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Abstract—The goal of Information Extraction is to auto-
matically generate structured pieces of information from the
relevant information contained in text documents.

Machine Learning techniques have been applied to reduce
the cost of Information Extraction system adaptation. However,
elements of human supervision strongly bias the learning
process. Unsupervised learning approaches can avoid these
biases.

In this paper, we propose an unsupervised approach to
learning for Relation Detection, based on the use of massive
clustering ensembles.

The results obtained on the ACE Relation Mention Detection
task outperform in terms of F1 score by 5 points the state of the
art of unsupervised techniques for this evaluation framework,
in addition to being simpler and more flexible.

Keywords-Relation Detection, Unsupervised Methods, En-
semble Clustering

I. INTRODUCTION

As the availability of large amounts of textual information
is unlimited in practice, supervised processes for mining
these data can become highly expensive for human experts.
For this reason, unsupervised methods are a central topic for
researchers on tasks related to text mining.

One of these tasks is Information Extraction (IE). The
goal of IE is to automatically generate structured pieces of
information from the relevant information contained in text
documents. Part of this information will correspond to binary
relations between entities present in the documents.

IE systems require a significant amount of specific lin-
guistic knowledge, and the process of language or domain
adaptation of IE systems can hence require significant hu-
man effort. In order to reduce this cost, researchers have
been exploring Machine Learning techniques for over two
decades. A plethora of adaptive IE systems have appeared,
and the amount of required human supervision has been
progressively reduced, leading to weakly supervised and
unsupervised approaches. Most of these systems are able
to benefit from the aforementioned increasing availability of
huge collections of raw textual data. A detailed survey on
adaptive IE can be found in Turmo et. al. [1].

However, even if reduced, elements of human supervi-
sion can strongly bias the learning process. To avoid this
bias, unsupervised tools for an exploratory analysis of the
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data collections are needed. In this context, the utility of
clustering techniques is well known [2].

In this paper, we propose a novel and flexible unsuper-
vised approach to learning for Relation Detection, based on
clustering, which reduces the elements of human supervision
and simplifies the use of enriched feature sets with respect
to other existing approaches. Our approach has been im-
plemented and tested on the Automatic Content Extraction
(ACE) Relation Mention Detection task, ACE being one of
the most popular present-day IE evaluation frameworks [3].
The obtained results confirm the validity of our proposal.

The rest of the paper is organized as follows: Section II
gives an overview of related work. Our approach is presented
in Section III. Next Section IV gives an overview of the
experiments carried out and their results. Last, Section V
draws conclusions of our work.

II. RELATED WORK

As defined in ACE 2004, the task of Relation Detection
is that of, given a set of text documents where entities have
been previously detected (by manual or automatic means),
identifying the occurrences of relations between such entities
(i.e. locating pairs of related entities in text). For instance,
in the following passage:

Thousands of people were in the streets and in the
basilica to pay tribute. Former president Jimmy
Carter represented the United States.

the entity Thousands of people is related to both the streets
and the basilica, and Jimmy Carter is related to the United
States.

Much research on the Relation Detection task has focused
on the application of supervised Machine Learning methods
[4], [5], [6]. Some research has been devoted to weakly
supervised approaches either based on bootstrapping [7], [8]
or on a user-provided description of the extraction task [9].
However, the fact that the output of these systems be sensible
to the set of seed tuples or the description of the task means
that user supervision introduces a strong learning bias, and
remains a drawback of these approaches.

Completely unsupervised approaches have appeared re-
cently. Hassan et. al. [10] propose to obtain relation ex-
traction patterns from POS n-grams in the corpus, and use
an iterative procedure based on graph mutual reinforcement
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to find the confidence of both the extraction patterns and
the extracted tuples. Nevertheless, being n-gram-based, the
approach suffers from a lack of flexibility: the patterns
contain only POS and entity type tags, and the inclusion
of additional information would lead to a combinatorial
explosion in the number of n-grams, making the approach
unfeasible.

Clustering techniques have already been used for unsu-
pervised Relation Detection. In the approach of Hasegawa
et. al. [11], for every pair of entities of two given types,
their accumulated context is found as a bag of all the words
appearing between the entities in all their co-occurrences in
a corpus. The entity pairs are then clustered using cosine
distance between their accumulated contexts. The obtained
clusters contain pairs of entities linked by the same kind of
relation.

Shinyama and Sekine [12] also propose a multi-level
clustering approach for unsupervised Relation Detection.
After web crawling, news articles are clustered to form basic
clusters, which contain articles from different sources talking
about the same news. From the entities in these clusters
sets of basic patterns are extracted by considering all paths
satisfying a set of constraints from a graph representation
of the semantic structure of the sentences in which they
occur. The mappings of entities between basic clusters are
clustered according to their basic patterns, forming meta-
clusters. Again, each meta-cluster contains pairs of entities
linked by the same kind of relation.

However, on the contrary of our approach, neither of these
clustering-based approaches produces models useful to find
relations in data other than the training corpus. The new
approach is described in the following section.

III. APPROACH

Our approach is based on the transformation of Relation
Detection between entities of two given types, 77 and T5,
into a binary classification problem: each pair of entities
Fq1 and E5 of the proposed types co-occurring in the
same sentence has to be classified as related or unrelated.
To classify each pair, we use a two-step scoring-filtering
architecture. We take into account the syntactic context of
FE; and E5 to generate an instance in the form of a feature
vector x. A scorer is used to calculate the score for this
instance, s(x), and a filterer assigns it to the related or
unrelated class according to whether this score is above or
below a relatedness threshold, th,.;, respectively.

We propose the use of clustering techniques to learn both
the scorer and the filterer, under the following assumptions:

o A clustering provides a point of view of the instances
it is grouping.

o The instances in a cluster point to sets of features
that are often shared across contexts, and hence may
indicate relatedness of entity pairs.
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Each cluster in a clustering has a certain reliability
which may be estimated by means of a score.

In consequence, a scorer can be built from a set of
clusterings with their clusters scored: new instances
can be assigned a score according to their similarity
to each cluster and to the score of these clusters. Each
clustering provides a different point of view in this
combination.

In an unsupervised learning approach, not all instances
come from related pairs of entities. The most highly
scored ones are the most likely to refer to related pairs.
In consequence, a filterer can be built by determining
a threshold value which separates the scores of the
pairs likely to be related from those unlikely. New
instances can be classified by comparing their score
to this threshold value.

Next sections III-A and III-B give a more detailed de-
scription of the scorer and filterer learning procedures,
respectively.

A. Scorer Learning

The process for the learning of the scorer starts from an
unannotated learning corpus, and its goal is to obtain the set
of clustering models, ©,, and the scores, z(cpq) for each one
of their clusters, ¢4, that will make up the scorer.

The learning is performed as follows: after the corpus
is pre-processed, all syntactic contexts in which a pair of
entities of the given target types 77 and 7, occur are
extracted and collected as instances. These instances are
clustered to obtain a set of clustering models, and every
cluster in each model is then scored using a scoring function.
A more detailed description of each step follows.

1) Corpus Pre-Processing: The corpus is tokenized and
POS-tagged. Entities are recognized, classified and, follow-
ing Hassan et. al. [10], their heads are replaced with a single
token with the entity type as POS tag.

2) Instance Generation: Each pair of entities of the target
types 77 and T, co-occurring in the same sentence in
the corpus is considered a learning instance. Features are
generated from a set of feature patterns which try to capture
the syntactic context of the pair. Each instance, x;, is then a
binary vector (z;1...x;f), where x;; tells whether the jth
feature is active in the context of instance x;. The inclusion
of more or different kinds of syntactic information can be
achieved by changing these feature patterns, a fact that gives
flexibility to the model in a simple and efficient way. The
feature patterns we used for our experiments are listed in
Table I. We have only used distance and POS-based feature
patterns as a first step, to allow a fair comparison to other
approaches such as [10], which also use only distance and
POS tag information (the former implicitly within the n-
gram structure).

Given that most of the relations occur at a short distance,
pairs of entities further than a threshold value, thg;s; can



dist_%d The distance between the words of the pair
is &d
lefty The leftmost entity of the pair is of type
T1

left_%d_%t  The word $d positions before the leftmost
word of the pair has tag %t
The word %d positions before the right-

most word of the pair has tag %t

rmid_%d_%t

right_%d_5%t

The rightmost entity of the pair is of type
T

The word %d positions after the leftmost
word of the pair has tag $t

The word %d positions after the rightmost
word of the pair has tag $t

righty

Imid_%d_s%t

Table 1
FEATURE PATTERNS USED

be discarded. Additionally, those features that are active
in less instances than a certain threshold, thy,.q, can be
filtered out for efficiency. In our experiments we used a
distance threshold thg;: of 8 tokens and a feature frequency
threshold th f..q of 10 instances.

3) Instance Clustering: After generation, the instances
are clustered to obtain the clustering models that make up
the scorer.

Specifically, probabilistic generative clustering models
are used, consisting of a mixture of £ components. Each
component is a sequence of Bernoulli distributions, one
per feature, combined using the Naive Bayes assumption
(independence of features given the component):

k k
p(xl) - Zp(cq) p(xZ | Cq) = Zaq p(ajz | Cq)
g=1 g=1
f
p(xi | cq) = H(ﬁqj)mj (1 - ﬁqj)l—gcij

where f is the total number of features, o is the a priori
probability of cluster ¢y, and ¥4 is the probability of feature
J to be active in an instance generated by cluster c,. The
values (aq,Uq;) are the parameters of the model, ©, which
have to be estimated from data.

This model family is similar to the one used by Nigam
et. al. [13] for document classification, but replacing the
Multinomial distribution by a Bernoulli distribution, more
suitable for binary features as are the ones we are using.

The optimal parameters © = (G, ;) for the model are
obtained through Maximum a Posteriori estimation, using
the Expectation-Maximization algorithm. As usual, Dirichlet
distributions are used as priors for both oy and ;.

However, it is known that the models obtained by
Expectation-Maximization are sensitive to the number of
clusters and to the process of initialization. In order to
overcome this limitation, we follow the massive approach
described by Gonzalez and Turmo [14], who performed a
comparison of different strategies of ensemble generation
for clustering. A massive strategy, based on randomization
of a single algorithm, was found to perform competitively
with respect to other strategies and to individual clustering
methods for the task of document clustering. Following
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this massive setting, we learn r different clustering models
é)p, with the number of components k, and the starting
conditions for EM chosen at random. The value of k, is
restricted to lay between 2 and a certain k,,,,. Both  and
kmao are parameters of our method, and we used a value
of 100 for both of them in our experiments. These values
will generate around 5000 clusters, an amount which gives
a reasonable trade-off between computational cost and the
ability to capture the different syntactic contexts in which
relations may occur.

4) Cluster Scoring: As mentioned at the beginning of this
Section III, the clusters in each probabilistic model obtained
in the previous step contain syntactic contexts from both
related and unrelated pairs of entities. To try to estimate the
quality of each cluster, we define a cluster scoring function.
In this score we take into account both the size of the cluster
and the homogeneousness of the instances. Our hypothesis
for this decision is that large clusters with instances similar
to each other will point to sets of features that are often
shared across contexts, and hence may contain related entity
pairs.

We start by finding two measures for each cluster: size
and homogeneousness.

The size of every cluster, ¢4, is found as the sum of the
posterior probabilities of each instance, x;, to belong to it,
size(cpq) = Erl plepg | T4).

However, when comparing sizes across different models
we need a normalization factor, as clusters in models with
less components will be larger in average than those in mod-
els with more components. Given that after model estimation
some components often become irrelevant, specially for
models with large number of components £, we can define
the number of non-empty clusters k¥ in the model 6, as
the number of clusters whose size exceeds a certain threshold
themptys kpE = llepg | size(cpg) > thempyll- As the
average size of instances in a cluster will be proportional to
1/ kzi,v £ product by kév £ will make cluster sizes comparable
across models. For our experiments, the emptiness threshold
thempty has been set to 1.

The homogeneousness of the instances is estimated by
means of a statistically motivated measure, based on the
eigenvalue decomposition of the covariance matrix. Given



that the principal components of the covariance matrix are
the directions in which data variance occurs, and that its
corresponding eigenvalues are a measure of the magnitude
of this variance, we can take the sum of the eigenvalues of
the covariance matrix as a measure of the variance, that is,

the heterogenousness of the data.

To find this measure, firstly, the empirical feature expec-
tation vector E¥? and covariance matrix Vj];(f are found for
each cluster cp,:

>, Plepg | @) - @i
Zmi P(cpq | i)
>, Plepg | @) - (ij — EFY) - (w0 — )
Zzi Plepq | @)

g
EJ'

Pq
Vi

The eigenvalue decomposition of the covariance matrix
is found, and the sum of its eigenvalues is then taken, as
mentioned, as a measure of the heterogeneousness of the
elements within the cluster. We shall call this result the
radius of the cluster.

From these two metrics, we can define different scores
z(cpq) for the clusters cpq, trying to reward both large and
homogeneous clusters. We considered three of them for our
experiments: Normalized size (NS1Z, as k)'F - size(cyq)),
Inverse radius (RAD, as 1/radius(cpq)), and Normalized
density (NDNS), as the quotient of normalized size and
radius, k)'E - size(cpq) /radius(cyg)). Experiments on their
suitability are described in Section I'V-C.

B. Filterer Learning

The filterer implements a simple boundary classifier:
those instances whose score exceeds a threshold value are
considered related, whereas those below the threshold are
considered unrelated. The filterer learning process consists
hence in determining this threshold.

The threshold value is inferred from the distribution of
scores in the training corpus. Hence, as a first step, all
instances in the learning corpus are scored and ranked using
the newly built scorer. The score s(x;) for an instance x;
is computed as the sum of the scores of each cluster, ¢,
in each model, ©,, weighted by the posterior probability of
the instance to belong to the cluster:

kp
s(z;) = Z Zp(cpq | 2i) - 2(¢pq)
6, =1

P

After scoring and ranking, the sequence of scores of the
ranked instances is empirically found to follow the shape
of a decreasing convex function (there is a small number
of highly scored instances, and a large number of lowly
scored ones). Our choice for the threshold value is the
point of maximum compression of the instance set. We seek
thus to select a threshold value such that it simultaneously
maximizes the accumulated sum of scores of the selected
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instances and minimizes the number of selected instances.
The point that fulfills these restrictions will be a maximum
convexity point in the sequence.

As an efficient approximate way to calculate this point,
we propose to consider the normalized plot of score against
rank, with both axes normalized to the range [0, 1], and take
the instance which is closest to the origin as cut-off point.

thyel S(xirel,)
irel = argmin V5(z:)2 + (i/ max i)2
(o) = s(z;) — min s(x;)

max s(z;) — min s(x;)

The score of this instance is then taken as relatedness

threshold th,.;.

IV. EXPERIMENTATION

To evaluate the validity of our approach, we applied it
in an actual relation extraction task, the Relation Detection
and Recognition (RDR) task of the ACE evaluation, whose
details are given in Section IV-A. We compared our method
with two other approaches.

The first one is an implementation of the method of
Hassan et. al. [10]. We chose this method because it learns a
set of patterns that can be applied on a test corpus different
from the training one, and thus allows for evaluation in
Relation Extraction tasks. Although other methods such as
Hasegawa et. al. [11] or Shinyama and Sekine [12] are also
clustering-based and would offer chances for a comparison,
they extract tables of related entities from their training
corpora and hence do not allow a direct comparison on a
different test corpus.

The second is a version of our own scoring-filtering
approach using a single clustering model, whose number of
clusters and starting point were determined using the Akaike
Information Criterion. Comparison to this method will allow
us to validate the effectivity of the massive combination.

The experimental data, setting and results are detailed in
the following sections.

A. Evaluation Data

As learning corpus we used the year 2000 subset of the
Associated Press section of the AQUAINT Corpus. The
considered data set contains almost 29 million words from
newswire data. We will refer to this corpus as APw.

As mentioned, as test corpus we used data from the Rela-
tion Detection and Recognition task of the ACE evaluation.
Specifically, we used the training data of ACE evaluations
for years 2003, 2004 and 2008. The corpus adds up to over
half million words, in which 98,009 entities and 18,322
binary relations between them are annotated. Given that we
are evaluating the task of Relation Detection, information
relevant to Relation Recognition such as relation types was
discarded. Moreover, we approach the task at mention level,



Rec Prc F1
GRAMS-UB - 435 656 51.0
SINGLE NSi1z 52.8 543 523
SINGLE RAD 52.1 542 503
SINGLE NDNS 534 541 525
MAsSS NSiz 59.5 537 55.8
MAsSS RAD 62.8 51.7 56.0
MASS NDNs  59.1 542 559
Table 11

AVERAGE RESULTS IN THE ACE CORPUS

as the issues of Relation and Entity coreference are not
taken into account, so the task is strictly Relation Mention
Detection in ACE terminology.

The gold entities were kept for the test in ACE, whereas
entities in APW were automatically recognized using the
BIOS suite!, trained on ACE. A total of 4,544,830 entities
were recognized.

B. Experimental Setup

We considered 11 entity type pairs among the most fre-
quently related in the ACE corpus for evaluation, including
the two entity type pairs that Hassan et. al. [10] used for
evaluation in their paper, GPE-PER and ORG-PER.

The usual metrics of Precision, Recall and F1 measure on
the detected relations are used to evaluate the performance
of the proposed approaches.

For all approaches subject to random initialization, five
runs were performed for each experiments, and the presented
results are the average of the results across all runs.

C. Results

Table II presents the average values for Recall, Precision
and F1 for the tested approaches. Results for the approach
of Hassan et. al. [10] are listed as GRAMS-UB; results for
our scoring-filtering approach with a single clustering are
listed as SINGLE; and finally results for the full massive
scoring-filtering approach presented in Section III are listed
as MASS. Additionally, the results for SINGLE and MASS
are detailed by the cluster scoring function used.

Given that the authors of Hassan et. al. [10] do not provide
a criterion to determine the optimal number of patterns to
be taken, the results shown for this method are those giving
the maximum F1 measure, that is, its upper bound. This
gives GRAMS-UB an advantage with respect to SINGLE and
MaASS, which has to be kept in mind when interpreting these
results.

However, it can be seen from the results that, in average,
the behaviour in terms of F1 measure of MASS is better
than that of SINGLE, which in turn is better than that of
GrAMS-UB.

Thttp://www.surdeanu.name/mihai/bios/
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GRAMS-UB MASS-NSIz
Rec Prc F1 Rec Prc F1
Fac-GPE 552 68.8 61.3 544 730 623
Fac-Loc 27.1 609 375 61,5 61.0 613
Fac-PER 233 518 321 37.1 427 397
GpeE-Loc 548 739 629 724 597 654
GPE-ORG 73.5 60.7 66.5 728 609 66.3
GPE-PER  51.6 724 60.2 60.1 56.6 583
GPE-VEH 51.0 67.5 581 751 469 578
Loc-PER 27.6 523 36.1 448 38.1 412
ORG-PER  70.3 539 61.0 67.8 551 60.8
ORG-VEH 468 89.8 61.5 71.1 61.8 65.8
PER-VEH 244 575 343 451 360 40.0
Table III

RESULTS DETAILED BY PAIR ON THE ACE CORPUS

We think that these are excellent results, given that we
have been able to build an unsupervised Relation Detection
system which gives a 4 point increase in F1 with respect to
the upper bound of a state-of-the-art approach. Additionally,
as mentioned in Section III-A2, our model is more flexible
and allows for easier integration of richer information.

It can also be seen that the MASS method tends to
produce results with a slight bias for Recall, the results for
SINGLE are quite balanced, and GRAMS-UB clearly favours
Precision over Recall.

With respect to the cluster scoring functions, the be-
haviour of the three is quite similar. Only RAD when applied
within SINGLE gives lower F1 values than the other two,
and with MASS the results are all within 0.1 points of
each other. Given that there is no relevant difference in the
performance of three functions, and that the calculation of
the radius of the clusters involved for RAD and NDNS has
a non-neglectable computational cost, we decide to choose
the cheaper NS1z for the rest of the comparisons.

Table III contains a comparison of the performance of
GRAMS-UB and MAss with NSIZ across the different entity
type pairs. As it can be seen, method MASS gives better
F1 measures for most of the considered pairs of entity
types. For pairs GPE-ORG, GPE-PER, GPE-VEH and ORG-
PER, GRAMS-UB is better, but in no case by more than 2
points. On the contrary, in the case of FAC-LoC, GRAMS-
UB is some dramatic 24 points below MASS. It can also
be observed how, as mentioned before, GRAMS-UB tends
to favour Precision over Recall, whereas MASS behaves the
opposite way. There are exceptions, however, in both cases.

D. Results on Filterer Learning

The filterer learning procedure described in Section III-B
can be performed on the corpus on which the scorer was
learnt or can use a different one. We also ran a series of ex-
periments performing this learning process on the test data.
Table IV contains the F1 values obtained by applying the
MASS method with the NS1z cluster score using the original



MAsS-NSi1z

TRAIN  TEST  BEST

FAC-GPE 62.3 66.8 67.6
Fac-Loc 61.3 61.2 62.6
FAC-PER 39.7 42.3 43.3
GPE-LoC 65.4 63.5 67.2
GPE-ORG 66.3 61.1 72.3
GPE-PER 58.3 56.8 59.7
GPE-VEH 57.8 56.1 62.3
Loc-PER 41.2 42.1 439
ORG-PER 60.8 60.3 62.8
ORG-VEH 65.8 61.9 69.8
PER-VEH 40.0 42.5 42.8

Table IV

F1 SCORES ON THE ACE CORPUS

(TRAIN) and modified (TEST) filterer learning procedures,
detailed by pair. In addition, the maximum achievable results
(BEST) are also listed.

The results in the table show that, despite in some cases,
such as for FAC-GPE and FAC-PER, the change of the
TRAIN data by the TEST ones can improve the performance
of the system, in most cases the F1 values do not change
considerably, and in some cases, such as for GPE-ORG and
ORG-VEH, they can impair by more than 4 points.

The results also show that the simple threshold determi-
nation criterion proposed in Section III-B works reasonably
well for most of the cases, with TRAIN falling within 2
points of the BEST achievable F1 measure. However, it is
also true that in some cases, such as for FAC-GPE or FAC-
PER, the result is 5 points below the best one.

V. CONCLUSIONS

This paper proposes a new unsupervised approach to
learning for relation extraction, using probabilistic clustering
models.

We have compared the proposed approach to a state-of-
the-art unsupervised system on data from the ACE Relation
Mention Detection task. Our approach obtains a F1 measure
of 55.7, more than 4 points above the upper bound of
51.0 attainable by the other system, with both using only
POS information. Besides, it is more flexible and allows the
inclusion of richer features.

Additionally, we have shown that learning using a massive
combination of clusterings improves the performance of
the scorer, with respect to a learner based on a single
clustering model and a model selection criterion. We have
also proposed several cluster score functions, and we have
proved that the method is robust to its choice.

We think that our approach can be considered a powerful
learning method for relation extraction, given its simplicity,
flexibility, efficiency, non-supervision and improved perfor-
mance with respect to the state-of-the-art.
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