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Abstract—In this paper we propose two methods to derive
two different kinds of node similarities in a network based
on their neighborhood. The first similarity measure focuses
on the overlap of direct and indirect neighbors. The second
similarity compares nodes based on the structure of their -
possibly also very distant - neighborhoods. Instead of using
standard node measures, both similarities are derived from
spreading activation patterns over time. Whereas in the first
method the activation patterns are directly compared, in the
second method the relative change of activation over time
is compared. We apply both methods to a real-world graph
dataset and discuss the results.

Keywords-spreading activation, graph analysis, node similar-
ities, node signatures

I. INTRODUCTION

Many datasets consist of units of information as well as
the relations between these units, and thus can be represented
as networks. The need to analyze and explore these networks
in various ways to get new insights of the underlying data is
growing just as the amount of data. Experts and analysts do
not always know exactly what to look for, or where. Methods
that suggest unknown, interesting and potentially relevant
pieces of information around a certain topic can help to
find a focus, induce new ideas, or support creative thinking.
Finding nodes that are structurally similar to a query node,
extracting the communities of these nodes, and comparing
these subgraphs can lead to valuable and interesting insights.

There are many well-known methods to characterize and
compare the nodes of networks such as several centrality
indices to quantify which nodes are more central than others,
clustering methods to decompose a set of nodes into groups
e.g. communities, or role assignments to classify nodes and
determine equivalences (see [1]). Thereby nodes can be
considered equivalent based on different properties, such as
neighborhood identity, neighborhood equivalence, automor-
phic mapping, equal role assignments to neighboring nodes,
and others. Usually role assignments are based on a crisp
notion of equivalence, which means that two nodes are either
equivalent or not, and thus belong to the same class or
not. Networks from real-world data are usually noisy and
irregular, which makes finding equivalent nodes unlikely.
Thus a relaxed notion of equivalence, in the sense that nodes
are defined similarly to a certain extent, is useful for a robust
comparison of nodes [2].

We propose two methods to derive two different kinds
of node similarities heuristically via spreading activation,
which is a well-known method to query graphs [6], [9], [10].
The first method is based on the comparison of activation
patterns, yielding a spatial similarity. The second method is
based on the comparison of change of activation pattern,
yielding a structural similarity. The focus of this paper
is the definition and explanation of these two similarities
and their demonstration on Schools-Wikipedia (2008/09),
a real-world dataset, in order to illustrate their suitability
to find structurally similar nodes and extract their close
neighborhood.

II. RELATED WORK

Originally, spreading activation was proposed by Quillian
and Collins [6], [7] to query information networks. The
method facilitates the extraction of subgraphs, nodes and
edges relevant to a given query. Initially the query nodes
are activated. The activation is than spread iteratively to
adjacent nodes until a termination criterion is reached or the
process converges. The subset of activated nodes, their level
of activation, as well as the induced subgraph compose the
final result. Spreading activation has been applied in many
fields of research [6]–[10]. Most of these approaches use a
set of common constraints [9] to restrict the dynamics of
the process. In [11] it is shown that pure (constraint-free)
spreading activation with a linear activation function on a
connected and not bipartite graph always converges to the
principal eigenvector of the adjacency matrix of the graph.

Approaches that are conceptually similar to the compari-
son of activation pattern of nodes, from spreading activation
processes, to derive node similarities are given in [3]–[5].
These approaches are based on an iterative process, like
spreading activation, and consider nodes to be more similar
the more their direct and indirect neighborhood overlaps.
Their aim is to detect communities and dense clusters.

In [4] node similarities are determined based on random
walks, which are iterative processes as well. Here only
paths of a certain length are considered when computing
the similarity. Taking into account all computed iterations,
as in [5] may yield to higher accuracy. In [5] all iteration
results are accumulated with a decay to decrease the impact
of the global node neighborhood. Since the accumulated
and normalized activation values are used as similarities
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the method may yield asymmetric similarities on directed
graphs.

In our approach we compare the activation pattern by
means of a well-known similarity measure, the cosine sim-
ilarity, yielding symmetric values also on directed graphs.
Additionally we propose a second node similarity derived
from the comparison of activation changes in each iteration.
Based on this method, nodes are similar if the structure
of their neighborhood is similar, although the neighborhood
needs not overlap at all. This yields a completely different
similarity compared to those mentioned above. Usually the
level of activation itself, which is sometimes normalized or
accumulated over the iterations, represents the relevancy or
similarity of nodes to a given query. We propose the com-
parison of activation pattern and their changes to determine
similarities between nodes of a network which has, to the
best of our knowledge, never been introduced before in the
context of spreading activation.

III. SPREADING ACTIVATION

Activation is spread on a graph G = (V,E,w), with V
as the set of nodes V = {1, . . . , n}, E ⊆ V × V as the set
of edges and w(u, v) as the weight of the edge connecting
u and v, with u, v ∈ V , w(u, v) = 0 if (u, v) /∈ E. For an
ease of exposition we assume that graph G is undirected,
however our results easily generalize to directed graphs.
The activation state at a certain time k is represented by
activation vector and denoted by a(k) ∈ Rn with a

(k)
v as the

activation of node v ∈ V . Each state k > 0 is obtained from
the previous state a(k−1). The initial state a(0) defines the
activation of nodes representing the query. In each iteration
activation is spread to adjacent nodes activating them as well.
The process is usually terminated after a certain number of
iterations, activated nodes or convergence.

In our approach we use a linear standard scenario de-
scribed in [11] for which convergence is shown for non-
bipartite connected graphs. Given a graph G = (V,E,w)
and an activation state a(k−1) at time k − 1, the activation
of a certain node v at time k is defined by

a(k)v =
∑

u∈N(v)

w(u, v) · a(k−1)u , ∀v ∈ V , (1)

with N(v) = {u : {u, v} ∈ E} as the set of neighbors of
v. This process can be described in matrix notation. With
W ∈ Rn×n as the weight matrix defined by (W )uv =
w(u, v) a single iteration can be stated as a(k) = Wa(k−1)

leading to a(k) = W ka(0) (for directed graphs it holds
a(k) =

(
WT

)k
a(0)). To prevent the activation values from

increasing heavily or vanishing, the activation vector is
normalized by its Euclidean length after each iteration

a(k) =
W ka(0)∥∥W ka(0)

∥∥
2

. (2)

Rescaling does not change the direction of the activation
vector, so convergence to the principal eigenvector v1 of W
is still ensured since lim

k→∞
a(k) = v1

‖v1‖2
.

IV. NODE SIGNATURES

Based on the convergence behavior of a spreading activa-
tion process started from a certain node, a signature for this
particular node can be determined, which is described in this
section. Based on this signature nodes can be represented
and compared.

Convergence of the spreading activation process yields
to query independent results. No matter from which node(s)
spreading processes have been started initially, the activation
state becomes equal after a sufficient number of iterations.
From iteration to iteration, activation vectors change their
directions towards the direction of the principal eigenvector
of the weight matrix W . The change of activation vectors
namely the velocity depends on the node(s) from which
it was started. A velocity vector at time k of a spreading
process started at v is defined as

δ(k)(v) =

{
0 , if k = 0
a(k)(v)− a(k−1)(v) , else

, (3)

with 0 as a vector of all 0 and a(k)(v) as the activation
vector at iteration k of a spreading process started at node
v.

The norm of a velocity vector represents the amount
of change, the step size of the process. For each node
the corresponding step sizes can be determined during the
convergence process and represented as a vector, called
signature vector. In this work we use the l2 norm as step
size. Based on the step sizes of each iteration k up to a
maximum number of iterations kmax, with 0 ≤ k ≤ kmax,
the signature vector of each node is defined. This vector
provides information about the convergence speed of a
spreading process, starting from a certain node v and is
denoted as

τk(v) =
∥∥∥δ(k)(v)∥∥∥

2
, (4)

with τ(v) ∈ Rkmax .

V. NODE SIMILARITIES

Two kinds of node similarities can be derived based on
the comparison of activation and convergence behaviors
of spreading activation processes starting from each node.
On the one hand nodes can be considered similar if their
activation vectors (see Equation 2) are similar. On the
other hand nodes can be considered similar if the change
of activation from one iteration to another is similar (see
Equation 4).

These two kinds of similarities compare nodes based on
two different properties, (direct and indirect) neighborhood
overlap or neighborhood similarity. A neighborhood overlap
between two nodes means that a part of the neighborhood
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Figure 1. Two node partitionings, indicated by the shading based on two
different node properties, equivalent and identical neighborhoods. In 1b the
white nodes are structurally equivalent as well as the black nodes, which
is determined by comparing the signature vectors. In 1a the leaf nodes are
divided into three partitions white, gray, and black, since their particular
neighborhood is not identical. Due to the comparison of activation vectors
node 3 is more similar to the white nodes, node 2 to the black nodes, and
node 1 to the gray nodes than to others.

of these two nodes is identical. This consequently means,
the larger the overlap the closer the nodes are in the graph.
This property yields a spatial similarity measure and is taken
into account when activation vectors are compared. A similar
neighborhood of two nodes means that their neighborhood
is structurally equivalent to a certain degree but does not
necessarily overlap [2]. This can be determined when com-
paring the change of activation vectors. This property yields
a structural similarity measure.

Two node partitionings based on these two different
properties are illustrated in Figure 1. The partitioning is
indicated by the shading of the nodes. Nodes with the same
shade are considered maximally similar (with a similarity
value of 1) w.r.t. an equivalent (Figure 1b) or identical
(Figure 1a) neighborhood. In Figure 1b the white as well
as the black nodes are structurally equivalent since they
are automorphic images of each other [1]. In Figure 1a the
leaf nodes {4, 5, 6, 7}, {8, 9, 10, 11} and {12, 13, 14, 15} are
the most similar nodes, due to their identical neighborhood,
depicted by the shading gray, black, and white. Even if the
leaf nodes are structurally equivalent only those with an
identical neighborhood are highly similar. Furthermore the
three nodes in the middle {1, 2, 3} are not equal based on the
comparison of their neighborhood. Node 3 is more similar to
{12, 13, 14, 15} than to 1 or 2 when comparing their pattern
of activation.

The two different similarity measures derived from
spreading activation processes allow on the one hand for the
identification of structurally similar nodes to a given query
node, even if they are located far apart in the graph, and
on the other, a densely connected subgraph of direct and
indirect neighbors can be extracted for each node. In the
following, these two node similarities are formalized and
described in detail.

A. Activation Similarity

The first similarity described is based on the comparison
of activation vectors and named activation similarity. The
sequence of activation states of a spreading process started
from a certain node describes the node relative to its local
and global neighborhood in the graph. Dependent on its
neighborhood many or few nodes will be activated and
activation will spread quickly or slowly. Nodes close to
the initially activated node will become activated sooner
than nodes further apart from this node. Furthermore nodes
will get activated to a higher level, at least in the primary
iterations, if many paths of different lengths exist, connect-
ing them with the initially activated node. Nodes that are
similarly connected to a shared neighborhood will induce
similar activation states.

The level of activation a
(k)
i (v) of a node i ∈ V at a time

k, induced by a spreading process started at node v, reflects
the reachability of i from node v along connecting paths
of length k. The more (highly weighted) paths of length k
exist connecting i and v, the higher the level of activation. A
query node u inducing a similar level of activation a

(k)
i (u)

at node i at iteration k is consequently similarly connected
to i along (weighted) connecting paths of length k.

Comparing the activation pattern of iterations k > 1
allows for the determination of the direct and indirect
neighborhood overlap of nodes, whereas measures like the
cosine similarity σcos(u, v) =

|N(u)∩N(v)|√
|N(u)||N(v)|

or Jaccard in-

dex σjaccard(u, v) =
|N(u)∩N(v)|
|N(u)∪N(v)| based on the characteristic

node neighborhood vectors allow for a comparison of the
direct node neighborhood only.

In [4] it is stated that in terms of random walks of length
k starting from a node v the probability is high for other
nodes to be reached if they are located in the same densely
connected part or community. For an additional node u,
the probability of reaching these nodes is high as well if
it is located in the same community. Since random walks
are driven by power iterations of the transition matrix of a
graph they can be seen as spreading activation processes on
a normalized weight matrix.

Considering not only paths of a certain length k as
in [4] but all connecting paths of different lengths as in [5]
provides a more detailed representation of the local and
global neighborhood of a node. Accumulating all activation
vectors a(k)(v) from a spreading process starting from v
with a decay α results in a final activation vector a∗(v)
defined by

a∗(v) =

kmax∑
k=0

αka(k)(v), (5)

with 0 < α < 1. The decay α decreases the impact of
longer paths and ensures convergence for kmax → ∞ for
l2 normalized systems [11]. It is reasonable to decrease the
contribution of longer paths to keep more information about
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the local neighborhood of v. The above mentioned form is
closely related to the centrality index of Katz [12]. We do
not want to let the series converge fully since activation
vectors of latter iterations do not contribute much to the
final activation based on the decay α, and become more and
more similar due to convergence of the spreading processes.
We chose kmax based on the convergence behavior of the
underlying graph.

Before a similarity on the final activation vectors is de-
fined we need to take into account that nodes with very high
degrees will be activated to a higher level. They are more
likely to be reached even if they are not located in the same
dense region as the node from which activation has spread
initially. To take this into account it is necessary to normalize
the final activation by the degree of the corresponding
node [4]. The degree normalized final activation vector is
thereby denoted as

â∗(v) = D−
1
2 a∗(v) = D−

1
2

(
kmax∑
k=0

αka(k)(v)

)
(6)

with D as the (weighted) degree matrix defined by (D)ii =
d(i), (D)ij = 0 for i 6= j,∀i and d(i) =

∑n
j=1(W )ij .

Based on these normalized final activation vectors we
define the activation similarity between two nodes u and
v as:

σact(u, v) = cos(â∗(v), â∗(u))

=

n∑
i=1

a∗i (u)a
∗
i (v)d(i)

−1

‖â∗(u)‖ ‖â∗(v)‖
.

(7)

The more nodes are highly activated in common in both
spreading processes, one starting at node u and one at v,
the more similar u and v are. Thus this measure allows for
a detection of dense communities and requires a direct and
indirect neighborhood overlap, as can be seen in Figure 1a.
Node 1 is more similar to {4, 5, 6, 7} than to 2 or 3 even if
1 is automorphically equivalent to 2 and 3. In [2] this kind
of node similarity is categorized as closeness similarity.

The computation of node similarities proposed in [5]
can be seen in terms of spreading activation as well. The
accumulated and normalized activation values themselves
represent the similarities between the activated nodes and the
node at which the spreading process started. As stated, their
method is applicable only on undirected graphs. For directed
graphs the activation values are not necessarily symmetric,
yielding asymmetric similarities.

B. Signature Similarity

The second similarity is based on the comparison of the
amount of activation changes during spreading activation
processes and named signature similarity.

Nodes that are similar due to the activation similarity,
described in the previous section have to be close to each

other in the graph, since the same direct and indirect
neighbor nodes need to be activated similarly. The signature
similarity is not based on the activation pattern itself but on
the amount of change of these patterns. If the structure of
the closer neighborhood of two nodes is similar, the change
of activation will be similar too, and thus the signature
similarity will yield higher values as if the structure is
different.

For each node a signature vector can be determined,
consisting of velocity vector norms (see Equation 4). The
velocity vectors represent the change of direction of the acti-
vation vectors and the norms represent the step size between
subsequent iterations towards the principal eigenvector. By
comparing the signature vectors, a structural similarity can
be derived. In this work we use the cosine measure to
compare the signature vectors, thus the signature similarity
is denoted as:

σsig(u, v) = cos(τ(u), τ(v))

=

kmax∑
k=1

∥∥δ(k)(u)∥∥∥∥δ(k)(v)∥∥
‖τ(u)‖ ‖τ(v)‖

.

(8)

A similar step size between two subsequent iterations
is yielded from a similar structure, i.e. the nodes {1, 2, 3}
(black) of Figure 1b are not distinguishable by their sig-
nature vectors, due to their structural equivalence. Whereas
the activation vectors of these nodes are different, as well as
the corresponding velocity vectors, the amount of change
of direction of the activation vectors in each iteration is
equal. Nodes do not necessarily have to be located in the
same densely connected region to have a high similarity.
This makes the signature similarity not a closeness but
a structural similarity measure. Nodes with a structurally
similar neighborhood are similar even if they are located
far apart from each other. An overlapping neighborhood is
thereby not necessary. This can be seen in Figure 1b, where
all the leaf nodes (white) have a signature similarity value
of 1, even if their direct neighborhood is not overlapping at
all.

VI. APPLICATION

To demonstrate our approach we applied the two kinds
of node similarities to the Schools-Wikipedia1 (2008/09)
dataset. Our two aims are to:

1) Find result nodes that are structurally similar to a given
query node, using the signature similarity.

2) Find nodes that are closely connected (directly or
indirectly) to the query node and interesting result
nodes, respectively, using the activation similarity, and
extract the corresponding subgraphs.

Once structurally similar nodes have been detected and the
corresponding communities have been extracted, we manu-
ally compare these subgraphs to find structural coherences.

1http://schools-wikipedia.org/
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A. Schools-Wikipedia

The Schools-Wikipedia (2008/09) dataset consists of a
subset of the English Wikipedia2, with around 5500 articles.
Since it is much smaller as the original, it is more suitable
for the purpose of evaluation. The selected articles grouped
into 154 different categories, consist of 16 main or top
level categories, where each article is assigned to at least
one category. As in Wikipedia, articles can reference other
articles via hyperlinks. In Schools-Wikipedia external links
have been filtered.

Based on these hyperlinks we extracted a link graph
with articles as nodes and hyperlinks as edges. Additionally
we filtered out articles describing years by their important
events, since we are interested in persons, events, etc.
themselves but not the years in which they occur. The
resulting graph is directed and consists of four connected
components, whereas three of the components consist only
of one node and are filtered as well.

We applied spreading activation processes as described
in Section III onto the hyperlink graph, to compute the
activation and signature similarities defined in Section V
between all nodes. Since the spreading activation processes
converge quickly due to the underlying graph structure we
only computed the first 10 iterations of each spreading pro-
cess to compute the similarities. Concerning the activation
similarity we used a decay value of α = 0.3 to compute
the accumulated activation vectors, to focus on the local
neighborhood of nodes. The choice of parameters is not
discussed in this work. Here it is sufficient to mention that
further iterations (> 10) do not contribute significantly to
both similarities.

In one of our experiments we wanted to find persons
with a similar structure in the network compared to Linus
Torvalds. Hence we used Linus Torvalds as query node and
sorted all articles based on their corresponding signature
similarity. Since we focused on structurally similar persons
we filtered all articles not belonging to the People category.
In Table I the 10 most similar nodes of the People category
as well as the most dissimilar, based on the signature
similarity, compared to Linus Torvalds are listed together
with their rank.

It can be seen that Linus himself is the most similar node,
which makes sense in terms of the cosine similarity used on
activation and signature vectors. Inspecting the structurally
similar nodes, the name Larry Page attracts our attention as
well as Pope John Paul II. Larry Page is the fifth structurally
most similar node of the People category and Pope John Paul
II the most dissimilar.

Next we extracted three subgraphs, containing the 40
nodes most similar to Torvalds, Page, and John Paul II,
respectively based on the activation similarity. Figure 2
shows the extracted subgraphs. The layout of all graphs

2http://en.wikipedia.org/wiki/Main Page

Linus Torvalds
Rank Signature similarity
1. Linus Torvalds
2. Benjamin Britten
3. Jackson Pollock
4. Ward Cunningham
5. Larry Page
6. Georgia O’Keeffe
7. Eilmer of Malmesbury
8. Emma Roberts
9. William Renshaw
10. Marc Pugh
...

...
695. Pope John Paul II

Table I
THE 10 STRUCTURALLY MOST SIMILAR NODES, ASSIGNED TO THE

PEOPLE CATEGORY, AND THE MOST DISSIMILAR TO LINUS TORVALDS,
BASED ON THE SIGNATURE SIMILARITY.

is a centrality layout based on the eigenvector centrality.
The higher the eigenvector centrality value of a node, the
more central it is positioned. For reasons of visibility and
clearness, arrows of directed edges are not drawn. Obtaining
an impression of the structure, arrows are not important in
this context.

Figure 2a shows the community around Torvalds. Nodes,
such as Linux, Open source, Helsinki, etc. are part of
his closer community, reasonably, since he studied at the
Helsinki University and initiated the development of the
open source Linux kernel. The name Linus Pauling might
at first sight seem exceptional, but on closer inspection it
turns out that Torvalds was named after Linus Pauling, the
American Nobel Prize-winning chemist. Pauling is a direct
neighbor of Torvalds, thus also it make sense for him to be
part of Torvalds’ closer community.

In Figure 2b the community around Larry Page is illus-
trated. Apparently Torvalds and Page are not the most central
nodes in their communities, but Linux or Google, respec-
tively. Additionally it can be seen that in both communities
two other central nodes exist, Unix and Microsoft Windows
in Figure 2a and Internet and United States in Figure 2b.
The unconnected nodes in both figures have a high activation
similarity, otherwise they would not be in the top 40, but
have no direct edge to the other connected nodes. When the
community is extended to 50 or more nodes, they become
connected as well.

Figure 2c shows the community around Pope John Paul
II, the structurally most dissimilar node to Torvalds. It can
clearly be seen that the connectedness of John Paul II is
significantly different to that of Torvalds and Page, since
John Paul II is the most central node in his community
and almost connected to all other nodes of the extracted
subgraph.

1089



X Window System

GNOME

United States

Wi-Fi

Estonia

Macintosh
Forth (programming language)

Internet

Linux

X Window System core protocol Unix

Finland

InterBase

Germany

Btrieve

X Window System protocols and architecture

Open source

Peanuts

Stockholm

GNU Project
GNU

Helsinki

TeX

Microsoft Windows

Linus Torvalds

Ubuntu

Sweden

Penguin

Perl

Pac-Man

Oregon

Computer

Emacs

Python (programming language)

Computer science

OpenOffice.org

Richard Stallman

Linus Pauling

OpenBSD

Internet Explorer

(a)

Larry Page

History of the Internet

Google

United States

Mozilla Firefox

Steve Jobs

Michigan State University

HTTP cookie

Grease (film)

Creative Commons

Gmail

People's Republic of China
Tim Berners-Lee

Internet

Intel Corporation

Montessori method

Lego

Blog

The Adventure Series (Willard Price)

California

Storm of October 1804

Northern Mariana Islands

Sergey Brin

Ward Cunningham

Google Maps

Wikipedia

Personal computer

United States dollar

World Wide Web
Federal Bureau of Investigation

Phishing

English language

Computer

New York City

Computer science

Jimmy WalesMicrosoft

Apple Inc.

Chicago

San Francisco, California

(b)

Shroud of Turin

Bill Clinton

Cristero War

United States

Eastern Orthodox Church

Sistine Chapel ceiling

Ordination of women

Pope John Paul II

Russian language

Pope Benedict XVI

Tenzin Gyatso, 14th Dalai Lama

Rowan Williams

European Union

Ronald Reagan

Peaceful coexistence

Jesus

History of Christianity

Poland

MadridSpain

Harlem Globetrotters

Nobel Peace Prize

United Nations

Inquisition

Romania

The Quatermass Experiment

Basilica of San Francesco d'Assisi

George H. W. Bush

German language

Jew

Yamoussoukro

Pope

East-West Schism

Roman Catholic Church
Mother Teresa

Ladysmith Black Mambazo

Fidel Castro

List of popes

Pope Pius XII

Vatican City

(c)

Figure 2. Three subgraphs of the 40 most similar nodes according to Linus Torvalds (Figure 2a), Larry Page (Figure 2b), and Pope John Paul II (Figure 2c)
based on activation similarity. The layout of all graphs is a centrality layout, based on the eigenvector centralities of the nodes. Very central nodes, like
Linux, Google, or Pope John Paul II are place at a central position.

VII. CONCLUSION

In this work we have shown how two kinds of similarities
to compare nodes in a graph can be derived from spreading
activation processes. The activation similarity is based on
the comparison of activation vectors and yields a spatial or
closeness similarity. The signature similarity is based on the
comparison of velocity norms and yields a structural simi-
larity. By applying both kinds of similarities on the one hand
enables structurally similar nodes, which are not necessarily
located close to each other, to be detected, on the other
dense regions around certain nodes, consisting of the closest
neighbors, to be extracted and compared. We applied this
procedure on the Schools-Wikipedia dataset and preliminary
results are very encouraging. The experiments suggested that
the combination of these two kinds of similarities could be
a promising tool in the area of network exploration.
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