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Abstract—Understanding the differences between two
datasets is a fundamental data mining question and is also
ubiquitously important across many real world scientific ap-
plications. In this paper, we propose a tree-based framework to
provide a parsimonious explanation of the difference between
two distributions based on rigorous two-sample statistical test.
We develop two efficient approaches. The first one is a dynamic
programming approach that finds a minimal number of data

subsets that describe the difference between two data sets.

The second one is a greedy approach that approximates the
dynamic programming approach . We employ the well-known
Friedman’s MST (minimal spanning tree) statistics for two-
sample statistical tests in our summarization tree construction,
and develop novel techniques to speedup its computational
procedure. We performed a detailed experimental evaluation
on both real and synthetic datasets and demonstrated the
effectiveness of our tree-summarization approach.
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I. INTRODUCTION

between two datasets. It can discover some local diffesence
between two distributions, but it does not try to provide
a parsimonious explanation for the difference between two
distributions. Another work in a spirit of this problem is to
provide a parsimonious explanation of change for OLAP ap-
plications [4], [5]. Given a hierarchical framework, they t

to summarize the difference of aggregations. Howevery thei
work is quite limited since they focus on the aggregation
where the hierarchical structure is already given and their
approach cannot be applied for the generalized distributio
setting.

In this paper, we provide a summarization framework to
describe differences between two data sets, each of which
consists of points in a multidimensional space. Intuitiyel
suppose that we were given two sets of points: one set of
black and the other set consists of red points, distributed i
a multidimensional space. Contrary to being well-sepdrate
these two sets of points seem intertwined with one another.
Suppose that despite their similarity, using the well-know

Understanding the differences between two datasets is tavo-sample tesin statistical data analysis [6], we cannot

fundamental data mining problem and it is also ubiquitouslyaccept the hypothesis that these two datasets are being
important across many real world applications and scientifi generated from the same distribution. (For convenience,
disciplines. In pharmaceutical study, doctors would like t we say they are statistically different.) Thus, the regearc
learn patients responses from two competitive or relateghroblem here is1ow can we concisely summarize or explain
drugs. Specifically, if the responses are statisticallfediint, the differences between these two sets of points?
doctors need to understand the differences with respect to We propose here a tree-based framework to provide a par-
a list of different factors, such as blood pressure,age, etcsimonious explanation of the differences between two data
Frequently, they may find that in most of the parametersets. At the high level, the tree summarization framework
ranges or conditions, the responses are quite similar.,Thushares certain similarity with the well-known decisioadr
the key problem is how can they find a concise descriptiorscheme. Basically, from the root, each internal node of the
to summarize differences and/or similarities between theree corresponds to a cut on a specific dimension, which will
responses to these two drugs? Similar problems can alsecursively split the multidimensional space into two part
appear frequently in the business domain. For instance, thdowever, in contrast to the decision-tree scheme, our goal
overall sale of the December of 2008 is quite different fromis not to try to separate the two sets of data points. Instead,
the overall sale of the December of 2007. However, the imthe tree illustrates a parsimonious description on whege th
portant problem is to learn where customers actually spendistributions differ. Specifically,
their money, i.e., we need to understand how customers 1. We provide the study on the problem of constructing
spend their money towards different products at two differe a concise summarization of the differences between two
time points. distributions/datasets and formulate a tree-summaoizati
Despite the importance of this problem, little researchframework based on rigorous two-sample statistical test.
in data mining has been done to derive a summarization 2. We develop two efficient approaches to construct the
framework to concisely describe the differences betweesummarization tree. The first one is a dynamic programming
two datasets. Contrast mining is a closely related effdst [L approach. The other one is a greedy approach.
[2], [3], which tries to discover the significant differersce 3. In our summarization tree construction, we employ



the well-known Friedman’s MST (minimal spanning tree) Friedman-Rafsky test[7] is one of the most well-known and
statistics for two-sample statistical tests [7], and dewel computationally efficient multivariate two sample test.eTh
novel techniques to speedup the computation procedure. basic idea of this approach is to first construct a minimum
4. We perform a detailed experimental evaluation on bottspanning tree (MST) for all the data points i, U Dy
real and synthetic datasets and demonstrate the effeefigen in the multi-dimensional Euclidean Space. Then, to remove
and efficiency of our tree-summarization approach. all the edges in the MST whose two adjacent nodes (data
points) come from different datasets, i.e., one frémand
another fromD,y. Thus, the MST becomes a forest with
In this section, we will first describe thevo-sample test  many disjoint subtrees. In particular, all the subtreeso(al
[6], which forms the basis of our problem formulation and referred to as-uns) in the forest contain the same type of
our approach to its solution. nodes (data points from the same dataset). Finally, the test
statistic R, ,, is the total number of those disjoint subtrees
in the resulting forest.

Il. PRELIMINARY: MULTIVARIATE TWO-SAMPLE TEST

A. Two-Sample Test
Consider two sets of data poini$; ={ X1, X, --- , X,,}

and D, = {Y7, Ys, --- , Y, } in d-dimensional space, where
m andn are the size of dataset$; and D, respectively. We X
interested in determining if they are likely to be generated 0 0
from the same underlying distribution. This question is .\/z L
addressed in the classicalo-sampletest. Let X; andY; 0
be independent samples from unknown distributidf(s) 0—0
and G(z), respectively. The two-sample test considers two 0 { ]
hypotheses: a null hypothesi,: F(x) = G(z) against the @) (b)
alternative hypothesi&l;: F(x) # G(z).

A good test statistic is expected to satisfy thistribution- Figure 1. (a) global MST and (b) the runs of MST
independenandconsistenrequirements [8], [9], [10], [11].  These concepts are illustrated in Figures 1. Figure 1(a)

An exact distribution-independent test requires that undegpows the global MST of two samples of 8 points (each point
the null hypothesis, ifmin(m,n) — oo, the test statistic jn one sample is assigned with same labels), while Figure
does not depend on the unknown distributiBi) (asymp-  1(p) shows the result after removing edges that liking nodes
totically distribution free), and the limiting distribath is  from different samples. Note that a run is a disjoint subtree
known. The test also needs to be consistent against thg the forest whose data points are all from the same data
alternative Hy, i.e., whenmin(m,n) — oo, the probabil-  set. |ntuitively, a rejection off, corresponds to the case
ity of rejecting the null hypothesis converges to one. INyhen we have a relatively small number of subtrees (runs).
other words, whenF'(z) # G(z), we will surely reject |n other words, the two sets of points are relatively well-
the null hypothesis as the number of samples approachegparated.

infinity. In addition, we note that when we reject the null Formally, it has been proven that for large sample size

hypothesis using any statistical test, we in fact prove it (min(m,n) — oo andm/(m +n) — p # 0, under thef,
distributions are different, and thus, we can say these twg,q dist;ibution of

datasets arstatistically differentHowever, in statistics, one
can never prove the distributions to be the same even with (R —(r 1 2mn 1/2
. . m,n) — m,n + + 1

large amount of data. Thus, in this paper, when we are not ( ) ' ( m+ n) /(tm+n)"oa) (1)
be able to reject the null hypothesis, we just say they are o
“statistically consistefitfor simplicity. approaches the standard normal distribution, whefe=

There are a lot of two-sample tests being developed ovef(" + 3Var(Da)(1 — 2r) (r = 2p(1 — p) and Var(Dq)
the last several decades [6], [12], [11]. The majority ofthe S the variance of the degree of any vertex in the MST
are on one-dimension two sample test. To generalize the@nd can be easily approximated [14]). Given this, for a
to multidimensional sets is not trivial. Also, the well-kmo ~ Significance levela, we can reject the null hypothesis if
chi-square test is fobinned distribution[8]. However, it W < za WhereP(z < z,) = a, z, is the critical value for
is not aconsistenttest for continuous space, i.e., the chi- the normal distribution. Using this procedure, we can ekpec
square test will not be able to differ two datasets if theythat all the internal nodes are statistically different amaist
indeed come from different distributions when the samplef the leaf nodes are statistically consistent (cannottefe

size approximates infinity. null hypothesis) (ormin(m,n) < t, wheret is pre-defined
. o threshold).
B. Friedman-Rafsky MultiVariate Two-Sample Test Friedman-Rafsky’s MST statistic test is a clever extension

Several methods [7], [9], [10], [13] have been developedof the univariate Wald-Wolfowitz test[11] (just imagineeth
for the two sample test in multidimensional space or simplytree is projected into one dimension space and becomes
for the multivariate two sample test. Among them, thea line and a run is simply a set of consecutive points all



from the same datasets). It has been proven that Friedman-  consistent, ortoo small to be further partitioned. In the
Rafsky’'s MST statistical test is distribution-independand latter case, a lower bound on the minimal number of
consistent [14], [7]. It is also a rather computational data points in each set is defined to make the statistical
efficient test procedure since several methods can coinstruc  test meaningful.

the minimal spanning tree in the Euclidean space in almost At each nodev;, we need to run a statistical test

O(N log N) computational complexity, wher& = m +n to see if its associated sets of data point,|v;]
is the total number of data points [15], [16], [17]. and Ds[v;] statistically come from the same distri-
We note that the multivariate two sample test is the basis bution or not. In other words, we have a null hy-
of our summarization framework to describe the statistical pothesisFp, [,1(2)=Gp,[v,](*) against the alternative
difference between two datasets. As we will see, our tree- Fp,w)(x) # Gp,v,(z). We apply the aforemen-
based summarization approach can in general utilize any tioned Friedman-Rafsky’'s MST two sample test of
available multivariate two-sample tests. But most of them Subsection 1I-B for this purpose.
do not have the nice properties of being distribution in- 3) Cut: Each cut is associated with the internal node
dependent, consistent, and computationally efficient as th v; describes asummarized viewof the associated
Friedman-Rafsky’s MST statistic test. Thus, in this worle, w datasets,D;[v;] and Ds[v;]. Specifically, for each
focus on the Friedman-Rafsky's MST statistic test method internal nodev;, its cut[A; : z;] splits its associated
to describe statistical differences between two datasets.  data,D;[v;] andDs[v;] into two parts: letv; be its left
Since our summarization-tree will repeatedly invoke the te child andv;, be its right child. Then, we hav®, [v;]
procedure, we will also develop novel methods to further and Ds[v;] for the left child andD; [v] and Ds[vy]
speedup its computation (Section V). for the right child. To understand the summarized view
of its left child and right child , we assume that the
Il. THE SUMMARIZATION FRAMEWORK: A cut creates two bins for the associated datgy;] and
TREE-BASED SCHEME Ds[v;]. In other words, we have 2 x 2 contingency
In this section, we introduce our tree-based framework table, where each row corresponds to a dataset, and
to provide a parsimonious description of the differences the columns correspond to the bins.

between two datasets.

(VR o ] Left Child (v;): A; < z; | Right Child @r): A; > =,
Summarization Tree: A summarization tree at the high Dy [D1lv;]] [D1[vr]]
level is a binary tree which recursively partitions the rialijt Dy [D2[v;]] D> [vs ]

Table |

mensional space into smaller regions. Each node of the tree STATISTICAL TEST FOR THESUMMARIZED VIEW

corresponds to a region in the multidimensional space, and
all the data points in both datasdfs and D, that belong to We can use the chi-square test to determine whether
that region. The root has the entire multidimensional space the quantities in the first row and the quantities in the

(R%). The region associated with each node is described  second row come from the same distribution [8]. If we

recursively through a cut associated with each internaénod can reject that they come from the same distribution,
Specifically, the cut of each internal nodgis denoted as we say the cut is a dependent cut. Otherwise, we say
[A; : x;], where A; is the cut attribute and:; is the cut the cut is an independent cut.

value. This cut will split the region and all the data pointS The main intuition and/or motivation of this frame-
in that region into two parts and each part belong to one ofyork is based on the observation that two related
the internal node’s two children: the left child has all the gatasets/distributions often tend to be the similar in most
data points of its parent whosé; dimension is less than or parts of space. However, they differ either because there is
equal to ther; (A; < x;) and the right child has those data 3 shift of data distribution from one part of the space to
points whoseA; dimension is bigger tham; (A; > =:).  another part of the space, or there is a hot spot or area in
Finally, the leaf nodes do not have any cut. the space. Those are likely to be the events resulting imto th
We use this tree structure to describe the diﬁerencegiﬁ:erences between two datasets. For instance, Corls'gjeri
between any two datasetS; and D,. The tree has the jn the business example, the sale of this December is close
following properties: to the sale of the last December because the customers in
1) Internal Nodes: Let D;[v;] and Ds[v;] be the sets total spend less money on the luxury products, such as DVD
of data points belonging to the region described byor games, but their purchase distribution is still similfr i
interval nodewv;. For any internal node);, we can we exclude such high level difference. Indeed, the decision
reject the null hypothesis thdd, [v;] and Ds[v;] are  tree construction allows us to focus on the local regions and
generated from the same distribution. In other wordswhen we do the two-sample tests, the global effect of the
the associated two sets of data points of any internatlifference is isolated and does not affect the two-samle te
node fromD; and D, are statistically different. on the local regions. Specifically, the two sample test on the
2) Leaf Nodes: The sets of data points associated with D, [v;] and Dsv;] is totally independent from the the rest
leaf nodev;, D, [v;] and D2 [v;], either are statistically of data points, i.e.D;\ D1 [v;] and Da\ Da[v;].



We also note that in the traditional statistical analydis, t two datasetd),; and D, is the difference summarization tree
global distribution difference is typically captured thgh 7" which has the minimal cost, i.e., the minimal difference

the mean-shift or scaling. summarization tree:
Here, we assume that both distributions are properly argmjinC’ost(T)
normalized and thus we do not need to handle such dif-
ference explicitly. Besides, in this framework, we do not IV. ALGORITHMS FORTREE CONSTRUCTION

consider the multiple comparison/inference problem [6] as | this section, we introduce two approaches to find
we treat each two-sample test independently, and we are Nngie minimal difference summarization tred/(DST) for
interested in deriving an overall statistical significafoe (o datasetsD; and D,. The first approach is a dynamic
_the entire summ_arization-tree. However, if this is preéd_rr programming approach, which can guarantee to find MDST
i.e., we would like to treat all the two-sample tests in apt js computationally prohibitive. The second approach is
summarization-tree as a whole, then we can utilize the methy greedy approach.

ods, such as Bonferroni correction, to adjust the signiiean |, poth dynamic programming approach and greedy ap-
level of each test. proach, we will prune the subtree if its total cost is higher
Minimal Summarization Tree Problem: Given this, we than the root node cost (without the subtree), and replace
introduce theminimal difference summarization tree (MDST) the subtree with a leaf node to indicate the corresponding
problem Let 7' be a difference summarization tree. We region is statistically different.

assign each node in the tree a cost. The main idea is that Finally, we note that in both approaches, we need to
if we cannot reject two distributions are same (statistycal jnyoke the Friedman-Rafsky two sample test. Since it needs
consistent), we do not need to output the description of theg repetitively construct minimal spanning tree on each
two distributions. For other cases, we need to output eertaigpecific region, this becomes very expensive. In the next

information to describe their differences. Those infoliovat  section, we will introduce two novel techniques which can
will be associated with each node in the tree and the costgignificantly reduce such a cost.

of each node reflect the minimal description length for such
information. A. Dynamic Programming for MDST

For each internal node;, if the cut is dependent, the  pigtorant from the classical decision tree construc-

cost of the noderost(v;) = 6; if the cut is independent, o, (18] we will first show MDST problem can be solved
the cost of the nodeost(v;) = 2. This is because if it by dynamic programming in polynomial time. Then, we

is independent cut, we only need to record two valueSjnygyce heuristics to reduce the computational cost for

the cut point and the dimension, while if it is depe”dentdynamic programming by discretization.

cut, we need to record s valugs: .the.cut point, the di- "5 facilitate our discussion, we introduce the following
mension, and the summarized distribution for chi square, Jiotion. Let br,e1] : [bases] : -~ : [baeq] be ad-
test. For each leaf node;, if we cannot reject that its dimensic.)nal cuge 1irR;1 a|2'1,d 2Ietb 0 'e ] o lba, eall
associated two datasef3; [v;] and Ds[v;] come from the and Dy[[by, 1] ) (101, €1 : ba,

same d|itr|but|obn, Its CO,S‘EOSt,(”i;L 7 0, arlld |o_|therW|se, associated with the region from; and D,, respectively.
cost(v;) = number of points in the leaf node. However, Clearly, each node in the tree is associated with such a cube

there are some cases need to be considered carefully. Ogﬁd its corresponding datasets. The possible cutting point

is that if in the leaf node, the number of points from%? simply the median point between any two consecutive

ong dataset |s_too small, let us say.5, we assign the legfy) o5 on each dimension. Specifically, for dimensiowe
node cost(v;) = number of points in the leaf node. o5 hroiect all the data points P [[b1, €] : - : [ba,eq]]
Another case is that if the number of points from one datasej , Dollbr,e1] : --- : [baeq]] ON that, and suppose in the
is just a very small proportion of the number of poi.ntjc, z‘-dimensio’n, we have th,e unique p07im§< Yo < e U
from another dataget (e.g. 5%), then appl_ymg the stastlstlc-l-hen' the cut points ar%ﬁé,m, wherel < i < t — 1.
test has no meaning, too. Thus we assign the leaf nOdEurther let T[by, e1] [ba,eq]) be a difference
cost(v;) = number of points from smaller dataset in ’ ol dod

he | de. Gi his. th Il description f summarization tree on the culf,e;] : --- : [bg, eq]. Let
! € eaf node. Given this, the overa escrlpt|o_n or tree y; ; denote thej-th cut point fori-th dimension. Then, the
T is simply the sum of all the costs from its nodes, .,

' basic observation for the MDST is the following recursive
Cost(T) = ., er cost(v;). (The cost of each node can .\ 1-tion:

be modified according to different applications.)

[ba,eq]] be two sets of points

The example of calculating the cost and constructing the min Cost(T([by,e1] : - - : [ba,ea)
tree is given in the experiment results section. See Figure. T
and Figure.4. = minCut(yj[[by, ex] : -+ [ba, eal) +
Definition 1: (Minimal Difference Summarization Tree mjinCost(T([bl,eﬂ st [bisyig] o [based)) +

(MDST) Problem) Given two datasetsd); and D,, the ]
most parsimonious description of the differences between min Cost(T([by,ex] -+ < [yig,ei] - -+ : [ba, ea]) (2)



Here, theCut(y; ;|[b1,e1] : --- : [ba, eq]) is the cost of the (Line 16), this is used for pruning the subtree. Later we need
summarization difference on the two datasets (Section Ill)to try all possible cuts on each dimension (LiHeand 18),
Using the chi-square test, if the cut is dependent, then, thand apply the aforementioned recursive formula to find the
cut cost is6, and otherwise, the cost i5 Finally we note  minimal cost for the difference summarization tree on this
that for the root nodeh; ande;, is simply the smallest and cube (Line21 and 22). It is easy to see that this approach

largest value in theé-th dimension. guarantees to find the minimal difference summarizatios tre
on datasetd); and D-. Its computational cost in the worst
Algorithm 1 Dynamic Programming for MDST case iSO((N3¢ + N2¢ x N?), where N3¢ is the cost of

Procedure MinTreeCost{by, ei], - - - , [bx, ex]) searching on all possible subproblems aNd? x N? is

Require: DatasetsD; and D, the total cost of invoking the two-sample test, which in

; i ':é?g;f”g%(sbth}fl]e;}'::f.[l?’“[;)i’“gk{]gomp”ted beforethen  the worst case i€)(N?) considering we use the Friedman-

3 end if e Rafsky’'s MST test V. = |D1| + |D2| = m + n). It also

4 if (|Da[[by,ex] o -+ [br, ex]]| /| D2[[b1, e1] : - [bk,ek]]\ < needsO(N??) to memorize the intermediate computation

b) || (|D2[[b1,61] S [bk,ek]]\/|D1[[b1,el] (all cubes). WhenN and d are large this procedure is
[bk, ex]]| < b) {b is the lower bound for the statlstlcal te‘ﬁts apparently computationally prohibitive.

y the(?ost{bl ] oot bser]) — min([ Dby, e] ¢ oo To make it more computationally feasible, we can try
[bk,ek}]f Da|[br, e1] : O (e, ex]]]) {treat as dependent t0 avoid looking at all possible cut points. Instead, we
cut} would like to look at candidates that are more promising to

6: return Cost(bi,er] : - : [by,ex]) produce a small different summarization tree. In this work,

;3 ﬁ‘“ilifn('D v, e] - e call. | Dallbr. 1] we employ a discretization preprocessing step to procedure

: i ' : . .

[bk, ex]]]) i tI{t 1|s the Iower t;cc;uﬁld for ihelét;nstlcal te}*ts a fl_xed number ) of intervals at each dlmenspn on the
then entire datasets, and then we only look at the discretization

9:  Cost(bi,e1] : -+ : [br,ex]) — (IDi[[bi,ex] : -+ : points as the possible cutting points. This can reduce the
[br, ex]]] + | Da[[br, e1] : - - - : [br, ex]]]) {treat as dependent computational cost t@((K3?+ K29 x N?). In addition, we
cut} note that many discretization methods have been developed

12 emrje:?rn Costbr, ex] : -+ [bx, ex]) for both supervised and unsupervised learning. Here, we

12: if NOT Test-Diff(Dy [[b1, e1] : -+ - : [br, ex]], Da[br,ex] : -+ - - apply the Chi-merge [19] procedure which can merge two

[br, ex]]) {statistically consistent using two sample jetten statistically independent intervals together and eachsgat

13:  Cost(bi,e1]: - : [br,ex]) < 0 is used as a class label in the discretization step.

14:  return 0

15: end if ; ;

16: MinCost — (IDi[[brer] = -+ [besexll| + |Dallbrse1] B. Greedy Construction Algorithm

-t [br, er]]]) Clearly, even with the discretization, the dynamic pro-

17: for all dimensioni, 1 <7 < d do gramming can be prohibitive at high dimension datasets

18:  for all cut pointy; ; in i-dimensiondo (d is large). Thus, our second algorithm employs a greedy

;g; IL%: [[2112]} - [[Zlf/é]} A [ﬁi”eei}] construction procedure similar to the classical decisieg t
o1 Cut — 2 ( |Di[L]] | D[R] ) classifier construction. At each step from the root node, it

’ |D2[L]|  |D2[R]| greedily finds an optimal cut according to certain criteria.
22: MinCost « min(MinCost, Then it splits both datasets into two parts, respectively,

Cut + MinTreeCost(L) + MinTreeCost(R)) and constructs two children based on the cut. Then, it will

23: f . . . : .

22: eng'}gr or recursively split each child until we cannot reject that the
25: Cost(b, e1] : -+ : [bk, ex]) « MinCost associated datasets are generated from the same disinibuti
26: return  MinCost or not enough sample data points for the two-sample test.

However, the key problem is how to find the optimal cut

The algorithm description of the dynamic programming isfor a given node and its associated datasets. This problem is
shown in Algorithm 1. For each given cube, this algorithmclearly different from the classical decision tree conginn
will first check if the difference summarization tree hasrbee where they try to split the data into well-separated classes
computed before (Liné) or if it does not have enough data Typically, either the information entropy or gini index isad
for the two sample statistical tests (Lideand Line8), inthe  to determine the best cut. Here, however, the two datasets
three cases, we directly return its cost. Then, we will penfo are most likely inseparable from one another, and our goal
a two-sample test on the two datasets in the cube (L¥)e is to provide the concise summarization of their difference
If we cannot reject they come from the same distribution, weThus, a key insight is that at each node, we should try to split
will assign this cube codt (a possible leaf node), and return its corresponding datasets into two parts, where both e@tas
the cost immediately. Otherwise, we find the two datasets arat each part are more likely to be statistically consistknt.
statistically different, and then, first we assume that tlire m other words, if the two datasets are statistically différen
cost of this cube is the total number of points in this cubeglobally on the cube, we can find where they differ most



and then select that point as the splitting point. The worst case time complexity of this algorithm is
Our intuition can be formalized by the two-sample O(|T| x N?) where |T| is the number of nodes in the
Kolmogorov-Smirnov (K-S) test statistic, which is one of summarization tree which is typically small aié® is the
the most widely used test for one-dimension two samplevorst case time-complexity for the two-sample Friedman-
test [6]. The K-S test statistic is defined on the top of theRafsky’'s MST test. Clearly, the two-sample test, just like i
empirical distribution functions from datasef$; and D;.  the dynamic programming, is the dominating factor for the

For any real value, summarization-tree construction as both algorithms need t
number of X;, X; <t invoke this procedure repetitively. How to speedup the two
Fo(t) = - sample test is the topic of the next section.
and number ofY;,Y; < t V. TECHNIQUES FOREFFICIENT TWO-SAMPLE TESTS
Gm(t) = — . . . . .
m(?) m As discussed in the Section IV, the major computational

step of the Friedman-Rafsky test is the MST construction of
two datasets (Figure 1). In this section, we introduce alnove
echniques in alleviating the cost of the MST construction.
he basic idea of our approach follows from the observation
that the goal of MST is to extract the number of runs
D= max [F(t)—Gn(t)l (Figure 1) or homogeneous subtrees from MST for the test
statistics. Thus, if we can maintain very tight bound on the
K-S statistic test is distribution-free, consistent, anoren  number of runs, we may avoid the repeatedly reconstruction
importantly, it is invariant under any local slide or sti&t@y  of the MST. In order to achieve this, we establish several
as long as the rank of these data points are unchanged alofiteresting lemmas and theorems in this section.
the specific dimension. Why bounds on the runs can help?We start with the
Given this, our greedy algorithm find& — S statistic  simple question on why bounds on the runs for MST can
at each dimension and chooses the cut which results in thgelp with the two sample statistical tests. Given two dasase
maximal K — S statistic. Thus, we find the largest difference p,, D,, and a subregion (a cube) let D;[r] and Dy[r] be
for each marginal distribution and our cut will help to the datasets in the region. Let = | D [r]| andn = | Dy[r]|.
reduce such a difference. Our overall greedy algorithm isSuppose the exact number of runs (homogeneous subtrees)

The functionsF,, (t) andG,, (t) are the empirical marginal
distributions on any dimension of the two sdds and D,
respectively. Given this, the K-S statistic is defined as th
maximum difference between the empirical distributions:

in Algorithm IV-B. in the MST on D;[r] U Dy[r] is R and suppose we can

derive its lower bound and upper bound, denotedasand
Algorithm 2 Greedy Programming for MDST RY. Further, recall that we use the normal distribution of
Procedure  GreedyConstructiofii, e1], - - - , [bx, ex]) W (R) to determine the significant level (Formula 1). Then
Require: DatasetsD, and D, we have the following lemma.

1 |f) ('||D1|“,§1’[f” 6] [bk,ek.”|[/b|D26Hﬁlv|eg :[[é i []bk>ekm < Lemma 1:Let 2z, be the critical value for the hypothesis
[bk, ex]]| i b)h{t; is the lower ’l€37ouknd forlthehst;tlstlcal te’ﬁts test where the' significant level is Then, 'fW(RL) 2 Zas
then we cannot reject the null hypothesigi{) that the two

2:  construct leaf node; datasetsD;[r] and D,[r] are generated from the same

3 return ; distribution; and ifW(R") < z,, we can reject the null

. ﬁnilllfn(w b1, e1] b, ex]ll, [ D[b1, 1] hypothesis.

e, exll) - tlit is the Iower bound for ihelétattlstlcal te}ts Proof Sketch:This can be derived by the observation:
then W(R") < W(R) < W(RY). O
6:  construct leaf node; Based on this lemma, we can see that if we can derive a
;- emrjetym ; tight bound for the number of rung, then, in the most of
: I L u i

9: if NOT Test-Diff(D1[[b1,e1] : - - : [bi, ex]], Da[[b1,e1] : - the casesV(R") > 2, OF W(R") < za, we can directly

[be, ex]]) {Statistically consistent using two sample fetiten reach a statistical conclusion for the hypothesis testing.
10:  construct leaf node: other words, we only need to compute the ex&athen z,,
11:  retun ; falls betweenW (RL) and W(RY), i.e., W(RL) < z, <
12: end if W (RY).

13: MaxD «— 0

14 for all dimensioni, 1 < i < d do The relationship between global MST and local MST:In

15.  MazD «— max(MazD, K — S(D1, Ds, [b, ei])): order to derive the lower bound and upper bound without

16: end for{recursively construct the difference summarization repeatedly reconstructing MST, we utilize an interesting
tree} _ relationship between global and local MSTs. Given two

17: yi,; < the cut withMaz D; datasetsD;, D, and a region (a cube), let D;[r] and

18: GreedyConstructiofffi, e1], - - , [bi, Yij], -+ [bk, €k]);

D,[r] be the datasets in the region. L&t be the global

19: I gy il R .
o: GreedyConstructioffy, e1], - , [y, 4] [bi, ex) MST on D, [r]U Ds[r]. Letr; andry be the two subregions




produced by a cut om. Let 77 and 1, be the two local MST on each part, by maintaining the tight bound of the
MSTs on the two subregions;, and ry (Di[ri] U Da[r], number of runs for each region utilizing the forest directly
and D, [rs] U Do[rs]), respectively. Further, let us remove Theorem 2:Let R be exact number of runs in the MST
all the edges in the global spanning tree which intersect théor region r;. Let R; be the number of runs for theth
cut, i.e., those edges whose two adjacent vertices in differ subtree,ST;, of the forestF; and letn; be the total number
subregions. After the removal, the entire M3Tforms two  of disjoint trees inF; Then our bound for the number of

forests, one in each subregion. We denote thenkiaand  runs is: 71 1
F, for regionsr; and r,, respectively. See Figure 2 for > Ri—(m—-1)<R<Y R
illustration. i=1 i=1
— — — The detailed proof will be contained in the full version of
] e Cut the paper.
Y VI. EXPERIMENTAL RESULTS
g r /’ In this section, we are particularly interested in the felo
shortes edge shortest e ing questions: 1) How concise are the summarization-trees
subtes subfees generated from the greedy algorithm compared with the ones
b generated from the dynamic programming method? 2) How
@) (®) fast does the greedy algorithm perform compared with the

Figure 2. (a) the shortest edge with two nodes from same samplelynamic programming method? 3) How much we can gain
and (b) the shortest edge with two nodes from different samplesfrom the techniques which use the bound estimation and
compute the MST using Theorem 1?

We introduce the following procedure to construct local 10 @nswer these questions, we first collected the cardi-
MSTs based on the foresttet the number of disjoint ology data from Cleveland Clicnic, and then collected a
subtrees in the foresk} is ni. For any two subtrees and number of real datasets from UCI machine learning archive

j in Fy, denoted asS7; and ST;, we find an edge;;, and CM_U Statlib data}sets a_rchive_. We first run ouralgorithm
which has the shortest distance to link these two subtreen cardiology data with 2 dimensions, and then on synthetic
Specifically, we have data with both low dimension and high cﬁmensmn.
eij = arg min_dist(py, pa) We have implemented our methods using C++. Our exper-
(P1.p2) iments were performed on a computational cluster featuring
where,p1, p, in subtreei and j, respectively. Given this, we 3.20 GHz dual-core Intel Xeon processors, at@B main
construct a concise grapff = (V, E), whereV' corresponds =~ memory.
to each disjoint subtrees in the forest, i.e., we contrachea
subtree into a vertex, an® = {e;;|1 < i < j < ny},
i.e., those edges with the shortest distance connecting the We consider two data sets of cardiological data. The
corresponding subtrees. Note th&tis a complete graph. first set includes only male patients whereas the second set
Then, we find a minimal spanning trée, from G. Finally, includes only female patients. Both sets have 4 attributes:
we can recover all the edges in tfig; to the original edges heart rate (heartrat), systolic blood pressure (systtbpd
in Dy[r1] U Dy[r1], and we denote them aB(Ty). The vessel diameter (refdm), and platelet count (pltbsin). Our
union betweerE(T¢) U F; is the minimal spanning tree of first expirement determines differences between distohat
Dy [r1) U Da[rq]. of heart rate and systolic blood pressure for males and
The following theorem reveals the interesting relatiopshi females. This test included 800 data points from each data
between the forest; and MSTT; and the correctness of set.
procedure in constructing the local MST. We found that the distribution for the heart rate and
Theorem 1:The minimal spanning tree (MSTl); on the the systolic blood pressure, is different between males and
local regionr; can be constructed to include all the edgesfemales. Applying our greedy algorithm, we discovered that
in the global MSTT on regionr whose both adjacent data when the heart rate is bigger than 80, or between 60 to 80,
points are in subregion,. Further,E(T¢)UF; isaminimal  or the heart rate is less than or equal to 60 but the systolic

A. Cardiology Data Set

spanning tree on local regian. blood pressure is no more than 132, the distribution of heart
Due to page limitation, the proof will be containd in the rate and systolic blood pressure is the same for males and
full version of the paper. females. Only when the heart rate is less than 60 and the

Bound Maintenance: The above theorem shows that we systolic blood pressure is more than 132, males and females
can have a simple way to derive the MST for each subregiohave different distribution of heart rate and systolic lloo
from the global MST. However, it can still be costly to find pressure. The total cost of our summarization tree is 168,
the edge with the shortest distance between any two subtregbie number of nodes is 7, running time is 405 ms. On the
Here, we will show that we may avoid explicitly reconstruct other hand, applying dynamic programming algorithm the



cost of summariztion tree is 146, the number of nodes is 5B. Synthetic Data

and the running time is 14397 ms. Here we list the synthetic datasets in Table II. For
Our second experiment determines differences betweeélxperimental purpose, we have filtered out the categori-
distributions of blood vessel diameter and platelet coont f ¢g] attributes from the data as we currently focus on the
males and females. This test included 600 data points froraontinuous attributes. Table Il records the number of the
each data set. We first observe that data distributions fOﬁimension of each dataset after such preprocessing_ Eurthe
both sets are very different. However, applying our greedyye generate two slightly different datasets from the ogbjin
algorithm, we found that when the platelet count is no morejatasets through sampling. The first data3etis generated
than 253, or the platelet count is more than 253 and they the sampling the original dataset without replacemedt an
vessel diameter is no more than 3, or the platelet coungy adding a small random noise to all dimensions of each
is more than 253 and the vessel diameter is more than Bampled data point. The second dataBetis generated
male and female hava the same distribution of the Vess%y first performing the same Samp"ng and randomization
diameter and platelet count. The summarization tree fObrocedure as the first dataset. Then, we “bump up” certain
greedy algorithm has cost 12, consists of 5 nodes, angbgions of the sampled data (filling in those regions with

running time of 488 ms. For dynamic programming, the treegyersampling and randomly shifted data points from other
also has cost 12, consists of 5 nodes but with I’unning timeegions)_ For our experimentS, we set "lpll — |D2| —

of 14427 ms. 1000.

The result of greedy algorithm is shown in Figure.3 We report our results on two groups, the low-dimension

and Figure.4. Clearly, our approach shows an efficient angroup with only2 or 3 dimensions and the high-dimension
effective way to summarize the difference between twogroup with more tharg dimensions.
closely related datasets.

Table Il
- DATASETS DESCRIPTION
heartsystol1600 ependent Cut
8D : Same Distribution Total Points : 1600
DD : Different Distribution Total Cost : 168
D1 : number of points from male Total Nodes : 7 . _ _
D2: number o pois o femle Data Source| Dimension | # Records| Data Archive
Rt \DC Dorothea 2-D 800 UCI
uess \ SHCH Jon 19 Madelon 2-D 1800 UCl
Concrete 3-D 1030 UCl
Haberman 3-D 306 UCl
— Blood 4-D 374 UCI
Irish 4-D 500 | CMU Statlib
IO Kidney 5-D 76 | CMU Statlib
Riverflow 6-D 308 | CMU Statlib
5DJ[ a0 60 70 BVEI 80 100 <13 120 130 140 150 ‘6 Fraser-rlver 6-D 157 CMU Statllb
' - D Forest Fires 7-D 517 ucCl
Cloud 9-D 1024 UCI
(a) (b) Places 10-D 329 | CMU Statlib
Figure 3. (a) the cut for heart rate and systolic blood pressure with ~ |_Bodyfat 14-D 252 | CMU Statlib

greedy algorithm and (b) the corresponding summarization tree

Results on Low Dimension Datasetsin this group of
experiments, we run both dynamic programming and greedy
Sk marans: 20 glgorithm on the four datasets which have eitieor 3
0 et tmie, a5 dimensions. Table Ill shows the cost and the size (total
number of nodes) of the summarization-tree constructed by
both dynamic programming and greedy algorithm. We can
see that the greedy algorithm actually produce the summa-
rization tree with similar size to the dynamic programming.
Table IV shows the running time comparison between
dynamic programming and greedy algorithms. We also con-
sider the three different versions for the MST reconstaurcti
M on dataset on each local regioBcratchis to reconstruct
ran P o the MST from the scratch, anfébrestis to reconstruct the
(a) (b) MST using Theorem 1, anBoundis to apply the bound
_ ) __estimation (Theorem 2) to avoid the reconstruction and
Figure 4. (a) the cut for vessal diameter and platelet count WlthOnI reconstruct when the bound fails (Lemma 1) and the
greedy algorithm and (b) the corresponding summarization tree y : g ) '
construction method is using tferestin the latter case. We
apply these three methods for the greedy algorithm and the

refdm pltsin-1200

emale
= female




. . . Table V
dynamic programming. We can see that Beundis much RESULT ONHIGH DIMENSION (IN MILLISECONDS)

faster thanForestin dynamic programming while slightly
faster in greedy algorithm. And both of them are much

; . : Greedy Algo. (B: Bound F: Forest S: Scratch)
faster than théScratchln dynamic programming and greedy Cost| # Nodes| Time (8) | Time (F) | Time ()
algorithm. Finally, the greedy algorithm is much fastemha Blood 396 16 384 203 1305
the dynamic programming approach. Irish 83 14 700 726 1878

Kidney 102 22 666 691 2118

Table III Riverflow 72 11 728 746 2169

RESULT ONLOW DIMENSION Fraserriver| 74 13 670 672 2032

ForestFires| 39 9 836 855 2182

Dynamic Algo. | Greedy Algo. Cloud 7 3 1061 1062 2624

Cost | # Nodes| Cost | # Nodes Places 14 3 1476 1479 3743

Dorothea 392 19 | 429 19 Bodyfat 65 13 1644 1683 4748
Madelon 6 3 6 3
Concrete 243 19| 314 23
Haberman 6 3 6 3

built upon the order statistics and Kolmogorov-Smirnoff
tests which cannot be easily expanded to multidimensional
case. Aggarwal [22] proposes the velocity density estima-

RUN TIME ON Low D,,\T,laEb,Les:\éN (IN MILLISECONDS) tion method based on the kernel methods to diagnose the
B: Bound F: Forest S: Scratch change in evolving data streams. Zhu et al.[23] proposed

a data structure calledhifted Wavelet Tre¢o monitor
Dynamic Algo. Greedy Algo. elastic bursts. Dasu et al. [24] provides a change detection

B F S B | F S methods by generalizing Kulldorff's spatial scan statisti

Dorothea | 24669 | 36494 | 57241 | 323 | 338 | 956 ; ; ; ;
Madelor 1002 710 43187 552 (553 51 Different from these works, we try to derive a parsimonious

Concrete | 56232 | 67444 [ 1074911 457 | 459 | 1294 gxplgnation of the difference betvyegn datasets, and otk wor
Haberman| 118639 | 178055 | 452179 456 | 461 | 1197 IS built upon the two sample statistic tests.

Statistical research community has developed methods for
multivariate two sample tests. Besides the aforementioned
Results on High Dimension DatasetsSince the dynamic Friedman-Rafsky test[7], several other methods have been
programming cannot be applied on the high dimensionalleveloped for the same purpose [9], [25], [10]. These
datasets (it runs out of memory), we focus on reporting thenethods either have a higher computational complexity or
greedy method here. Table V shows the cost and size afre not as efficient in describing differences between two
the constructed summarization tree in the second and thirgets.
column, respectively. The fourth, fifth and sixth columns Finally, we note that recent work [13] in data mining
shows the running time of thBound Forestand Scratch  community is developed for statistical test if there is a
technique for reconstructing the MST. We can see here thehange between two datasets. Their method is based on the
BoundandForesttechniques gain 850% to 300% speedup likelihood ratio and kernel distribution construction. v
from the Scratch This is higher than the gain we get from though they showed empirically this method can detect the
the low dimension dataset. We believe one of the reasons fathange quite effectively, it is still not clear if it is a castent
the gain from the high dimension datasets is that the distancest.
computational cost becomes a more significant factor as the
dimension increases.

VIIl. CONCLUSIONS

To sum, we can see that tfBoundand Forest approach In this paper, we have introduced a new research prob-
work very well for speeding up the summarization treelem on how to derive a parsimonious explanation of the
construction. difference between two datasets. We have proposed a tree

based approach for this purpose. It is built upon rigorous
VII. RELATED WORK two sample statistical tests. We have described two basic

In database research community, change detection is @proaches, a dynamic programming approach and a greedy
very important topic in understanding data streams. Gantnethod, to construct the summarization-tree. Besides, we
et al.[20] developed a framework to measure the deviaalso studied on how to apply Friedman-Rafsky's MST
tion between two data sets. They focus on deriving thestatistic test for tree construction. We discover a couple
deviation measure through data mining models, includingf interesting results on the global minimal spanning tree
frequent itemsets, decision trees, and clustering. Kiter e(MST) and its subgraph (which is forest). These results
al.[21] proposed a two-sample test which can allow usesmllow us to significantly reduce the complete reconstructio
specify the interested regions and domains for the diffeen of the minimal spanning tree on a subsets of the data
detection between two datasets. However, their method i&hen a global MST is given. Our experimental results show



that the dynamic programming approach can work on thg12] D. A. Darling, “The kolmogorov-smirnov, cramer-von mises
low dimension data but is very computationally demanding.  tests,”Ann. Math. Statistvol. 28, no. 4, pp. 823-838, 1957.
The greedy algorithm is very fast and can construct th
summarization-tree with conciseness close to the oneg beiﬁ ]
constructed by dynamic programming.

We believe that this work provides a first attempt in[14] N. Henze and M. D. Penrose, “On the multivariate runs test,”
constructing a parsimonious explanation of the difference  Ann. Statist.vol. 27, no. 1, pp. 290-298, 1999.
between tWO. datase_ts. However, this Work al;o gives nsevt\flS] J. L. Bentley and J. H. Friedman, “Fast algorithms for
a number of interesting research qu_estlons. First, how @n constructing minimal spanning trees in coordinate spaces,”
extend the work to the datasets which have both categorical  |EEE Trans. Computvol. 27, no. 2, pp. 97-105, 1978.
and numerical attributes? Second, if a local region move
from one place in one dataset to a different place in anothdd6] O. Nevalainen, J. Ernvall, and J. Katajainen, “Finding min-
dataset? Can we automatically detect such difference and Mal spanning trees in a euclidean coordinate spaBel;

. - N . - vol. 21, no. 1, pp. 46-54, 1981.

add the “moving” as a primitive for difference explanation?
In our future work, we plan to investigate these problems. [17] p. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and

E. Welzl, “Euclidean minimum spanning trees and bichro-
matic closest pairs,Discrete Comput. Geomvol. 6, no. 5,

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical
change detection for multi-dimensional data,”"KDD '07.
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