
entirely event driven. Events can be one of the following:
a change in local data Si , message received or a change in
the set of neighbors Γi . If one of these things happen, a
peer calls the ProcessEvent method (Algorithm 4). The
goal of this method is to make sure that the conditions of
Theorem 5.1 are satisfied by the peer which runs it. First
peer Pi finds the active region: the region R ∈ Rj^ in which
Ki lies i.e. R = Rĵ (Ki). If, R = T, i.e. the knowledge
lies in the tie region, the condition of the theorem does not
guarantee a solution and hence the only correct solution is
flooding all of its data. On the otherhand, if for all Pj ∈ Γ i ,
both Ai,j ∈ R and Wi,j ∈ R, Pi does nothing and can rely
on the result of the theorem for correctness. If Ai,j ∈/ R or

Wi,j ∈/ R, the result of the theorem dictates Pi to send a
message to Pj . Other than these two cases, a peer need not
send any message even if its local data has changed.

Input: ǫ3 , Rĵ, Si , Γ i , L and E.
Output: Set

flagCs = J 1 if g (M°s .Ki) > 0V g (M2 s .Ki) > 0
0 otherwise

Initialization: Initialize two monitoring instances W s

and M2
σs .

On MessageRecvd(X—,ω(X),id) from Pj

Mσs .Xj,i ← X;
Mσs .ω (Xj,i) ← ω (X);
Update vectors;

On any Event:
Call ProcessEvent(Mσs ,Rĵ , Γi , L, LastMsgSent);

Algorithm 3: Pseudo code for monitoring monitoring
Cn

s for any peer Pi .

Function ProcessEvent(M,Rĵ , Γi , L, LastMsgSent)
begin

forall Pj ∈ Γi do
if Rj^ (M.Ki) = T then

M.ω (Xi,j) ← M.ω (Ki) − M.ω (Xj,i);

M.Xi,j ←
M.ω (Ki)M.Ki —M.ω (Xj,i)M.Xj i

;
M.ω (Xj,i)

end
if (M.Ai,j V Rj^ (M.Ki

)

V (M.Wi,j ∈6 Rj^ (M.Ki
))

V (M.ω (Wi,j) = 0 AM.Ai,j =6 M.Ki)then
Compute new M.ω (Xj , i) and M.Xj , i such
that M.Aj,i, M.Wj,i ∈ Rĵ (M.Ki)

end
if CurrTime − LastMsgSent > L then

SendMsg(M.Xi,j ,M.ω(Xi,j),id) to Pj

end
else Wait (L − (CurrTime − LastMsgSent))
units and check again

end
end

4: Procedure for handling an event.

Message sending is performed in the ProcessEvent method

itself. When R = T, the peer has to flood whatever knowl-
edge it has. Thus it sets X i ,j and ω(Xi,j) equals to its
knowledge minus what it had received from Pj previously.
It then sends this to Pj . However, when R =6 T, a peer
can refrain from sending all data. As shown by Wolff et al.
[36] and Bhaduri et al. [4], this technique of sending all the
data has adverse effects on the communication in a dynamic
data scenario. This is because if a peer communicates all of
its data, and the data changes again later, the change is far
more noisy than the original data. So we always set X i, j and
|Xi,j | such that some data is retained while still maintain-
ing the conditions of the theorem. We do this by checking
with an exponentially decreasing set of values of |Wi,j | until
either all Ki, Ai,j and Wi,j ∈ R, or |Wi,j |=0. If the lat-
ter happens, then there exist no condition for which a peer
can have witheld data and it has to send everything. The
conditions stated in the ProcessEvent method are exhaus-
tive; a peer only sends a message if one of these conditions
are violated. This guarantees eventual correctness based on
the theorem. Similarly, whenever it receives a message (X
and |X |), it sets Xj , i ← X and |Xj,i | ← |X | and calls the
ProcessEvent method again.

To prevent message explosion, in our event-based system
we employ a “leaky bucket” mechanism which ensures that
no two messages are sent in a period shorter than a constant
L. This technique is not new but has been used earlier
[4][36]. The basic idea is to maintain a timer. Whenever
a peer sends a message, the timer is started. If later, the
peer wants to send another message, it checks if L time units
has passed since the timer was started. If yes, it sends the
message and resets the timer to reflect the current time.
Otherwise, the peer waits time difference between L and
the ‘timer’ time. When the timer expires, the peer checks
the conditions for sending messages and decides accordingly.
Note that this mechanism does not enforce synchronization
or affect correctness; at most it might delay convergence.
We explore its effect thoroughly in our experiments.

In the next section we describe how we can use this moni-
toring algorithm to update the models, if they are outdated.

7. COMPUTING NEW MODELS
Once the models (F,' and C s) are monitored to within

ǫ of their true values, the next step is to rebuild the models if
they are found outdated. The monitoring algorithm present
in the previous section generates an alert whenever one of
the following occurs for any s ∈ { 1...k} :

• |πs − F3 | ≥ ǫ1

2

µ3 − µs ≥ ǫ2

Cn
s − Cs ≥ ǫ3

Building global models in a distributed environment is com-
munication intensive. Here we rely on the outcome of our
correct and efficient local algorithm to generate a trigger
dictating the need for re-building the model. Given enough
time to converge, the correctness of our monitoring algo-
rithm ensures that even simple techniques such as best-effort
sampling from the network may be sufficient to produce
good results. If it does not, the underlying monitoring al-
gorithm would eventually indicate that and a new model
building will be triggered.

The idea of model computation in the network is very
simple. Peers engage in a convergecast-broadcast process.
The monitoring algorithm can be viewed as a flag which
is raised whenever the model is misfit with respect to the
global data. If this happens for any peer, it does the fol-
lowing. First it waits for a specific amount of time which
we call the alert mitigation time τ to see if the alert is in-
deed due to a data change or random noise. If the alert
exists even after τ units of time, the peer checks if it has
received data from all its neighbors except one. If yes, it
generates a sample of user-defined size B from its own data
and each of its children weighing each point inversely as the
size of its subtree such that each point has an equal chance
of being included in the sample. It then sends the sample
to its parent and marks its state as convergecast. Whenever
a peer receives data from all peers, it becomes the root of
the convergecast and employs a centralized EM algorithm
to build new model parameters. It then sends these mod-
els to itself and marks its state to broadcast. Whenever a
peer gets new models it forwards the models to all its neigh-
bors (except the one from which it received) and moves from
convergecast to broadcast phase. Because we do not impose
the root of the tree, it may so happen that two peers get
all the data simultaneously. We break the tie in such sce-
narios using the id of the nodes. Only the peer with the
highest id is allowed to propagate the model in the net-
work. Algorithm 5 presents the pseudo code of the overall
EM algorithm. As shown, there are three types of messages:
MonitoringMsg, PatternMsg and DatasetMsg. The
monitoring message is passed to the underlying monitoring
algorithm. The pattern message is received as part of the
broadcast round while the datasets are received when the
peer engages in convergeast round.

8. ANALYSIS OF ALGORITHMS
In this section we prove that (1) the PeDEM algorithm is

correct, and (2) local.

LEMMA 8.1. PeDEM is eventually correct.

PROOF. In termination state, i.e. when all nodes in the
network have stopped sending messages and there are no
messages in transit, the knowledge Ki of each peer Pi will
converge to one of these states: (1) Ki = G, or (2) Ki, Ai,j,

and Wi,j are in the same R ∈ Rj^ for every neighbor Pj .
In the first case, Ki = G ⇒ F(Ki) = F(G). In the second
case, by Theorem 5.1, Ki, Ai,j, and Wi,j ∈ R ⇒ G ∈ R. By
Definition 4.4, F is invariant in R and hence F(G) = F(Ki).
Thus the PeDEM algorithm is eventually correct. q

LEMMA 8.2. PeDEM is local.

9. EXPERIMENTAL RESULTS
In this section we demonstrate the performance of the Pe-

DEM algorithm on synthetic dataset. Our implementation
of the algorithm was done in Java using the DDMT 2 toolkit
developed at UMBC. For the topology, we used the BRITE
topology generator3 . We experimented with the Barabasi
Albert (BA) model since it generates realistic edge delays (in
millisec), thereby simulating the internet. We convert the

2http://www.umbc.edu/ddm/Sftware/DDMT/
3http://www.cs.bu.edu/brite/

Input: ǫ1 , ǫ2 , ǫ3 , RJF, Si , Γi , L, cπs , µs, cCs and τ
Output: New model such that error is less than

threshold
Initialization: Initialize vectors; Set
LastDataAlert ← ∞;Datasent ← false;
On Receiving a message:
MsgType, RecvdPj ← MessageRecvdFrom(Pj)
if MsgType = MonitoringMsg then

Pass Message to Monitoring Algorithm;
end
if MsgType = PatternMsg then

Update models;
Forward new models to all neighbors;
Datasent = false;
Restart Monitoring Algorithm with new models;

end
if MsgType = DatasetMsg then

NumRecvd = Countnumrecvd();
RecvdDataset = RecvdDataset U RecvdPj ;
if NumRecvd=Γi − 1 then

flag=OutputMonitoringAlgorithm();
if Datasent = false A flag = 1 then

if CurrTime − LastDataAlert > τ then
D=Sample(Si , Recvd Dataset, B);
Datasent = true;
Send D to remaining neighbor;

end
else LastDataAlert=CurrTime;
Check again in τ time;

end
if flag=0 then LastDataAlert ← ∞

end
if NumRecvd=Γi then

D=Sample(Si , Recvd Dataset, B);
NewModel=EM(D);
Forward NewModel to all neighbors;
Datasent= false;
Restart Monitoring Algorithm with NewModel;

end
end
if Si , Γ i or Ki changes then

Run Monitoring Algorithm;
flag=OutputMonitoringAlgorithm();
if flag=1 and Pj =IsLeaf() then

Execute the same conditions as
MsgType=Datas etMsg;

end
end

5: P2P EM

edge delays to simulator ticks for time measurement since
wall time is meaningless when simulating thousands of com-
puters on a single PC. On top of each network generated by
BRITE, we overlay a communication tree.

9.1 Data Generation
The input data of a peer is a set of vectors in R d generated

according to multi-dimensional GMM. More specifically, for
a given experiment, we fix the number of gaussians k, their
means −→µ1 , ... , −→µk and covariance matrices Cl, ... , C k , and
also the mixing probabilities π1 , ... , πk . Every time a sim-
ulated peer needs an additional data point, it first selects a

gaussian s with corresponding probability πs and then gen-
erates a gaussian vector in Rd with mean and covariance
µs , Cs. The means and the covariances are changed ran-
domly at controlled intervals to create an epoch change.

9.2 Measurement Metric
In our experiments, the two most important parameters

for measurement are the quality of the result and the cost
of the algorithm.

For the regression monitoring algorithm, quality is mea-
sured in terms of the percentage of peers which correctly
compute an alert, i.e., the number of peers which report
that Ki < ǫ when E0 < ǫ and similarly Ki > ǫ when E0 > ǫ .
We also report the overall quality which is average of the
qualities for both less than and greater than ǫ and hence lies
in between those two. Moreover, for each quality graph in
Figures ??, ??, ??, ??, ?? and ?? we report two quantities
— (1) the average quality over all peers, all epochs and 10
independent trials (the center markers) and (2) the standard
deviation over 10 independent trials (error bars). For the re-
gression computation algorithm, quality is defined as the L2
norm distance between the solution of our algorithm and the
actual regression weights. We compare this to a centralized
algorithm having access to all of the data.

We refer to the cost of the algorithm as the number of
normalized messages sent, which is the number of messages
sent by each peer per unit of leaky bucket L. Hence, 0.1
normalized messages means that nine out of ten times the
algorithm manages to avoid sending a message. We report
both overall cost and the monitoring cost (stationary cost),
which refers to the “wasted effort” of the algorithm. We also
report, where appropriate, messages required for converge-
cast and broadcast of the model.

9.3 Typical Experiments
A typical experiment is shown in Figure ??. In all the

experiments, about 4% of the data of each peer is changed
every 1000 simulator ticks. Moreover, after every 5 × 105

simulator ticks, the data distribution is changed. There-
fore there are two levels of data change — (1) every 1000
simulator ticks we sample 4% of new data from the same
distribution (stationary change) and (2) every 5 × 105 clock
ticks we change the distribution (non-stationary change).
To start with, every peer is supplied the same regression
coefficients as the coefficients of the data generator. Figure
?? shows that for the first epoch, the quality is very high
(nearly 96%). After 5 × 10 5 simulator ticks, we change the
weights of the generator without changing the coefficients
given to each peer. Therefore the percentage of peers re-
porting Ki < ǫ drops to 0. For the cost, Figure ?? shows
that the monitoring cost is low throughout the experiment
if we ignore the transitional effects.

9.4 Results: Regression Monitoring

9.5 Results: Regression Models

10. CONCLUSION

Acknowledgements
This work was supported by the NASA Aviation Safety Pro-
gram, Integrated Vehicle Health Management Project.

100

90

i

80
1

70
L(Θ)

o Mean60 0 Covariance
50	 100 200 400

|S|

100

90

i

80
1

70
L(Θ)

o Mean60 0 Covariance
50	 100 200 400

|S|

100

90

i

80
1

70
L(Θ)

o Mean60 0 Covariance
50	 100 200 400

|S|

100

90 	 ,l
T

80
1

70
o L(Θ)
o Mean

Wa

60 0 Covariance
50	 100 200 400

|S|

100

90 	 ,l
T

80
1

70
o L(Θ)
o Mean

Wa

60 0 Covariance
50	 100 200 400

|S|

100

90 	 ,l
T

80
1

70
o L(Θ)
o Mean

Wa

60 0 Covariance
50	 100 200 400

|S|

(a) Variation of L(Θ|G) vs. time for the (b) Percentage of peers reporting (c) Number of messages per peer per
synthetic dataset. The red line refers to L(Θ|G) < ǫ .	 unit of L.
ǫ .

Figure 3: Plot of typical experiments. Each experiment is repeated for several epochs. Quality is measured
both inside and outside ǫ. Cost is measured during the entire experiment and during stationary phases. Last
80% of the time refers to stationary phase to ignore transitional effects.

(a) Quality vs. |Si |

m 1 	 O L(Θ)

g
w o Mean

0 5

	

0.	 ^.:	 §	$	 0 Cov

.^ 0 50 100	 200	 400

E 1.5	
L(Θ)

z1 ^......	 m 9	 Mean
0.5.....

..... Cov
,m.

	0 	 PI
 50 100	 200	 400

|Si|

(d) Cost vs.|Si |

(b) Quality vs. ǫ

100

90

80

70
o L(Θ)
o Mean

Wa

60 0 Covariance
50	 100 200 400

|S|

(e) Cost vs. ǫ

(c) Quality vs. L

100

90

80

70
o L(Θ)
o Mean

Wa

60 0 Covariance
50	 100 200 400

|S|

(f) Cost vs. L

Figure 4: Variation of the quality and cost of the monitoring algorithm on the different parameters. We
have separated the quality of the log-likelihood, mean and covariance monitoring algorithm. We have also
separated the cost of the entire experiment and during stationary phase.

(a) Quality vs. peers

100

12
90

80

U 70
L(Θ)

60 	
o Mean
0 Covariance

50	 100	 200 	 400
|S|

(d) Cost vs. peers

(b) Quality vs. dimension

100

E 90

80

U 70
L(Θ)

60 	
o Mean
0 Covariance

50	 100	 200 	 400
|S|

(e) Cost vs. dimension

(c) Quality vs. no of Gaussian

100

E 90

80

e 70
L(Θ)

60 	
o Mean
0 Covariance

50	 100	 200 	 400
|S|

(f) Cost vs. no of Gaussian

Figure 5: Scalability of the monitoring algorithm with respect to number of peers, dimension of each gaussian,
and number of gaussians.

11. REFERENCES
[1] Y. Afek, S. Kutten, and M. Yung. The Local

Detection Paradigm and Its Application to
Self-Stabilization. In Theoretical Computer Science,
186(1-2):199-229, October 1997.

[2] S. Bandyopadhyay, C. Giannella, U. Maulik,
H. Kargupta, K. Liu, and S. Datta. Clustering
Distributed Data Streams in Peer-to-Peer
Environments. Information Science,
176(14):1952-1985, 2006.

[3] K. Bhaduri. Efficient Local Algorithms for Distributed
Data Mining in Large Scale Peer to Peer
Environments: A Deterministic Approach. PhD thesis,
University of Maryland, Baltimore County, March
2008.

[4] K. Bhaduri and H. Kargupta. A Scalable Local
Algorithm for Distributed Multivariate Regression.
Statistical Analysis and Data Mining, 1(3):177-194,
November 2008.

[5] K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta.
Distributed Decision Tree Induction in Peer-to-Peer
Systems. Statistical Analysis and Data Mining
Journal, 1(2):85-103, June 2008.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Gossip Algorithms: Design, Analysis and
Applications. In Proceddings Infocom'05, pages
1653-1664, Miami, March 2005.

[7] J. Branch, B. Szymanski, C. Gionnella, R. Wolff, and
H. Kargupta. In-Network Outlier Detection in
Wireless Sensor Networks. In Proceedings of
ICDCS'06, Lisbon, Portugal, July 2006.

[8] K. Das, K. Bhaduri, S. Arora, W. Griffin, K. Borne,
C. Giannella, and H. Kargupta. Scalable Distributed
Change Detection from Astronomy Data Streams
using Local, Asynchronous Eigen Monitoring
Algorithms. In Proceedings of SDM'09 (accepted),
Sparks, NV, 2009.

[9] K. Das, K. Bhaduri, K. Liu, and H. Kargupta.
Distributed Identification of Top-1 Inner Product
Elements and its Application in a Peer-to-Peer
Network. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 20(4):475-488, 2008.

[10] A. Dempster, N. Laird, and D. Rubin. Maximum
Likelihood from Incomplete Data via the EM
Algorithm. J. R. Statist. Soc., Series(B), 39(1):1-38,
1977.

[11] J. GarciarLunarAceves and S. Murthy. A
Path-Finding Algorithm for Loop-Free Routing. IEEE
Transactions on Networking, 5(1):148-160, 1997.

[12] D. Cu. Distributed EM Algorithm for Gaussian
Mixtures in Sensor Networks. IEEE Transactions on
Neural Networks, 19(7):1154-1166, July 2008.

[13] Q. Huang, H. J. Wang, and N. Borisov.
Privacy-Preserving Friends Troubleshooting Network.
In Proceedings of NDSS'05, 2005.

[14] T. Jaakkola. Tutorial on Variational Approximation
Methods. In Advanced Mean Field Methods: Theory
and Practice, 2000.

[15] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based Aggregation in Large Dynamic
Networks. ACM Transactions on Computer Systems
(TOGS), 23(3):219-252, August 2005.

[16] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and
L. K. Saul. An Introduction to Variational Methods
for Graphical Models. Machine Learning,
37(2):183-233, November 1999.

[17] D. Kempe, A. Dobra, and J. Gehrke. Computing
Aggregate Information using Gossip. In Proceedings of
FOCS'03, Cambridge, 2003.

[18] P. M. Khilar and S. Mahapatra. Heartbeat Based
Fault Diagnosis for Mobile Ad-Hoc Network. In
Proceedings of IASTED'07, pages 194-199, Phuket,
Thailand, 2007.

[19] N. Kitakoga and T. Ohtsuki. Distributed EM
Algorithms for Acoustic Source Localization in Sensor
Networks. In Proceedings of VTC'06, pages 1-5,
Montreal, Canada, September 2006.

[20]W. Kowalczyk, M. Jelasity, and A. E. Eiben. Towards
Data Mining in Large and Fully Distributed
Peer-to-Peer Overlay Networks. In Proceedings of
BNAIC'03, pages 203-210, University of Nijmegen,
2003.

[21]W. Kowalczyk and N. A. Vlassis. Newscast EM. In
Proceedings of NIPS'04, pages 713-720, Vancover,
Canada, December 2004.

[22] D. Krivitski, A. Schuster, and R. Wolff. A Local
Facility Location Algorithm for Large-Scale
Distributed Systems. Journal of Grid Computing,
5(4):361-378, 2007.

[23] N. Linial. Locality in Distributed Graph Algorithms.
SIAM Journal of Computing, 21:193-201, 1992.

[24] K. Liu, K. Bhaduri, K. Das, P. Nguyen, and
H. Kargupta. Client-side Web Mining for Community
Formation in Peer-to-Peer Environments. SIGKDD
Explorations, 8(2):11-20, 2006.

[25] P. Luo, H. Xiong, K. Lii, and Z. Shi. Distributed
Classification in Peer-to-Peer Networks. In Proceedings
of SIGKDD'07, pages 968-976, 2007.

[26] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low,
and R. Murray. Distributed Averaging on Peer-to-Peer
Networks. In Proc. of CDC'05, Spain, 2005.

[27] T. Mensink, W. Zajdel, and B. Krbse. Distributed EM
Learning for Multi-Camera Tracking. In Proceedings of
ICDSC'07, pages 178-185, Stanford, CA, Sept 2007.

[28] S. Mukherjee and H. Kargupta. Distributed
Probabilistic Inferencing in Sensor Networks using
Variational Approximation. Journal of Parallel and
Distributed Computing (JPDC), 68(1):78-92, January
2008.

[29] M. Naor and L. Stockmeyer. What Can be Computed
Locally? In Proceedings of STOC'93, pages 184-193,
1993.

[30] A. Nikseresht and M. Gelgon. Gossip-Based
Computation of a Gaussian Mixture Model for
Distributed Multimedia Indexing. IEEE Transactions
on Multimedia, 10(3):385-392, April 2008.

[31] R. D. Nowak. Distributed EM Algorithms for Density
Estimation and Clustering in Sensor Networks. IEEE
Transactions on Signal Processing, 51(8):2245-2253,
August 2003.

[32] N. Palatin, A. Leizarowitz, and A. Schuster. Mining
for Misconfigured Machines in Grid Systems. In
Proceedings of KDD'06, pages 687-692, 2006.

[33] M. Rabbat and R. Nowak. Distributed Optimization
in Sensor Networks. In Proceedings of IPSN’04, pages
20–27, Berkeley, California, USA, 2004.

[34] D. Scherber and H. Papadopoulos. Distributed
Computation of Averages Over ad hoc Networks.
IEEE Journal on Selected Areas in Communications,
23(4):776–787, 2005.

[35] I. Sharfman, A. Schuster, and D. Keren. A Geometric
Approach to Monitoring Threshold Functions over
Distributed Data Streams. In Proceedings of
SIGMOD’06, pages 301–312, Chicago, Illinois, June
2006.

[36] R. Wolff, K. Bhaduri, and H. Kargupta. A Generic
Local Algorithm for Mining Data Streams in Large
Distributed Systems. IEEE Transactions on
Knowledge and Data Engineering (accepted for
publication), 2008.

[37] R. Wolff and A. Schuster. Association Rule Mining in
Peer-to-Peer Systems. IEEE Transactions on Systems,
Man and Cybernetics - Part B, 34(6):2426 – 2438,
December 2004.

