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Abstract—Finding the most interesting correlations among
items is essential for problems in many commercial, medical,
and scientific domains. Much previous research focuses on
finding correlated pairs instead of correlated itemsets in which
all items are correlated with each other. When designing
gift sets, store shelf arrangements, or website product cat-
egories, we are more interested in correlated itemsets than
correlated pairs. We solve this problem by finding maximal
fully-correlated itemsets (MFCIs), in which all subsets are
closely related to all other subsets. Putting the items in
an MFCI together can promote sales within this itemset.
Though some exsiting methods find high-correlation itemsets,
they suffer from both efficiency and effectiveness problems
in large datasets. In this paper, we explore high-dimensional
correlation in two ways. First, we expand the set of desirable
properties for correlation measures and study the advantages
and disadvantages of various measures. Second, we propose an
MFCI framework to decouple the correlation measure from
the need for efficient search. By wrapping the best measure in
our MFCI framework, we take advantage of likelihood ratio’s
superiority in evaluating itemsets, make use of the properties
of MFCI to eliminate itemsets with irrelevant items, and still
achieve good computational performance.

I. INTRODUCTION AND RELATED WORK

The analysis of relationships between items is funda-
mental in many data mining problems. Although we are,
in general, interested in correlated sets of arbitrary size,
most of the published work with regard to correlation is
related to finding correlated pairs [1]. Related work with
association rules [2], [3], [4] is a special case of correlation
pairs since each rule has a left- and right-hand side. Support
and confidence [5] produce misleading results because of
the lack of comparison to the expected probability under
the assumption of independence. To overcome this, lift [2],
conviction [3], and leverage [6] are proposed. The above
correlation measures are intuitive and straightforward, but
do not have the downward-closed property [5] to reduce the
computational expense. Therefore, other alternatives with a
downward-closed property, collective strength [7] and all-
confidence [4], were proposed. Though these measures re-
duce the computational expense, collective strength retrieves
itemsets with irrelevant items and all-confidence is not really
a correlation measure.

However, there are some applications in which we are

specifically interested in correlated itemsets rather than cor-
related pairs. For example, we are interested in finding sets
of correlated stocks in a market, or sets of correlated gene
sequences in a microarray experiment. Tan [1] compared
21 different measures for correlation. Only four of the 21
measures can be used to measure the correlation within a
given k-itemset. Dunning [8] introduced a more statistically
reliable measure, likelihood ratio, which outperforms other
correlation measures. It measures the overall correlation
within a k-itemset, but cannot identify the itemsets with
irrelevant items. Jermaine [9] extended Dunning’s work and
examined the computational issue of probability ratio and
likelihood ratio. But finding correlated itemsets is much
harder than correlated pairs because of three major problems.
First, computing correlation for each possible itemset is an
NP-complete problem [9]. Second, if there are some highly
correlated items within an itemset and the rest are totally
independent items, most correlation measures still indicate
that the itemset is highly correlated. But no measure provides
information to identify the itemsets with independent items.
Third, there is no guarantee that the itemset has high
correlation if any of its strict subsets are highly correlated.

Given an itemset S = {I1, I2, ..., Im}, if all its subsets are
closely related to all other subsets, and no irrelevant items
can be removed from S, we consider the itemset S to be a
fully-correlated itemset. Given a fully-correlated itemset S,
if there is no other item that can be added to generate a new
fully-correlated itemset, then S is a maximal fully-correlated
itemset (MFCI). However, finding MFCIs is not easy. First,
there are some overlapping items among different MFCIs.
For example, given a set with four people {me, my dad,
my mom, my advisor}, intuitively we hope to find the two
MFCIs {me, my dad, my mom} and {me, my advisor}. Here
I belong to both relationships, so I exist in both sets. Second,
an itemset might not be a fully-correlated itemset even if all
its strict subsets are fully-correlated itemsets. For example,
an itemset like {Intel, AMD, Dell} may have many contracts
involving any pair of items, but the number of contracts
involving all three all together may be far less. Both Intel and
AMD may cooperate with Dell to assemble computers, and
Intel and AMD may cooperate on CPU technology research,
but the full set does not represent an imoprtant relationship.



Correlation Measure Formula
Support tp

All-confidence tp/max(P (Ii))

χ2-statistic
∑

i

∑
j

(rij−E(rij))2

E(rij)

Simplified χ2-statistic (r−E(r))2

E(r)

Probability Ratio tp/ep
Leverage tp − ep

Likelihood Ratio Pr(tp, k, n)/Pr(ep, k, n)

Table I
FORMULAS OF CORRELATION MEASURES

Therefore, it is more reasonable to keep three MFCIs {Intel,
AMD}, {Intel, Dell}, and {AMD, Dell}.

In this paper, we describe a set of desirable properties
for correlation measures and give the definition of fully-
correlated itemsets which not only has a downward-closure
property to reduce the computational expense but also can
be incorporated with any correlation measure. Using the best
correlation measure that satisfies all these desirable proper-
ties together with the fully-correlated itemset definition helps
eliminate itemsets with irrelevant items and find the most
interesting itemsets in a reasonable amount of time.

II. CORRELATION MEASURES

To find high-correlation itemsets, we should find a rea-
sonable correlation measure first. Since it is impossible to
compare against every possible measure [10], in this paper
we use the six criteria in Section II-B to evaluate seven
best or most common measures including support,1 all-
confidence, χ2-statistic, simplified χ2-statistic, probability
ratio, leverage, and likelihood ratio.

A. Correlation Measure Formulas

Given an itemset S = {I1, I2, ..., Im} in the dataset with
the sample size n, the actual probability tp = P (S), the
expected probability ep =

∏m
i=1 P (Ii), and the occurrence

k = P (S) ∗n, Table I shows the formulas of each measure.
For the simplified χ2-statistics, the cell r corresponds to

the exact itemset S. For likelihood ratio, Pr(p, k, n) = (n
k ) ·

pk · (1− p)(n−k) is the probability function of the binomial
distribution.

B. Correlation Measure Properties

Given an itemset S = {I1, I2, ..., Im}, a good correlation
measure M should satisfy the following six key properties:
P1: M is equal to a certain constant number C when all

the items in the itemset are statistically independent.
P2: M monotonically increases with the increase of P (S)

when all the P (Ii) remain the same.
P3: M monotonically decreases with the increase of any

P (Ii) when the remaining P (Ik) and P (S) remain
unchanged.

1We use “support” and “actual probability” interchangably in this paper.

Correlation Measure P1 P2 P3 P4 P5 P6
Support X

All-confidence X
χ2-statistic X X X X

Simplified χ2-statistic X X X X X
Probability Ratio X X X

Leverage X X X X X
Likelihood Ratio X X X X X X

Table II
PROPERTIES OF CORRELATION MEASURES

Correlation Measure Lower bound Upper bound

All-confidence tp 1

Simplified χ2-statistic − (tp−(1− 1−tp
m

)m)2

(1− 1−tp
m

)m

(tp−tpm)2

tpm

Probability Ratio tp ∗ (1 − 1−tp
m

)−m tp(1−m)

Leverage tp − (1 − 1−tp
m

)m tp − tpm

Likelihood Ratio − Pr(tp,k,n)

Pr((1− 1−tp
m

)m,k,n)

Pr(tp,k,n)
Pr(tpm,k,n)

Table III
UPPER AND LOWER BOUNDS

P4: The upper bound of M gets closer to the constant C
when P (S) is close to 0.

P5: M gets closer to C (including negative correlation
cases) when an independent item is added to S.

P6: M gets further away from C (including negative
correlation cases) with increased sample size when all
the P (Ii) and P (S) remain unchanged.

The first three properties proposed by Piatetsky-Shapiro
[6] are mandatory for any reasonable correlation measure
M , while the last three are novel and desirable properties.
The fourth property means it is impossible to find any
strong positive correlation from itemsets occurring rarely.
For the fifth property, we want some penalty for adding
independent items in order to make fully-correlated itemsets
stand out. For the last property, we hope the correlation
measure can increase our confidence about the positive or
negative correlation of the given itemset S when we get
more sample data from the same population. Table II is a
summary of measures with regard to all the six properties.
Only likelihood ratio and leverage satisfy Property 4. Table
III shows the upper and lower bounds of all the measures.

Given the itemset S, support is the proportion of trans-
actions containing S, and all-confidence is the ratio of its
probability to that of the item with the highest probability in
S. Although both support and all-confidence possesses the
downward closure property to facilitate search, they are not
designed as correlation measures. Theoretically, they lack
comparison to the expected probability under the indepen-
dence assumption and satisfy only the second of the six de-



sired correlation measure properties.2 Pratically, they share
three problems. First, they are biased toward itemsets with
high-support items. If an itemset S consists of independent,
high-support items, Support(S) and AllConfidence(S)
will also be high despite the independence. This problem
is exacerbated if we extend our search to include the
presence of some items and the absence of others, since
absence of a rare item is itself a high-support item. Second,
they are biased to short itemsets as their value decreases
monotonically with increasing itemset size. Third, the anti-
monotone property makes it difficult to compare correlation
among itemsets of different sizes.

The χ2 test is arguably the most popular statistical check
for correlation. If an itemset contains n items, 2n cells
in the contingency table must be considered for the χ2

statistic. The computation of the statistic itself is intractable
for high-dimensional data. However, we can still use the
basic idea behind the χ2-statistic to create a simplified χ2-
statistic. Even if we can solve the computational problem
for a given itemset, the χ2-statistics’ general applicability
for testing correlation within the itemset framework is still
very doubtful. The problem stems from the fact that each
possible event should be expected to occur at least five times
for the χ2 test of independence to be valid [11].

The probability ratio is the ratio of its actual probability
to its expected probability under the assumption of inde-
pendence. This measure is straightforward and means how
many times the itemset S happens more than expected, but
it favors the itemsets containing a large number of items
rather than significant trends in the data.

Leverage measures the difference between tp and ep if all
the items in S are independent from each other. Since ep
is always no less than 0, leverage can never be bigger than
tp. Therefore, leverage is biased to high-support itemsets. In
addtion, the leverage of a given itemset remains the same no
matter how many samples we get from the same population.

The likelihood ratio is similar to a statistical test based
on the loglikelihood ratio described by Dunning [8]. The
concept of a likelihood measure can be used to statistically
test a given hypothesis, by applying the likelihood ratio test.
The likelihood ratio strikes a balance between the probability
ratio and the actual occurrence k. It favors itemsets with
both high probability ratio and high occurrence. Itemsets
containing a small number of items tend to have high
support, but the probability ratio tends to be low, while
itemsets containing a large number of items tend to have
high probability ratio, but the actual occurrence tends to
be low. Likelihood ratio favors middle-sized itemsets which
strike a balance between the probability ratio and the actual
occurrence.

2Due to page limitation, all mathematical proofs are omitted.

C not C
B not B B not B

A 25 25 25 425
not A 25 25 25 425

Table IV
AN INDEPENDENT CASE

III. MAXIMAL FULLY-CORRELATED ITEMSETS

Even likelihood ratio, which penalizes itemsets with in-
dependent items, cannot detect whether a given itemset
contains items that are independent of the others. To achieve
that, we define fully-correlated itemsets as follows.

Definition 1: Given an itemset S and a correlation mea-
sure, if the correlation value of any subset containing no
less than two items of S is higher than a given threshold τ ,
i.e., all subsets of S are closely related to all other subsets
and no irrelevant items can be removed, this itemset S is a
fully-correlated itemset.

This definition has three very important properties. First,
it can be incorporated with any correlation measure. Second,
it helps to rule out an itemset with independent items.
For example in Table IV, B is correlated with C, and
A is independent from B and C. Suppose we use the
likelihood ratio and set the correlation threshold to be 2.
The likelihood ratio of the set {A,B, C} is 8.88 which is
higher than the threshold. But the likelihood ratio of its
subset {A,B} which is 0 doesn’t exceed the threshold.
According to our definition, the set {A,B,C} is not a
fully-correlated itemset. The fully-correlated itemset should
be {B, C} whose likelihood ratio is 17.93. Third, there is
a desirable downward closure property which can help us
to prune unsatisfied itemsets quickly like Apriori [5]. The
pseudocode for generating maximal fully-correlated itemsets
is shown in Algorithm 1.

IV. EXPERIMENTS

In this section, we describe the performance study used
to evaluate our method. The algorithm was run on three
real life datasets from different areas. The first is a subset
of the Netflix data set (http://www.netflixprize.com). Since
we also want to compare top-k correlation patterns with
MFCIs, the correlation among only the first 100 movies
(according to the code sequence in the Netflix dataset) is
checked. The second dataset is the anonymous Microsoft
web data set from the UCI Repository [12] containing web
browsing records of 38,000 anonymous users to 294 areas
of the web site. The third dataset contains 15,000 nursing
careplans from a Midwest hospital for the year 1996.

A. Comparison of MFCIs to Top-k Correlation Itemsets with
Likelihood Ratio

Since different MFCIs and top-k correlation itemsets will
be retrieved using different correlation measures, in this



Algorithm 1 Find Fully-Correlated Itemsets
Main: FindFullyCorrelatedItemsets(L2: fully-correlated 2-
itemsets)

//LC is the Vector containing maximal fully-correlated itemsets
for k = 3; Lk−1 ̸= ∅; k + + do

Ck = GenerateHighLevelItemset(Lk−1);
for each candidate c ∈ Ck do

if CalculateCorrelation(c) > correlationThreshold then
add c to Lk;

end if
end for
LC = LC ∪ FindMaximalItemset(Lk−1, Lk)

end for
return LC;

Procedure: GenerateHighLevelItemset(Lk−1: (k−1)-itemsets)
for each itemset l1 ∈ Lk−1 do

for each itemset l2 ∈ Lk−1 do
if (l1[1] = l2[1]) ∧ (l1[2] = l2[2]) ∧ ... ∧ (l1[k − 2] = l2[k − 2]) ∧
(l1[k − 1] < l2[k − 1]) then

c = l1 ◃▹ l2; //join step: generate candidates
if not HasUncorrelatedSubset(c, Lk−1) then

add c to Ck;
end if

end if
end for

end for
return Ck;

Procedure: HasUncorrelatedSubset(c: k-itemset candidate; Lk−1: (k − 1)-
itemsets)

for each (k − 1)-subset s of c do
if s /∈ Lk−1 then

return TRUE;
end if

end for
return FALSE;

Procedure: FindMaximalItemsets(Lk−1: (k − 1)-itemsets; Lk : k-
itemsets)

for each k-itemset l1 ∈ Lk do
for each (k − 1)-subset l2 of l1 do

if l2 ∈ Lk−1 then
remove l2 from Lk−1;

end if
end for

end for
return Lk−1;

ID Netflix Website Careplan
1 03, 97 1000, 1014 005, 037
2 12, 90 1008, 1034 005, 078
3 17, 26 1009, 1035 010, 064
4 18, 57 1009, 1037 012, 037
5 33, 68 1009, 1074 013, 087
6 46, 78 1014, 1040 025, 064
7 47, 79 1025, 1026 026, 054
8 57, 79 1027, 1041 039, 067
9 58, 78 1032, 1056 054, 064
10 05, 69, 91 1036, 1040 054, 087
11 05, 91, 92 1038, 1053 066, 069
12 16, 58, 77 1041, 1070 013, 067, 069, 099
13 18, 44, 83 1052, 1060 015, 065, 067, 069
14 28, 48, 84 1026, 1038, 1041 065, 067, 068, 069
15 28, 58, 77 1001, 1003, 1018, 1035 065, 067, 069, 099

Table V
MAXIMAL FULLY-CORRELATED ITEMSETS

section we only compare those retrieved by likelihood ratio
which satisfies all six desirable properties and works well
practically. Like maximal frequent itemsets, there is no
ranking of MFCIs. Rather, we get a different number of them
under different thresholds. Therefore, we find the threshold
under which 15 MFCIs are retrieved to compare with top-20
correlation itemsets, retrieved by calculating every possible
combination. The 15 MFCIs of each dataset are shown
in Table V, and the top-20 correlation sets are listed in
Table VI.3 Our MFCIs have several advantages over the
top-20 correlation sets. First, some top-k correlation sets are
redundant since they are subsets of other top-k correlation
sets. For example, the first correlation set of Netflix is a
subset of the second one; in Website, the fifth set is a subset
of the third; in Careplan, the third set is a subset of the first.
Second, some top-k correlation itemsets contain irrelevant
information. Among the top-20 correlation sets in Netflix, 16
are subsets of the 15 MFCIs. The four remaining itemsets all
contain one more movie, “Something’s Gotta Give (2003)”
(code 30), than the corresponding maximal correlation sets.
In fact, “Something’s Gotta Give (2003)” is the most favored
movie among all the 100 films and has almost no correla-
tion with any other movie. Removing it from these four
itemsets results in higher correlation values. Similary in the
website dataset, the likelihood ratio between “Microsoft.com
Search” (code 1004) and “isapi” (code 1018) is 0.70, but
both of them are contained in the 17th correlation set. In
the careplan dataset, “Health Maintenance” (code 28) and
“Knowledge Deficit” (code 52) are assigned almost in every

3Codes used in the three datasets are as follows. Netflix: (03) Character,
1997; (05) The Rise and Fall of ECW, 2004; (12) My Favorite Brunette,
1947; (16) Screamers, 1996; (17) 7 Seconds, 2005; (18) Immortal Beloved,
1994; (26) Never Die Alone, 2004; (28) Lilo and Stitch, 2002; (30)
Something’s Gotta Give, 2003; (33) Aqua Teen Hunger Force: Vol. 1, 2000;
(44) Spitfire Grill, 1996; (46) Rudolph the Red-Nosed Reindeer, 1964; (47)
The Bad and the Beautiful, 1952; (48) Justice League, 2001; (57) Richard
III, 1995; (58) Dragonheart, 1996; (68) Invader Zim, 2004; (69) WWE:
Armageddon, 2003; (77) Congo, 1995; (78) Jingle All the Way, 1996;
(79) The Killing, 1956; (83) Silkwood, 1983; (84) The Powerpuff Girls
Movie, 2002; (90) The Lemon Drop Kid, 1951; (91) WWE: Royal Rumble,
2005; (92) ECW: Cyberslam, 2002; (97) Mostly Martha, 2002; Website:
(1000) regwiz; (1001) Support Desktop; (1003) Knowledge Base; (1004)
Microsoft.com Search; (1008) Free Downloads; (1009) Windows Family of
OSs; (1014) Office Free Stuff; (1017) Products; (1018) isapi; (1025) Web
Site Builder’s Gallery; (1026) Internet Site Construction for Developers;
(1027) Internet Development; (1032) Games; (1034) Internet Explorer;
(1035) Windows95 Support; (1036) Corporate Desktop Evaluation; (1037)
Windows 95; (1038) SiteBuilder Network Membership; (1040) MS Office
Info; (1041) Developer Workshop; (1052) MS Word News; (1053) Jakarta;
(1056) sports; (1060) MS Word; (1070) ActiveX Technology Develop-
ment; (1074) Windows NT Workstation; Careplan: (005) Anxiety; (010)
Breathing Pattern Ineffectiveness; (012) Pain Acute; (013) Communication,
Impaired Verbal; (015) Coping Ineffectiveness; (025) Gas Exchange Impair-
ment; (026) Grieving, Anticipatory; (028) Health Maintenance, Altered;
(037) Infection, Risk For; (039) Injury, High Risk For; (052) Knowledge
Deficit; (054) Nutrition: Less Than Body Requirements Altered; (064)
Activity Intolerance; (065) Self Care Deficit, Dressing/Grooming; (066)
Self Care Deficit, Feeding; (067) Self Care Deficit, Bathing/Hygiene; (068)
Physical Mobility Alteration; (069) Self Care Deficit, Toileting; (078) Skin
Integrity, Impaired; (087) Thought Process, Altered; (099) Aspiration, Risk.



nursing care plan. The likelihood ratio between {028} and
{065,067,068,069} is 0.27 and the likelihood ratio between
{052} and {065,067,068,069} is -1.3 which means they are
almost independent, and both the 2nd and the 7th correlation
sets contain irrelevant information. Therefore, the MFCIs are
more reasonable than the top-k correlation itemsets.

Ranking Netflix Website Careplan

1 58, 77 1001, 1003, 1018 065, 067,
068, 069

2 28, 58, 77 1009, 1018, 1035 028, 065, 067,
068, 069

3 05, 91 1001, 1003,
1018, 1035 065, 067, 069

4 44, 83 1008, 1009,
1018, 1035

028, 065,
067, 069

5 12, 90 1001, 1018, 1035 067, 068, 069

6 18, 44, 83 1003, 1018, 1035 039, 065, 067,
068, 069

7 16, 58, 77 1001, 1003 052, 065, 067,
068, 069

8 28, 58 1001, 1003, 1035 028, 039, 065,
067, 068, 069

9 28, 30,
58, 77 1018, 1035 065, 068, 069

10 05, 91, 92 1009, 1018,
1035, 1037

028, 052, 065,
067, 068, 069

11 33, 68 1009, 1017, 1037 065, 067, 068

12 30, 44, 83 1009, 1037 028, 067,
068, 069

13 47, 79 1026, 1038, 1041 015, 028, 065,
067, 068, 069

14 46, 78 1001, 1009,
1018, 1035

015, 028, 039,
065, 067,
068, 069

15 18, 57 1026, 1038 015, 039, 065,
067, 068, 069

16 18, 30,
44, 83 1025, 1026 015, 065, 067,

068, 069

17 30, 58, 77 1001, 1003,
1004, 1018

039, 065,
067, 069

18 05, 69, 91 1008, 1018, 1035 028, 065,
068, 069

19 05, 92 1003, 1009,
1018, 1035

015, 028, 039,
052, 065, 067,

068, 069

20 16, 58 1001, 1003, 1009,
1018, 1035

039, 052, 065,
067, 068, 069

Table VI
CORRELATION RANKING LIST

B. Comparison of Likelihood Ratio to Other Measures

If we specify a threshold to retrieve 10 MFCIs using
probability ratio, most of them just coincidently happen
once or twice. From Table VII, the average support of
the 10 MFCIs is 9.4 in Netflix, 1.4 in Website, and 1 in
Careplan. The result gets much worse when we check the
top-10 correlation itemsets. Each of them contains at least
16 movies in Netflix, 12 areas in Website, and 9 nursing
diagnoses. All the average supports of the top-10 correlation
itemsets are 1. None of them are interesting patterns, so we
conclude that probability ratio is a poor correlation measure.

If we retrieve 10 MFCIs with the simplified χ2-statistic,
some sets just coincidently happen once or twice. From
Table VII, the average support of the 10 MFCIs is 184.8 in
Netflix, 94.8 in Website, and 165.9 in Careplan. Although
the simplified χ2-statistic is still biased to low-support
itemsets, it is better than probability ratio.

If we retrieve 10 MFCIs using leverage, most of them are
as reasonable as likelihood ratio. However, it has a bias to
high-support itemsets even if the correlation among them is
not strong. On the other hand if the support of a itemset
S is no more than the threshold we specify, the itemset
S will never be retrieved even if items in S are strongly
correlated. For example, the 2nd set {My Favorite Brunette
(1947) (code 12), The Lemon Drop Kid (1951) (code 90)}
in Table V can be retrieved by likelihood ratio, but not by
leverage. The occurrence of “My Favorite Brunette (1947)”
is 248, of “The Lemon Drop Kid (1951)” is 313, and the
two together is 103, from a total of 138805 records. If these
two movies are independent, their expected co-occurrence is
0.56, far smaller than 103, so these two movies are strongly
correlated. But the support of {My Favorite Brunette (1947),
The Lemon Drop Kid (1951)} is less than 0.001, so leverage
fails to find this pattern. A similar situation happens in
Website with {1052, 1060} and in Careplan with {013,
087}. If the utilities of the items [13] are equal, we might
be interested in the correlation result biased on high support
items. In this case, leverage is better. But when the utility
of items is different, we might be interested in each strong
correlation regardless of the actual occurrence. In this case,
likelihood ratio is better.

C. Performance

The performance of our algorithm depends on the char-
acteristic of the data set. In the extreme case, among all the
n items in the data set, if the first (n − 1) items always
show up together and the remaining item appears alone,
our algorithm will start with

(
n−1

2

)
2-itemsets and end with

the only (n − 1)-maximal fully-correlated itemset. In other
words, all the 2(n−1) possible combinations will be checked.
It is still an NP-hard problem. But in reality, most data sets
are sparse, so most of the search space can be pruned.

Since all three datasets have similar performance patterns,
we only show the performance patterns on the Netflix
dataset. The runtime of our algorithm on the Netflix data
given different correlation thresholds are shown in Figure
1(a). The runtime decreases drastically as we increase the
threshold. The runtime of the top-k method is also shown.
When running the top-k method, we only checked the
itemsets which occurred at least once in the dataset, so
about 2 million itemsets were checked instead of all 2100

possible itemsets. In the worst case, our algorithm checks
all the itemsets which occur at least once. Therefore, the
runtime of our algorithm at least as good as the top-k
method if both use Apriori. Even though we use the prefix



Netflix Website Careplan
Likelihood Ratio 100 230 31.2

Leverage 0.0018 0.018 0.009
Threshold Simplified χ2 1450 5400 530

Probability Ratio 250 800 99.7
All-confidence 0.11 0.35 0.25

Likelihood Ratio 610.5 1159.7 703.3
10 Average Leverage 617 1342.9 1115.8

Simplified χ2 184.8 94.8 165.9
MFCIs Support Probability Ratio 9.4 1.4 1

All-confidence 1417.6 1085.1 1964
Likelihood Ratio 2.14 2.38 3

Average Leverage 2.14 2.58 3.32
Simplified χ2 2.38 2.77 2.49

ItemsetSize Probability Ratio 2.38 2.77 2
All-confidence 2 2.77 2.38

Likelihood Ratio 207.45 698.73 483.41
Average Leverage 0.0044 0.036 0.056

Simplified χ2 4.04 E31 3.25 E26 1.06 E13
Correlation Probability Ratio 4.04 E31 3.25 E26 1.06 E13

All-confidence 0.157 1 0.558
Likelihood Ratio 685.3 866.4 282.1

Top Average Leverage 1176 1849.1 3700.1
10 Simplified χ2 1 1 1

Sets Support Probability Ratio 1 1 1
All-confidence 1417.6 1 5844.1

Likelihood Ratio 2.6 3.1 4.4
Average Leverage 2.4 2.2 3.3

Simplified χ2 17.1 12.8 10.2
ItemsetSize Probability Ratio 17.1 12.8 10.2

All-confidence 2 2.4 2.2

Table VII
SUMMARY OF VARIOUS CORRELATIONS
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Figure 1. Performance results for Netflix

tree structure [14] to find the top-k correlation itemsets,
the runtime of our method is less than the top-k method
when the threshold is larger than 3. In addition, the number
of maximal fully-correlated itemsets corresponding to each
correlation threshold is shown in Figure 1(b). It shows even
if we use a small threshold like 1, we still get a relatively
small number of compact itemsets which is 564.

V. CONCLUSION

This paper presents several key properties for choosing a
good correlation measure and a useful definition of fully-
correlated itemsets which decouples the correlation measure
from the need for efficient search. Among the existing
correlation measures, likelihood ratio and leverage are the
best. Given our definition of fully-correlated itemsets, we

can find more compact and useful information than top-k
correlation itemsets. Due to the desirable downward closure
property of fully-correlated itemsets, we can discover strong
patterns in a reasonable amount of time.
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