
A Tree-based Framework for Difference Summarization

Ruoming Jin, Yuri Breitbart, Rong Li
Department of Computer Science

Kent State University
Kent, OH, 44242, USA

Email: {jin,yuri,rli0}@cs.kent.edu

Abstract—Understanding the differences between two
datasets is a fundamental data mining question and is also
ubiquitously important across many real world scientific ap-
plications. In this paper, we propose a tree-based framework to
provide a parsimonious explanation of the difference between
two distributions based on rigorous two-sample statistical test.
We develop two efficient approaches. The first one is a dynamic
programming approach that finds a minimal number of data
subsets that describe the difference between two data sets.
The second one is a greedy approach that approximates the
dynamic programming approach . We employ the well-known
Friedman’s MST (minimal spanning tree) statistics for two-
sample statistical tests in our summarization tree construction,
and develop novel techniques to speedup its computational
procedure. We performed a detailed experimental evaluation
on both real and synthetic datasets and demonstrated the
effectiveness of our tree-summarization approach.

Keywords-difference summarization; minimal spanning tree;
two sample test;

I. I NTRODUCTION

Understanding the differences between two datasets is a
fundamental data mining problem and it is also ubiquitously
important across many real world applications and scientific
disciplines. In pharmaceutical study, doctors would like to
learn patients responses from two competitive or related
drugs. Specifically, if the responses are statistically different,
doctors need to understand the differences with respect to
a list of different factors, such as blood pressure,age, etc..
Frequently, they may find that in most of the parameter
ranges or conditions, the responses are quite similar. Thus,
the key problem is how can they find a concise description
to summarize differences and/or similarities between the
responses to these two drugs? Similar problems can also
appear frequently in the business domain. For instance, the
overall sale of the December of 2008 is quite different from
the overall sale of the December of 2007. However, the im-
portant problem is to learn where customers actually spend
their money, i.e., we need to understand how customers
spend their money towards different products at two different
time points.

Despite the importance of this problem, little research
in data mining has been done to derive a summarization
framework to concisely describe the differences between
two datasets. Contrast mining is a closely related effort [1],
[2], [3], which tries to discover the significant differences

between two datasets. It can discover some local differences
between two distributions, but it does not try to provide
a parsimonious explanation for the difference between two
distributions. Another work in a spirit of this problem is to
provide a parsimonious explanation of change for OLAP ap-
plications [4], [5]. Given a hierarchical framework, they try
to summarize the difference of aggregations. However, their
work is quite limited since they focus on the aggregation
where the hierarchical structure is already given and their
approach cannot be applied for the generalized distribution
setting.

In this paper, we provide a summarization framework to
describe differences between two data sets, each of which
consists of points in a multidimensional space. Intuitively,
suppose that we were given two sets of points: one set of
black and the other set consists of red points, distributed in
a multidimensional space. Contrary to being well-separated,
these two sets of points seem intertwined with one another.
Suppose that despite their similarity, using the well-known
two-sample testin statistical data analysis [6], we cannot
accept the hypothesis that these two datasets are being
generated from the same distribution. (For convenience,
we say they are statistically different.) Thus, the research
problem here ishow can we concisely summarize or explain
the differences between these two sets of points?

We propose here a tree-based framework to provide a par-
simonious explanation of the differences between two data
sets. At the high level, the tree summarization framework
shares certain similarity with the well-known decision-tree
scheme. Basically, from the root, each internal node of the
tree corresponds to a cut on a specific dimension, which will
recursively split the multidimensional space into two parts.
However, in contrast to the decision-tree scheme, our goal
is not to try to separate the two sets of data points. Instead,
the tree illustrates a parsimonious description on where the
distributions differ. Specifically,

1. We provide the study on the problem of constructing
a concise summarization of the differences between two
distributions/datasets and formulate a tree-summarization
framework based on rigorous two-sample statistical test.

2. We develop two efficient approaches to construct the
summarization tree. The first one is a dynamic programming
approach. The other one is a greedy approach.

3. In our summarization tree construction, we employ

the well-known Friedman’s MST (minimal spanning tree)
statistics for two-sample statistical tests [7], and develop
novel techniques to speedup the computation procedure.

4. We perform a detailed experimental evaluation on both
real and synthetic datasets and demonstrate the effectiveness
and efficiency of our tree-summarization approach.

II. PRELIMINARY : MULTIVARIATE TWO-SAMPLE TEST

In this section, we will first describe thetwo-sample test
[6], which forms the basis of our problem formulation and
our approach to its solution.

A. Two-Sample Test

Consider two sets of data pointsD1={X1, X2, · · · ,Xn}
andD2 = {Y1, Y2, · · · , Ym} in d-dimensional space, where
m andn are the size of datasetsD1 andD2, respectively. We
interested in determining if they are likely to be generated
from the same underlying distribution. This question is
addressed in the classicaltwo-sampletest. LetXi and Yj

be independent samples from unknown distributionsF (x)
and G(x), respectively. The two-sample test considers two
hypotheses: a null hypothesisH0: F (x) = G(x) against the
alternative hypothesisH1: F (x) 6= G(x).

A good test statistic is expected to satisfy thedistribution-
independentandconsistentrequirements [8], [9], [10], [11].
An exact distribution-independent test requires that under
the null hypothesis, ifmin(m,n) → ∞, the test statistic
does not depend on the unknown distributionF (x) (asymp-
totically distribution free), and the limiting distribution is
known. The test also needs to be consistent against the
alternativeH1, i.e., whenmin(m,n) → ∞, the probabil-
ity of rejecting the null hypothesis converges to one. In
other words, whenF (x) 6= G(x), we will surely reject
the null hypothesis as the number of samples approaches
infinity. In addition, we note that when we reject the null
hypothesis using any statistical test, we in fact prove thatthe
distributions are different, and thus, we can say these two
datasets arestatistically different. However, in statistics, one
can never prove the distributions to be the same even with a
large amount of data. Thus, in this paper, when we are not
be able to reject the null hypothesis, we just say they are
“statistically consistent” for simplicity.

There are a lot of two-sample tests being developed over
the last several decades [6], [12], [11]. The majority of them
are on one-dimension two sample test. To generalize them
to multidimensional sets is not trivial. Also, the well-known
chi-square test is forbinned distribution[8]. However, it
is not a consistenttest for continuous space, i.e., the chi-
square test will not be able to differ two datasets if they
indeed come from different distributions when the sample
size approximates infinity.

B. Friedman-Rafsky MultiVariate Two-Sample Test

Several methods [7], [9], [10], [13] have been developed
for the two sample test in multidimensional space or simply
for the multivariate two sample test. Among them, the

Friedman-Rafsky test[7] is one of the most well-known and
computationally efficient multivariate two sample test. The
basic idea of this approach is to first construct a minimum
spanning tree (MST) for all the data points inD1 ∪ D2

in the multi-dimensional Euclidean Space. Then, to remove
all the edges in the MST whose two adjacent nodes (data
points) come from different datasets, i.e., one fromD1 and
another fromD2. Thus, the MST becomes a forest with
many disjoint subtrees. In particular, all the subtrees (also
referred to asruns) in the forest contain the same type of
nodes (data points from the same dataset). Finally, the test
statisticRm,n is the total number of those disjoint subtrees
in the resulting forest.

(a) (b)

Figure 1. (a) global MST and (b) the runs of MST

These concepts are illustrated in Figures 1. Figure 1(a)
shows the global MST of two samples of 8 points (each point
in one sample is assigned with same labels), while Figure
1(b) shows the result after removing edges that liking nodes
from different samples. Note that a run is a disjoint subtree
in the forest whose data points are all from the same data
set. Intuitively, a rejection ofH0 corresponds to the case
when we have a relatively small number of subtrees (runs).
In other words, the two sets of points are relatively well-
separated.

Formally, it has been proven that for large sample size
(min(m,n) → ∞ andm/(m + n) → p 6= 0, under theH0,
the distribution of

W (Rm,n) =

(

Rm,n − (1 +
2mn

m + n
)

)

/((m + n)1/2σd) (1)

approaches the standard normal distribution, whereσ2
d =

r(r + 1
2V ar(Dd)(1 − 2r) (r = 2p(1 − p) and V ar(Dd)

is the variance of the degree of any vertex in the MST
and can be easily approximated [14]). Given this, for a
significance levelα, we can reject the null hypothesis if
W < zα whereP (x ≤ zα) = α, zα is the critical value for
the normal distribution. Using this procedure, we can expect
that all the internal nodes are statistically different andmost
of the leaf nodes are statistically consistent (cannot reject the
null hypothesis) (ormin(m,n) < t, wheret is pre-defined
threshold).

Friedman-Rafsky’s MST statistic test is a clever extension
of the univariate Wald-Wolfowitz test[11] (just imagine the
tree is projected into one dimension space and becomes
a line and a run is simply a set of consecutive points all

from the same datasets). It has been proven that Friedman-
Rafsky’s MST statistical test is distribution-independent and
consistent [14], [7]. It is also a rather computational
efficient test procedure since several methods can construct
the minimal spanning tree in the Euclidean space in almost
O(N log N) computational complexity, whereN = m + n
is the total number of data points [15], [16], [17].

We note that the multivariate two sample test is the basis
of our summarization framework to describe the statistical
difference between two datasets. As we will see, our tree-
based summarization approach can in general utilize any
available multivariate two-sample tests. But most of them
do not have the nice properties of being distribution in-
dependent, consistent, and computationally efficient as the
Friedman-Rafsky’s MST statistic test. Thus, in this work, we
focus on the Friedman-Rafsky’s MST statistic test method
to describe statistical differences between two datasets.
Since our summarization-tree will repeatedly invoke the test
procedure, we will also develop novel methods to further
speedup its computation (Section V).

III. T HE SUMMARIZATION FRAMEWORK: A
TREE-BASED SCHEME

In this section, we introduce our tree-based framework
to provide a parsimonious description of the differences
between two datasets.
Summarization Tree: A summarization tree at the high
level is a binary tree which recursively partitions the multidi-
mensional space into smaller regions. Each node of the tree
corresponds to a region in the multidimensional space, and
all the data points in both datasetsD1 andD2 that belong to
that region. The root has the entire multidimensional space
(Rd). The region associated with each node is described
recursively through a cut associated with each internal node.
Specifically, the cut of each internal nodevi is denoted as
[Ai : xi], whereAi is the cut attribute andxi is the cut
value. This cut will split the region and all the data points
in that region into two parts and each part belong to one of
the internal node’s two children: the left child has all the
data points of its parent whoseAi dimension is less than or
equal to thexi (Ai ≤ xi) and the right child has those data
points whoseAi dimension is bigger thanxi (Ai > xi).
Finally, the leaf nodes do not have any cut.

We use this tree structure to describe the differences
between any two datasetsD1 and D2. The tree has the
following properties:

1) Internal Nodes: Let D1[vi] and D2[vi] be the sets
of data points belonging to the region described by
interval nodevi. For any internal nodevi, we can
reject the null hypothesis thatD1[vi] and D2[vi] are
generated from the same distribution. In other words,
the associated two sets of data points of any internal
node fromD1 andD2 are statistically different.

2) Leaf Nodes: The sets of data points associated with
leaf nodevi, D1[vi] andD2[vi], either are statistically

consistent, or too small to be further partitioned. In the
latter case, a lower bound on the minimal number of
data points in each set is defined to make the statistical
test meaningful.
At each nodevi, we need to run a statistical test
to see if its associated sets of data points,D1[vi]
and D2[vi] statistically come from the same distri-
bution or not. In other words, we have a null hy-
pothesisFD1[vi](x)=GD2[vi](x) against the alternative
FD1[vi](x) 6= GD2[vi](x). We apply the aforemen-
tioned Friedman-Rafsky’s MST two sample test of
Subsection II-B for this purpose.

3) Cut: Each cut is associated with the internal node
vi describes asummarized viewof the associated
datasets,D1[vi] and D2[vi]. Specifically, for each
internal nodevi, its cut [Ai : xi] splits its associated
data,D1[vi] andD2[vi] into two parts: letvj be its left
child andvk be its right child. Then, we haveD1[vj]
and D2[vj] for the left child andD1[vk] and D2[vk]
for the right child. To understand the summarized view
of its left child and right child , we assume that the
cut creates two bins for the associated data,D1[vi] and
D2[vi]. In other words, we have a2 × 2 contingency
table, where each row corresponds to a dataset, and
the columns correspond to the bins.

Left Child (vj): Ai ≤ xi Right Child (vk): Ai > xi

D1 |D1[vj]| |D1[vk]|
D2 |D2[vj]| |D2[vk]|

Table I
STATISTICAL TEST FOR THESUMMARIZED V IEW

We can use the chi-square test to determine whether
the quantities in the first row and the quantities in the
second row come from the same distribution [8]. If we
can reject that they come from the same distribution,
we say the cut is a dependent cut. Otherwise, we say
the cut is an independent cut.

The main intuition and/or motivation of this frame-
work is based on the observation that two related
datasets/distributions often tend to be the similar in most
parts of space. However, they differ either because there is
a shift of data distribution from one part of the space to
another part of the space, or there is a hot spot or area in
the space. Those are likely to be the events resulting into the
differences between two datasets. For instance, considering
in the business example, the sale of this December is close
to the sale of the last December because the customers in
total spend less money on the luxury products, such as DVD
or games, but their purchase distribution is still similar if
we exclude such high level difference. Indeed, the decision
tree construction allows us to focus on the local regions and
when we do the two-sample tests, the global effect of the
difference is isolated and does not affect the two-sample test
on the local regions. Specifically, the two sample test on the
D1[vi] and D2[vi] is totally independent from the the rest
of data points, i.e.,D1\D1[vi] andD2\D2[vi].

We also note that in the traditional statistical analysis, the
global distribution difference is typically captured through
the mean-shift or scaling.

Here, we assume that both distributions are properly
normalized and thus we do not need to handle such dif-
ference explicitly. Besides, in this framework, we do not
consider the multiple comparison/inference problem [6] as
we treat each two-sample test independently, and we are not
interested in deriving an overall statistical significancefor
the entire summarization-tree. However, if this is preferred,
i.e., we would like to treat all the two-sample tests in a
summarization-tree as a whole, then we can utilize the meth-
ods, such as Bonferroni correction, to adjust the significance
level of each test.
Minimal Summarization Tree Problem: Given this, we
introduce theminimal difference summarization tree (MDST)
problem. Let T be a difference summarization tree. We
assign each node in the tree a cost. The main idea is that
if we cannot reject two distributions are same (statistically
consistent), we do not need to output the description of the
two distributions. For other cases, we need to output certain
information to describe their differences. Those information
will be associated with each node in the tree and the costs
of each node reflect the minimal description length for such
information.

For each internal nodevi, if the cut is dependent, the
cost of the nodecost(vi) = 6; if the cut is independent,
the cost of the nodecost(vi) = 2. This is because if it
is independent cut, we only need to record two values:
the cut point and the dimension, while if it is dependent
cut, we need to record six values: the cut point, the di-
mension, and the summarized distribution for chi square
test. For each leaf nodevi, if we cannot reject that its
associated two datasetsD1[vi] and D2[vi] come from the
same distribution, its costcost(vi) = 0, and otherwise,
cost(vi) = number of points in the leaf node. However,
there are some cases need to be considered carefully. One
is that if in the leaf node, the number of points from
one dataset is too small, let us say 5, we assign the leaf
node cost(vi) = number of points in the leaf node.
Another case is that if the number of points from one dataset
is just a very small proportion of the number of points
from another dataset (e.g. 5%), then applying the statistics
test has no meaning, too. Thus we assign the leaf node
cost(vi) = number of points from smaller dataset in
the leaf node. Given this, the overall description for tree
T is simply the sum of all the costs from its nodes,
Cost(T) =

∑

vi∈T cost(vi). (The cost of each node can
be modified according to different applications.)

The example of calculating the cost and constructing the
tree is given in the experiment results section. See Figure.3
and Figure.4.

Definition 1: (Minimal Difference Summarization Tree
(MDST) Problem) Given two datasetsD1 and D2, the
most parsimonious description of the differences between

two datasetsD1 andD2 is the difference summarization tree
T which has the minimal cost, i.e., the minimal difference
summarization tree:

arg min
T

Cost(T)

IV. A LGORITHMS FORTREE CONSTRUCTION

In this section, we introduce two approaches to find
the minimal difference summarization tree (MDST) for
two datasetsD1 and D2. The first approach is a dynamic
programming approach, which can guarantee to find MDST
but is computationally prohibitive. The second approach is
a greedy approach.

In both dynamic programming approach and greedy ap-
proach, we will prune the subtree if its total cost is higher
than the root node cost (without the subtree), and replace
the subtree with a leaf node to indicate the corresponding
region is statistically different.

Finally, we note that in both approaches, we need to
invoke the Friedman-Rafsky two sample test. Since it needs
to repetitively construct minimal spanning tree on each
specific region, this becomes very expensive. In the next
section, we will introduce two novel techniques which can
significantly reduce such a cost.

A. Dynamic Programming for MDST

Different from the classical decision tree construc-
tion [18], we will first show MDST problem can be solved
by dynamic programming in polynomial time. Then, we
introduce heuristics to reduce the computational cost for
dynamic programming by discretization.

To facilitate our discussion, we introduce the following
notation. Let [b1, e1] : [b2, e2] : · · · : [bd, ed] be a d-
dimensional cube inRd, and letD1[[b1, e1] : · · · : [bd, ed]]
and D2[[b1, e1] : · · · : [bd, ed]] be two sets of points
associated with the region fromD1 and D2, respectively.
Clearly, each node in the tree is associated with such a cube
and its corresponding datasets. The possible cutting point
is simply the median point between any two consecutive
values on each dimension. Specifically, for dimensioni, we
can project all the data points inD1[[b1, e1] : · · · : [bd, ed]]
and D2[[b1, e1] : · · · : [bd, ed]] on that, and suppose in the
i-dimension, we have the unique pointsy1 < y2 < · · · , yt.
Then, the cut points areyi+yi+1

2 , where 1 ≤ i ≤ t − 1.
Further, let T [b1, e1] : · · · : [bd, ed]) be a difference
summarization tree on the cube[b1, e1] : · · · : [bd, ed]. Let
yi,j denote thej-th cut point fori-th dimension. Then, the
basic observation for the MDST is the following recursive
formulation:

min
T

Cost(T ([b1, e1] : · · · : [bd, ed])

= min
i,j

Cut(yi,j |[b1, e1] : · · · : [bd, ed]) +

min
T

Cost(T ([b1, e1] : · · · : [bi, yi,j] : · · · : [bd, ed]) +

min
T

Cost(T ([b1, e1] : · · · : [yi,j , ei] : · · · : [bd, ed])(2)

Here, theCut(yi,j |[b1, e1] : · · · : [bd, ed]) is the cost of the
summarization difference on the two datasets (Section III).
Using the chi-square test, if the cut is dependent, then, the
cut cost is6, and otherwise, the cost is2. Finally we note
that for the root node,bi andei, is simply the smallest and
largest value in thei-th dimension.

Algorithm 1 Dynamic Programming for MDST
Procedure MinTreeCost([b1, e1], · · · , [bk, ek])
Require: DatasetsD1 andD2

1: if Find Cube([b1, e1] : · · · : [bk, ek]){computed before} then
2: return Cost([b1, e1] : · · · : [bk, ek])
3: end if
4: if (|D1[[b1, e1] : · · · : [bk, ek]]|/|D2[[b1, e1] : · · · : [bk, ek]]| <

b) || (|D2[[b1, e1] : · · · : [bk, ek]]|/|D1[[b1, e1] : · · · :
[bk, ek]]| < b) {b is the lower bound for the statistical tests}
then

5: Cost([b1, e1] : · · · : [bk, ek]) ← min(|D1[[b1, e1] : · · · :
[bk, ek]]|, |D2[[b1, e1] : · · · : [bk, ek]]|) {treat as dependent
cut}

6: return Cost([b1, e1] : · · · : [bk, ek])
7: end if
8: if min(|D1[[b1, e1] : · · · : [bk, ek]]|, |D2[[b1, e1] : · · · :

[bk, ek]]|) < t {t is the lower bound for the statistical tests}
then

9: Cost([b1, e1] : · · · : [bk, ek]) ← (|D1[[b1, e1] : · · · :
[bk, ek]]|+ |D2[[b1, e1] : · · · : [bk, ek]]|) {treat as dependent
cut}

10: return Cost([b1, e1] : · · · : [bk, ek])
11: end if
12: if NOT Test-Diff(D1[[b1, e1] : · · · : [bk, ek]], D2[[b1, e1] : · · · :

[bk, ek]]) {statistically consistent using two sample test} then
13: Cost([b1, e1] : · · · : [bk, ek]) ← 0
14: return 0
15: end if
16: MinCost ← (|D1[[b1, e1] : · · · : [bk, ek]]| + |D2[[b1, e1] :
· · · : [bk, ek]]|)

17: for all dimensioni, 1 ≤ i ≤ d do
18: for all cut pointyi,j in i-dimensiondo
19: L← [b1, e1] : · · · : [bi, yi,j] : · · · : [bd, ed]
20: R← [b1, e1] : · · · : [yi,j , ei] : · · · : [bd, ed]

21: Cut← χ2

„

|D1[L]| |D1[R]|
|D2[L]| |D2[R]|

«

22: MinCost← min(MinCost,
Cut + MinTreeCost(L) + MinTreeCost(R))

23: end for
24: end for
25: Cost([b1, e1] : · · · : [bk, ek]) ←MinCost
26: return MinCost

The algorithm description of the dynamic programming is
shown in Algorithm 1. For each given cube, this algorithm
will first check if the difference summarization tree has been
computed before (Line1) or if it does not have enough data
for the two sample statistical tests (Line4 and Line8), in the
three cases, we directly return its cost. Then, we will perform
a two-sample test on the two datasets in the cube (Line12).
If we cannot reject they come from the same distribution, we
will assign this cube cost0 (a possible leaf node), and return
the cost immediately. Otherwise, we find the two datasets are
statistically different, and then, first we assume that the min
cost of this cube is the total number of points in this cube

(Line 16), this is used for pruning the subtree. Later we need
to try all possible cuts on each dimension (Line17 and18),
and apply the aforementioned recursive formula to find the
minimal cost for the difference summarization tree on this
cube (Line21 and 22). It is easy to see that this approach
guarantees to find the minimal difference summarization tree
on datasetsD1 andD2. Its computational cost in the worst
case isO((N3d + N2d × N2), whereN3d is the cost of
searching on all possible subproblems andN2d × N2 is
the total cost of invoking the two-sample test, which in
the worst case isO(N2) considering we use the Friedman-
Rafsky’s MST test (N = |D1| + |D2| = m + n). It also
needsO(N2d) to memorize the intermediate computation
(all cubes). WhenN and d are large this procedure is
apparently computationally prohibitive.

To make it more computationally feasible, we can try
to avoid looking at all possible cut points. Instead, we
would like to look at candidates that are more promising to
produce a small different summarization tree. In this work,
we employ a discretization preprocessing step to procedure
a fixed number (K) of intervals at each dimension on the
entire datasets, and then we only look at the discretization
points as the possible cutting points. This can reduce the
computational cost toO((K3d +K2d×N2). In addition, we
note that many discretization methods have been developed
for both supervised and unsupervised learning. Here, we
apply the Chi-merge [19] procedure which can merge two
statistically independent intervals together and each dataset
is used as a class label in the discretization step.

B. Greedy Construction Algorithm

Clearly, even with the discretization, the dynamic pro-
gramming can be prohibitive at high dimension datasets
(d is large). Thus, our second algorithm employs a greedy
construction procedure similar to the classical decision tree
classifier construction. At each step from the root node, it
greedily finds an optimal cut according to certain criteria.
Then it splits both datasets into two parts, respectively,
and constructs two children based on the cut. Then, it will
recursively split each child until we cannot reject that the
associated datasets are generated from the same distribution,
or not enough sample data points for the two-sample test.

However, the key problem is how to find the optimal cut
for a given node and its associated datasets. This problem is
clearly different from the classical decision tree construction
where they try to split the data into well-separated classes.
Typically, either the information entropy or gini index is used
to determine the best cut. Here, however, the two datasets
are most likely inseparable from one another, and our goal
is to provide the concise summarization of their differences.
Thus, a key insight is that at each node, we should try to split
its corresponding datasets into two parts, where both datasets
at each part are more likely to be statistically consistent.In
other words, if the two datasets are statistically different
globally on the cube, we can find where they differ most

and then select that point as the splitting point.
Our intuition can be formalized by the two-sample

Kolmogorov-Smirnov (K-S) test statistic, which is one of
the most widely used test for one-dimension two sample
test [6]. The K-S test statistic is defined on the top of the
empirical distribution functions from datasetsD1 and D2.
For any real valuet,

Fn(t) =
number ofXi,Xi ≤ t

n

and
Gm(t) =

number ofYi, Yi ≤ t

m

The functionsFn(t) andGm(t) are the empirical marginal
distributions on any dimension of the two setsD1 andD2,
respectively. Given this, the K-S statistic is defined as the
maximum difference between the empirical distributions:

D = max
−∞<t<∞

|Fn(t) − Gm(t)|

K-S statistic test is distribution-free, consistent, and more
importantly, it is invariant under any local slide or stretching
as long as the rank of these data points are unchanged along
the specific dimension.

Given this, our greedy algorithm findsK − S statistic
at each dimension and chooses the cut which results in the
maximalK−S statistic. Thus, we find the largest difference
for each marginal distribution and our cut will help to
reduce such a difference. Our overall greedy algorithm is
in Algorithm IV-B.

Algorithm 2 Greedy Programming for MDST
Procedure GreedyConstruction([b1, e1], · · · , [bk, ek])
Require: DatasetsD1 andD2

1: if (|D1[[b1, e1] : · · · : [bk, ek]]|/|D2[[b1, e1] : · · · : [bk, ek]]| <
b) || (|D2[[b1, e1] : · · · : [bk, ek]]|/|D1[[b1, e1] : · · · :
[bk, ek]]| < b) {b is the lower bound for the statistical tests}
then

2: construct leaf node;
3: return ;
4: end if
5: if min(|D1[[b1, e1] : · · · : [bk, ek]]|, |D2[[b1, e1] : · · · :

[bk, ek]]|) < t {t is the lower bound for the statistical tests}
then

6: construct leaf node;
7: return ;
8: end if
9: if NOT Test-Diff(D1[[b1, e1] : · · · : [bk, ek]], D2[[b1, e1] : · · · :

[bk, ek]]) {statistically consistent using two sample test} then
10: construct leaf node;
11: return ;
12: end if
13: MaxD ← 0
14: for all dimensioni, 1 ≤ i ≤ d do
15: MaxD ← max(MaxD, K − S(D1, D2, [bi, ei]));
16: end for{recursively construct the difference summarization

tree}
17: yi,j ← the cut withMaxD;
18: GreedyConstruction([b1, e1], · · · , [bi, yi,j], · · · , [bk, ek]);
19: GreedyConstruction([b1, e1], · · · , [yi,j , ei], · · · , [bk, ek])

The worst case time complexity of this algorithm is
O(|T | × N2) where |T | is the number of nodes in the
summarization tree which is typically small andN2 is the
worst case time-complexity for the two-sample Friedman-
Rafsky’s MST test. Clearly, the two-sample test, just like in
the dynamic programming, is the dominating factor for the
summarization-tree construction as both algorithms need to
invoke this procedure repetitively. How to speedup the two
sample test is the topic of the next section.

V. TECHNIQUES FOREFFICIENT TWO-SAMPLE TESTS

As discussed in the Section IV, the major computational
step of the Friedman-Rafsky test is the MST construction of
two datasets (Figure 1). In this section, we introduce a novel
techniques in alleviating the cost of the MST construction.
The basic idea of our approach follows from the observation
that the goal of MST is to extract the number of runs
(Figure 1) or homogeneous subtrees from MST for the test
statistics. Thus, if we can maintain very tight bound on the
number of runs, we may avoid the repeatedly reconstruction
of the MST. In order to achieve this, we establish several
interesting lemmas and theorems in this section.
Why bounds on the runs can help?We start with the
simple question on why bounds on the runs for MST can
help with the two sample statistical tests. Given two datasets
D1, D2, and a subregion (a cube)r, let D1[r] andD2[r] be
the datasets in the region. Letm = |D1[r]| andn = |D2[r]|.
Suppose the exact number of runs (homogeneous subtrees)
in the MST onD1[r] ∪ D2[r] is R and suppose we can
derive its lower bound and upper bound, denoted asRL and
RU . Further, recall that we use the normal distribution of
W (R) to determine the significant level (Formula 1). Then
we have the following lemma.

Lemma 1:Let zα be the critical value for the hypothesis
test where the significant level isα. Then, if W (RL) ≥ zα,
we cannot reject the null hypothesis (H0) that the two
datasetsD1[r] and D2[r] are generated from the same
distribution; and ifW (Ru) < zα, we can reject the null
hypothesis.
Proof Sketch:This can be derived by the observation:
W (RL) ≤ W (R) ≤ W (RU). 2

Based on this lemma, we can see that if we can derive a
tight bound for the number of runsR, then, in the most of
the cases,W (RL) ≥ zα or W (Ru) < zα, we can directly
reach a statistical conclusion for the hypothesis testing.In
other words, we only need to compute the exactRwhenzα

falls betweenW (RL) and W (RU), i.e., W (RL) ≤ zα ≤
W (Ru).
The relationship between global MST and local MST:In
order to derive the lower bound and upper bound without
repeatedly reconstructing MST, we utilize an interesting
relationship between global and local MSTs. Given two
datasetsD1, D2, and a region (a cube)r, let D1[r] and
D2[r] be the datasets in the region. LetT be the global
MST onD1[r]∪D2[r]. Let r1 andr2 be the two subregions

produced by a cut onr. Let T1 and T2 be the two local
MSTs on the two subregionsr1 and r2 (D1[r1] ∪ D2[r1],
and D1[r2] ∪ D2[r2]), respectively. Further, let us remove
all the edges in the global spanning tree which intersect the
cut, i.e., those edges whose two adjacent vertices in different
subregions. After the removal, the entire MSTT forms two
forests, one in each subregion. We denote them asF1 and
F2 for regions r1 and r2, respectively. See Figure 2 for
illustration.

(a) (b)

Figure 2. (a) the shortest edge with two nodes from same sample
and (b) the shortest edge with two nodes from different samples

We introduce the following procedure to construct local
MSTs based on the forests.Let the number of disjoint
subtrees in the forestF1 is n1. For any two subtreesi and
j in F1, denoted asSTi and STj , we find an edgeeij ,
which has the shortest distance to link these two subtrees.
Specifically, we have

eij = arg min
(p1,p2)

dist(p1, p2)

where,p1, p2 in subtreei and j, respectively. Given this, we
construct a concise graphG = (V,E), whereV corresponds
to each disjoint subtrees in the forest, i.e., we contract each
subtree into a vertex, andE = {eij |1 ≤ i < j ≤ n1},
i.e., those edges with the shortest distance connecting the
corresponding subtrees. Note thatG is a complete graph.
Then, we find a minimal spanning treeTG from G. Finally,
we can recover all the edges in theTG to the original edges
in D1[r1] ∪ D2[r1], and we denote them asE(TG). The
union betweenE(TG) ∪ F1 is the minimal spanning tree of
D1[r1] ∪ D2[r1].

The following theorem reveals the interesting relationship
between the forestF1 and MSTT1 and the correctness of
procedure in constructing the local MST.

Theorem 1:The minimal spanning tree (MST)T1 on the
local regionr1 can be constructed to include all the edges
in the global MSTT on regionr whose both adjacent data
points are in subregionr1. Further,E(TG)∪F1 is a minimal
spanning tree on local regionr1.

Due to page limitation, the proof will be containd in the
full version of the paper.
Bound Maintenance: The above theorem shows that we
can have a simple way to derive the MST for each subregion
from the global MST. However, it can still be costly to find
the edge with the shortest distance between any two subtrees.
Here, we will show that we may avoid explicitly reconstruct

MST on each part, by maintaining the tight bound of the
number of runs for each region utilizing the forest directly.

Theorem 2:Let R be exact number of runs in the MST
for region r1. Let Ri be the number of runs for thei-th
subtree,STi, of the forestF1 and letn1 be the total number
of disjoint trees inF1 Then our bound for the number of
runs is: n1

∑

i=1

Ri − (n1 − 1) ≤ R ≤

n1
∑

i=1

Ri

The detailed proof will be contained in the full version of
the paper.

VI. EXPERIMENTAL RESULTS

In this section, we are particularly interested in the follow-
ing questions: 1) How concise are the summarization-trees
generated from the greedy algorithm compared with the ones
generated from the dynamic programming method? 2) How
fast does the greedy algorithm perform compared with the
dynamic programming method? 3) How much we can gain
from the techniques which use the bound estimation and
compute the MST using Theorem 1?

To answer these questions, we first collected the cardi-
ology data from Cleveland Clicnic, and then collected a
number of real datasets from UCI machine learning archive
and CMU Statlib datasets archive. We first run our algorithm
on cardiology data with 2 dimensions, and then on synthetic
data with both low dimension and high dimension.

We have implemented our methods using C++. Our exper-
iments were performed on a computational cluster featuring
3.20 GHz dual-core Intel Xeon processors, and4GB main
memory.

A. Cardiology Data Set

We consider two data sets of cardiological data. The
first set includes only male patients whereas the second set
includes only female patients. Both sets have 4 attributes:
heart rate (heartrat), systolic blood pressure (systol), blood
vessel diameter (refdm), and platelet count (pltbsln). Our
first expirement determines differences between distributions
of heart rate and systolic blood pressure for males and
females. This test included 800 data points from each data
set.

We found that the distribution for the heart rate and
the systolic blood pressure, is different between males and
females. Applying our greedy algorithm, we discovered that
when the heart rate is bigger than 80, or between 60 to 80,
or the heart rate is less than or equal to 60 but the systolic
blood pressure is no more than 132, the distribution of heart
rate and systolic blood pressure is the same for males and
females. Only when the heart rate is less than 60 and the
systolic blood pressure is more than 132, males and females
have different distribution of heart rate and systolic blood
pressure. The total cost of our summarization tree is 168,
the number of nodes is 7, running time is 405 ms. On the
other hand, applying dynamic programming algorithm the

cost of summariztion tree is 146, the number of nodes is 5,
and the running time is 14397 ms.

Our second experiment determines differences between
distributions of blood vessel diameter and platelet count for
males and females. This test included 600 data points from
each data set. We first observe that data distributions for
both sets are very different. However, applying our greedy
algorithm, we found that when the platelet count is no more
than 253, or the platelet count is more than 253 and the
vessel diameter is no more than 3, or the platelet count
is more than 253 and the vessel diameter is more than 3,
male and female hava the same distribution of the vessel
diameter and platelet count. The summarization tree for
greedy algorithm has cost 12, consists of 5 nodes, and
running time of 488 ms. For dynamic programming, the tree
also has cost 12, consists of 5 nodes but with running time
of 14427 ms.

The result of greedy algorithm is shown in Figure.3
and Figure.4. Clearly, our approach shows an efficient and
effective way to summarize the difference between two
closely related datasets.

(a) (b)

Figure 3. (a) the cut for heart rate and systolic blood pressure with
greedy algorithm and (b) the corresponding summarization tree

(a) (b)

Figure 4. (a) the cut for vessal diameter and platelet count with
greedy algorithm and (b) the corresponding summarization tree

B. Synthetic Data

Here we list the synthetic datasets in Table II. For
experimental purpose, we have filtered out the categori-
cal attributes from the data as we currently focus on the
continuous attributes. Table II records the number of the
dimension of each dataset after such preprocessing. Further,
we generate two slightly different datasets from the original
datasets through sampling. The first datasetD1 is generated
by the sampling the original dataset without replacement and
by adding a small random noise to all dimensions of each
sampled data point. The second datasetD2 is generated
by first performing the same sampling and randomization
procedure as the first dataset. Then, we “bump up” certain
regions of the sampled data (filling in those regions with
oversampling and randomly shifted data points from other
regions). For our experiments, we set up|D1| = |D2| =
1000.

We report our results on two groups, the low-dimension
group with only2 or 3 dimensions and the high-dimension
group with more than3 dimensions.

Table II
DATASETS DESCRIPTION

Data Source Dimension # Records Data Archive
Dorothea 2-D 800 UCI
Madelon 2-D 1800 UCI
Concrete 3-D 1030 UCI
Haberman 3-D 306 UCI
Blood 4-D 374 UCI
Irish 4-D 500 CMU Statlib
Kidney 5-D 76 CMU Statlib
Riverflow 6-D 308 CMU Statlib
Fraser-river 6-D 157 CMU Statlib
Forest Fires 7-D 517 UCI
Cloud 9-D 1024 UCI
Places 10-D 329 CMU Statlib
Bodyfat 14-D 252 CMU Statlib

Results on Low Dimension Datasets:In this group of
experiments, we run both dynamic programming and greedy
algorithm on the four datasets which have either2 or 3
dimensions. Table III shows the cost and the size (total
number of nodes) of the summarization-tree constructed by
both dynamic programming and greedy algorithm. We can
see that the greedy algorithm actually produce the summa-
rization tree with similar size to the dynamic programming.

Table IV shows the running time comparison between
dynamic programming and greedy algorithms. We also con-
sider the three different versions for the MST reconstruction
on dataset on each local region.Scratch is to reconstruct
the MST from the scratch, andForest is to reconstruct the
MST using Theorem 1, andBound is to apply the bound
estimation (Theorem 2) to avoid the reconstruction and
only reconstruct when the bound fails (Lemma 1) and the
construction method is using theForestin the latter case. We
apply these three methods for the greedy algorithm and the

dynamic programming. We can see that theBoundis much
faster thanForest in dynamic programming while slightly
faster in greedy algorithm. And both of them are much
faster than theScratchin dynamic programming and greedy
algorithm. Finally, the greedy algorithm is much faster than
the dynamic programming approach.

Table III
RESULT ON LOW DIMENSION

Dynamic Algo. Greedy Algo.
Cost # Nodes Cost # Nodes

Dorothea 392 19 429 19
Madelon 6 3 6 3
Concrete 243 19 314 23
Haberman 6 3 6 3

Table IV
RUN TIME ON LOW DIMENSION (IN M ILLISECONDS)

B: Bound F: Forest S: Scratch

Dynamic Algo. Greedy Algo.
B F S B F S

Dorothea 24669 36494 57241 323 338 956
Madelon 10022 17110 43187 252 253 581
Concrete 56232 67444 107491 457 459 1294
Haberman 118639 178055 452179 456 461 1197

Results on High Dimension Datasets:Since the dynamic
programming cannot be applied on the high dimensional
datasets (it runs out of memory), we focus on reporting the
greedy method here. Table V shows the cost and size of
the constructed summarization tree in the second and third
column, respectively. The fourth, fifth and sixth columns
shows the running time of theBound, Forest and Scratch
technique for reconstructing the MST. We can see here the
BoundandForesttechniques gain a250% to 300% speedup
from theScratch. This is higher than the gain we get from
the low dimension dataset. We believe one of the reasons for
the gain from the high dimension datasets is that the distance
computational cost becomes a more significant factor as the
dimension increases.

To sum, we can see that theBoundand Forest approach
work very well for speeding up the summarization tree
construction.

VII. R ELATED WORK

In database research community, change detection is a
very important topic in understanding data streams. Ganti
et al.[20] developed a framework to measure the devia-
tion between two data sets. They focus on deriving the
deviation measure through data mining models, including
frequent itemsets, decision trees, and clustering. Kifer et
al.[21] proposed a two-sample test which can allow user
specify the interested regions and domains for the difference
detection between two datasets. However, their method is

Table V
RESULT ON HIGH DIMENSION (IN M ILLISECONDS)

Greedy Algo. (B: Bound F: Forest S: Scratch)
Cost # Nodes Time (B) Time (F) Time (S)

Blood 326 16 384 403 1305
Irish 83 14 700 726 1878
Kidney 102 22 666 691 2118
Riverflow 72 11 728 746 2169
Fraserriver 74 13 670 672 2032
ForestFires 39 9 836 855 2182
Cloud 7 3 1061 1062 2624
Places 14 3 1476 1479 3743
Bodyfat 65 13 1644 1683 4748

built upon the order statistics and Kolmogorov-Smirnoff
tests which cannot be easily expanded to multidimensional
case. Aggarwal [22] proposes the velocity density estima-
tion method based on the kernel methods to diagnose the
change in evolving data streams. Zhu et al.[23] proposed
a data structure calledShifted Wavelet Treeto monitor
elastic bursts. Dasu et al. [24] provides a change detection
methods by generalizing Kulldorff’s spatial scan statistics.
Different from these works, we try to derive a parsimonious
explanation of the difference between datasets, and our work
is built upon the two sample statistic tests.

Statistical research community has developed methods for
multivariate two sample tests. Besides the aforementioned
Friedman-Rafsky test[7], several other methods have been
developed for the same purpose [9], [25], [10]. These
methods either have a higher computational complexity or
are not as efficient in describing differences between two
sets.

Finally, we note that recent work [13] in data mining
community is developed for statistical test if there is a
change between two datasets. Their method is based on the
likelihood ratio and kernel distribution construction. Even
though they showed empirically this method can detect the
change quite effectively, it is still not clear if it is a consistent
test.

VIII. C ONCLUSIONS

In this paper, we have introduced a new research prob-
lem on how to derive a parsimonious explanation of the
difference between two datasets. We have proposed a tree
based approach for this purpose. It is built upon rigorous
two sample statistical tests. We have described two basic
approaches, a dynamic programming approach and a greedy
method, to construct the summarization-tree. Besides, we
also studied on how to apply Friedman-Rafsky’s MST
statistic test for tree construction. We discover a couple
of interesting results on the global minimal spanning tree
(MST) and its subgraph (which is forest). These results
allow us to significantly reduce the complete reconstruction
of the minimal spanning tree on a subsets of the data
when a global MST is given. Our experimental results show

that the dynamic programming approach can work on the
low dimension data but is very computationally demanding.
The greedy algorithm is very fast and can construct the
summarization-tree with conciseness close to the ones being
constructed by dynamic programming.

We believe that this work provides a first attempt in
constructing a parsimonious explanation of the difference
between two datasets. However, this work also gives rise to
a number of interesting research questions. First, how can we
extend the work to the datasets which have both categorical
and numerical attributes? Second, if a local region move
from one place in one dataset to a different place in another
dataset? Can we automatically detect such difference and
add the “moving” as a primitive for difference explanation?
In our future work, we plan to investigate these problems.

IX. A CKNOWLEDGMENT

Authors are extremely grateful to Dr. S. Ellis from Cleve-
land Clinic for a permission to use his cardiological data
file.

REFERENCES

[1] G. I. Webb, S. Butler, and D. Newlands, “On detecting
differences between groups,” inKDD ’03.

[2] S. D. Bay and M. J. Pazzani, “Detecting group differences:
Mining contrast sets.”Data Min. Knowl. Discov., vol. 5, no. 3,
pp. 213–246, 2001.

[3] G. Dong and J. Li, “Efficient mining of emerging patterns:
Discovering trends and differences.” inKDD ’99.

[4] S. Sarawagi, “Explaining differences in multidimensional
aggregates,” inVLDB ’99.

[5] D. Agarwal, D. Barman, D. Gunopulos, N. E. Young, F. Korn,
and D. Srivastava, “Efficient and effective explanation of
change in hierarchical summaries,” inKDD ’07.

[6] M. Hollander and D. A. Wolfe,Nonparametric Statistical
Methods, 2nd Edition. Wiley Series in Probability and
statistics, 1999.

[7] J. H. Friedman and L. C. Rafsky, “Multivariate generaliza-
tions of the wald-wolfowitz and smirnov two-sample tests,”
The Annals of Statistics, vol. 7, no. 4, pp. 697–717, 1979.

[8] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,
Numerical Recipes. The Art of Scientific Computing, 3rd
Edition. Cambridge University Press, 2007.

[9] N. Henze, “A multivariate two-sample test based on the
number of nearest neighbor type coincidences,”The Annals
of Statistics, vol. 16, no. 2, pp. 772–783, 1988.

[10] P. R. Rosenbaum, “An exact distribution-free test comparing
two multivariate distributions based on adjacency,”Journal
Of The Royal Statistical Society Series B, vol. 67, no. 4, pp.
515–530, 2005.

[11] A. Wald and J. Wolfowitz, “On a test whether two samples
are from the same population,”The Annals of Mathematical
Statistics, vol. 11, no. 2, pp. 147–162, 1940.

[12] D. A. Darling, “The kolmogorov-smirnov, cramer-von mises
tests,”Ann. Math. Statist, vol. 28, no. 4, pp. 823–838, 1957.

[13] X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical
change detection for multi-dimensional data,” inKDD ’07.

[14] N. Henze and M. D. Penrose, “On the multivariate runs test,”
Ann. Statist., vol. 27, no. 1, pp. 290–298, 1999.

[15] J. L. Bentley and J. H. Friedman, “Fast algorithms for
constructing minimal spanning trees in coordinate spaces,”
IEEE Trans. Comput., vol. 27, no. 2, pp. 97–105, 1978.

[16] O. Nevalainen, J. Ernvall, and J. Katajainen, “Finding min-
imal spanning trees in a euclidean coordinate space,”BIT,
vol. 21, no. 1, pp. 46–54, 1981.

[17] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and
E. Welzl, “Euclidean minimum spanning trees and bichro-
matic closest pairs,”Discrete Comput. Geom., vol. 6, no. 5,
pp. 407–422, 1991.

[18] J. R. Quinlan,C4.5: Programs for Machine Learning. San
Mateo, CA: Morgan Kaufmann, 1993.

[19] R. Kerber, “Chi-merge: Discretization of numeric attributes,”
in the 9th National Conference on Artificial Intelligence,
1992.

[20] V. Ganti, J. Gehrke, and R. Ramakrishnan, “A framework for
measuring changes in data characteristics,” inPODS, 1999,
pp. 126–137.

[21] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in
data streams,” inVLDB ’04.

[22] C. Aggarwal, “A framework for diagnosing changes in evolv-
ing data streams,” inACM SIGMOD, 2003.

[23] Y. Zhu and D. Shasha, “Efficient elastic burst detection in
data streams.” inKDD. ACM, 2003, pp. 336–345.

[24] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi, “An
information-theoretic approach to detecting changes in multi-
dimensional data streams,” inInterface, 2006.

[25] M. Schilling, “Multivariate two-sample tests based on nearest
neighbors,”J. Amer. Math. Soc., vol. 81, pp. 799–806, 1986.

